Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering
Abstract
:1. Introduction
2. Structure and Properties of Mineralized CS Scaffolds
2.1. Organic Template—CS
2.1.1. Biodegradability
2.1.2. Drug Delivery
2.1.3. Antibacterial Activity
2.2. Inorganic Component—Minerals
2.2.1. Hydroxyapatite
2.2.2. β-Tricalcium Phosphate
2.2.3. Biphasic CaP (BCP)
2.2.4. Bioactive Glass
3. Preparation Techniques of Mineralized CS Scaffolds
4. Applications of Mineralized CS Scaffolds in BTE
4.1. Pure Mineralized CS Scaffolds
4.2. Mineralized CS Scaffolds without Other Organic Components
4.3. Mineralized CS Scaffolds with Other Organic Components
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nahas, N.E.; Samy, A.M.; Omer, M.O. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar]
- Brun, P.; Zamuner, A.; Battocchio, C.; Cassari, L.; Todesco, M.; Graziani, V.; Iucci, G.; Marsotto, M.; Tortora, L.; Secchi, V.; et al. Bio-Functionalized Chitosan for Bone Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 5916. [Google Scholar] [CrossRef] [PubMed]
- St John, T.A.; Vaccaro, A.R.; Sah, A.P.; Schaefer, M.; Berta, S.C.; Albert, T.; Hilibrand, A. Physical and monetary costs associated with autogenous bone graft harvesting. Am. J. Orthop. 2003, 32, 18–23. [Google Scholar] [PubMed]
- Donati, D.; Bella, C.; Angeli, M.C.; Bianchi, G.; Mercuri, M. The use of massive bone allografts in bone tumour surgery of the limb. Curr. Orthop. 2005, 19, 393–399. [Google Scholar] [CrossRef]
- Lanza, R.; Langer, R.; Vacanti, J.; Lanza, R.; Langer, R.; Vacanti, J. Principles of Tissue Engineering; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Reddi, A.H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 1998, 16, 247–252. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Shahsavar, M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 2013, 59, 200–211. [Google Scholar] [CrossRef]
- Henkel, J.; Woodruff, M.A.; Epari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.M.; Schuetz, M.A.; Hutmacher, D.W. Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef]
- Sheehy, E.J.; Kelly, D.J.; O’Brien, F.J. Biomaterial-based endochondral bone regeneration: A shift from traditional tissue engineering paradigms to developmentally inspired strategies. Mater. Today Bio 2019, 3, 100009. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, T.; Chen, M.; Yao, K.; Huang, X.; Zhang, B.; Li, Y.; Liu, J.; Wang, Y.; Zhao, Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Chang, J.; Wu, C. Bioactive scaffolds for osteochondral regeneration. J. Orthop. Transl. 2019, 17, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Richbourg, N.R.; Peppas, N.A.; Sikavitsas, V.I. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J. Tissue Eng. Regen. Med. 2019, 13, 1275–1293. [Google Scholar] [CrossRef]
- Gialeli, C.; Karamanos, N.K.; Skandalis, S.S.; Theocharis, A.D. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2015, 97, 4–27. [Google Scholar]
- Dimassi, S.; Tabary, N.; Chai, F.; Zobrist, C.; Hornez, J.-C.; Cazaux, F.; Blanchemain, N.; Martel, B. Polydopamine treatment of chitosan nanofibers for the conception of osteoinductive scaffolds for bone reconstruction. Carbohydr. Polym. 2022, 276, 118774. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, G.; Wang, T.; Jin, Y.; Lu, W.; Ji, J. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Stem Cells Dev. 2021, 30, 548–559. [Google Scholar] [CrossRef]
- Mazaheri, M.; Akhavan, O.; Simchi, A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl. Surf. Sci. 2014, 301, 456–462. [Google Scholar] [CrossRef]
- Demirtaş, T.T.; Irmak, G.; Gümüşderelioğlu, M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017, 9, 035003. [Google Scholar] [CrossRef]
- Ressler, A. Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers 2022, 14, 3430. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023, 15, 1313. [Google Scholar] [CrossRef]
- Aguilar, A.; Zein, N.; Harmouch, E.; Hafdi, B.; Bornert, F.; Offner, D.; Clauss, F.; Fioretti, F.; Huck, O.; Benkirane-Jessel, N.; et al. Application of Chitosan in Bone and Dental Engineering. Molecules 2019, 24, 3009. [Google Scholar] [CrossRef]
- Balagangadharan, K.; Trivedi, R.; Vairamani, M.; Selvamurugan, N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr. Polym. 2019, 216, 1–16. [Google Scholar] [CrossRef]
- Sukpaita, T.; Chirachanchai, S.; Pimkhaokham, A.; Ampornaramveth, R.S. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar. Drugs 2021, 19, 551. [Google Scholar] [CrossRef]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Mahmoudi, S.; et al. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef]
- Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41, 2193–2221. [Google Scholar] [CrossRef]
- Mantripragada, V.P.; Jayasuriya, A.C. Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016, 67, 409–417. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug. Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Hwang, H.-Y.; Kim, I.-S.; Kwon, I.C.; Kim, Y.-H. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J. Control. Release 2008, 128, 23–31. [Google Scholar] [CrossRef]
- Dang, J.M.; Leong, K.W. Natural polymers for gene delivery and tissue engineering. Adv. Drug. Deliv. Rev. 2006, 58, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Kassem, A.; Ayoub, G.M.; Malaeb, L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Sci. Total. Environ. 2019, 668, 566–576. [Google Scholar] [CrossRef]
- Ding, C.C.; Teng, S.H.; Pan, H. In-situ generation of chitosan/hydroxyapatite composite microspheres for biomedical application. Mater. Lett. 2012, 79, 72–74. [Google Scholar] [CrossRef]
- Dienel, K.E.G.; van Bochove, B.; Seppälä, J.V. Additive Manufacturing of Bioactive Poly(trimethylene carbonate)/β-Tricalcium Phosphate Composites for Bone Regeneration. Biomacromolecules 2020, 21, 366–375. [Google Scholar] [CrossRef]
- Yang, L.; Chen, S.; Shang, T.; Zhao, R.; Yuan, B.; Zhu, X.; Raucci, M.G.; Yang, X.; Zhang, X.; Santin, M.; et al. Complexation of Injectable Biphasic Calcium Phosphate with Phosphoserine-Presenting Dendrons with Enhanced Osteoregenerative Properties. ACS Appl. Mater. Interfaces 2020, 12, 37873–37884. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, S.; Wang, H.; Li, Y.; Kishen, A.; Deng, X.; Yang, X.; Wang, Y.; Cong, C.; Wang, H.; et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries. PLoS ONE 2015, 10, e0116553. [Google Scholar] [CrossRef]
- Wang, Y.; Van Manh, N.; Wang, H.; Zhong, X.; Zhang, X.; Li, C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016, 11, 2053–2067. [Google Scholar] [CrossRef]
- Park, K.H.; Kim, S.J.; Hwang, M.J.; Song, H.J.; Park, Y.J. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids. Express Polym. Lett. 2016, 11, 14–20. [Google Scholar] [CrossRef]
- Chae, T.; Yang, H.; Ko, F.; Troczynski, T. Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: In situ synthesis and electrospinning. J. Biomed. Mater. Res. A 2014, 102, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Wang, T.; Guo, S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen. Ther. 2021, 16, 63–72. [Google Scholar] [CrossRef]
- Pighinelli, L.; Kucharska, M. Chitosan-hydroxyapatite composites. Carbohydr. Polym. 2013, 93, 256–262. [Google Scholar] [CrossRef]
- Bellucci, D.; Sola, A.; Cannillo, V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J. Biomed. Mater. Res. A 2016, 104, 1030–1056. [Google Scholar] [CrossRef]
- Weng, W.; Baptista, J.L. A new synthesis of hydroxyapatite. J. Eur. Ceram. Soc. 1997, 17, 1151–1156. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Eggli, P.S.; Müller, W.; Schenk, R.K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin. Orthop. Relat. Res. 1988, 232, 127–138. [Google Scholar] [CrossRef]
- Kondo, N.; Ogose, A.; Tokunaga, K.; Ito, T.; Arai, K.; Kudo, N.; Inoue, H.; Irie, H.; Endo, N. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials 2005, 26, 5600–5608. [Google Scholar] [CrossRef]
- Zerbo, I.R.; Bronckers, A.L.J.J.; de Lange, G.; Burger, E.H. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Biomaterials 2005, 26, 1445–1451. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Botelho, M.G.; Dorozhkin, S.V. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 1293–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Fan, H.; Li, D.; Xiao, Y.; Zhang, X. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. 2010, 82B, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Lobo, S.E.; Arinzeh, T.L. Biphasic Calcium Phosphate Ceramics for Bone Regeneration and Tissue Engineering Applications. Materials 2010, 3, 815–826. [Google Scholar] [CrossRef]
- Daculsi, G.; Legeros, R.Z.; Nery, E.; Lynch, K.; Kerebel, B. Transformation of biphasic calcium phosphate ceramics in vivo: Ultrastructural and physicochemical characterization. J. Biomed. Mater. Res. 1989, 23, 883–894. [Google Scholar] [CrossRef]
- Hench, L.L.; Hench, J.W.; Greenspan, D.C. Bioglass: A short history and bibliography. J. Aust. Ceram. Soc. 2004, 40, 1–42. [Google Scholar]
- El-Meliegy, E.; Noort, R.V. Glasses and Glass Ceramics for Medical Applications; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Omar, R.; Adel, A.; Saad, A.; Mark, T. Rapidly-Dissolving Silver-Containing Bioactive Glasses for Cariostatic Applications. J. Funct. Biomater. 2018, 9, 28. [Google Scholar]
- Kokubo, T.; Kim, H.-M.; Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161–2175. [Google Scholar] [CrossRef]
- Gosain, A.K. Bioactive glass for bone replacement in craniomaxillofacial reconstruction. Plast. Reconstr. Surg. 2004, 114, 590–593. [Google Scholar] [CrossRef]
- Ducheyne, P.; Qiu, Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999, 20, 2287–2303. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Ren, Q.; Li, Z.; Zhang, L. Chitosan-Based Biomimetically Mineralized Composite Materials in Human Hard Tissue Repair. Molecules 2020, 25, 4785. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Annu; Sheikh, J.; Ali, A. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 2018, 116, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Hua, S.; Yang, M.; Fu, Z.; Teng, S.; Niu, K.; Zhao, Q.; Yi, C. Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv. 2016, 6, 110557–110565. [Google Scholar] [CrossRef]
- Aidun, A.; Safaei Firoozabady, A.; Moharrami, M.; Ahmadi, A.; Haghighipour, N.; Bonakdar, S.; Faghihi, S. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering. Artif. Organs 2019, 43, E264–E281. [Google Scholar] [CrossRef]
- Alimirzaei, F.; Vasheghani-Farahani, E.; Ghiaseddin, A.; Soleimani, M. pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. J. Tissue Sci. Eng. 2017, 8, 212. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Mohamed, H.M.; Mohamed, M.I.; Kandile, N.G. Sustainable antimicrobial modified chitosan and its nanoparticles hydrogels: Synthesis and characterization. Int. J. Biol. Macromol. 2020, 162, 1388–1397. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Li, B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int. J. Mol. Sci. 2018, 19, 1641. [Google Scholar] [CrossRef]
- Mu, C.; Hu, Y.; Hou, Y.; Li, M.; He, Y.; Shen, X.; Tao, B.; Lin, C.; Chen, M.; Chen, M.; et al. Substance P-embedded multilayer on titanium substrates promotes local osseointegration via MSC recruitment. J. Mater. Chem. B 2020, 8, 1212–1222. [Google Scholar] [CrossRef]
- Yadav, L.R.; Chandran, S.V.; Lavanya, K.; Selvamurugan, N. Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2021, 183, 1925–1938. [Google Scholar] [CrossRef]
- Jirofti, N.; Hashemi, M.; Moradi, A.; Kalalinia, F. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol. 2023, 252, 126279. [Google Scholar] [CrossRef]
- Sadeghianmaryan, A.; Naghieh, S.; Yazdanpanah, Z.; Alizadeh Sardroud, H.; Sharma, N.K.; Wilson, L.D.; Chen, X. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int. J. Biol. Macromol. 2022, 204, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Sun, D.; Li, M.; Zhou, J.; Yang, R.; Zhang, J.; Chai, W.; Wang, Y. Modification of hydroxyapatite (HA) powder by carboxymethyl chitosan (CMCS) for 3D printing bioceramic bone scaffolds. Ceram. Int. 2023, 49, 538–547. [Google Scholar] [CrossRef]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491. [Google Scholar] [CrossRef] [PubMed]
- De Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Akao, M.; Aoki, H.; Kato, K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. J. Mater. Sci. 1981, 16, 809–812. [Google Scholar] [CrossRef]
- Liang, H.; Sheng, F.; Zhou, B.; Pei, Y.; Li, B.; Li, J. Phosphoprotein/chitosan electrospun nanofibrous scaffold for biomineralization. Int. J. Biol. Macromol. 2017, 102, 218–224. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Y.; Huang, Z.; Duan, Y.; Che, S. Silica biomineralization via the self-assembly of helical biomolecules. Adv. Mater. 2015, 27, 479–497. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B Biointerfaces 2019, 178, 222–229. [Google Scholar] [CrossRef]
- Lu, X.; Leng, Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005, 26, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.M.; Mahapatra, C.; Kim, H.W.; Knowles, J.C. Sol-gel based materials for biomedical applications. Progress. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Gower, L.B.; Odom, D.J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734. [Google Scholar] [CrossRef]
- Vimalraj, S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020, 754, 144855. [Google Scholar] [CrossRef]
- Yuan, C.; Levin, A.; Chen, W.; Xing, R.; Zou, Q.; Herling, T.W.; Challa, P.K.; Knowles, T.P.J.; Yan, X. Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angew. Chem. Int. Ed. 2019, 58, 18116–18123. [Google Scholar] [CrossRef]
- Li, N.; Zhou, L.; Xie, W.; Zeng, D.; Li, L. Alkaline phosphatase enzyme-induced biomineralization of chitosan scaffolds with enhanced osteogenesis for bone tissue engineering. Chem. Eng. J. 2019, 371, 618–630. [Google Scholar] [CrossRef]
- Baskar, K.; Saravana Karthikeyan, B.; Gurucharan, I.; Mahalaxmi, S.; Rajkumar, G.; Dhivya, V.; Kishen, A. Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: A laboratory investigation. Int. Endod. J. 2022, 55, 89–102. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, P.; Zang, R.; Fan, J.; Wang, S.; Wang, B.; Meng, J. Nacre-Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Adv. Mater. 2020, 32, e1907413. [Google Scholar] [CrossRef]
- Jindal, A.; Mondal, T.; Bhattacharya, J. An in vitro evaluation of zinc silicate fortified chitosan scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2020, 164, 4252–4262. [Google Scholar] [CrossRef]
- Chatzipetros, E.; Damaskos, S.; Tosios, K.I.; Christopoulos, P.; Donta, C.; Kalogirou, E.-M.; Yfanti, Z.; Tsiourvas, D.; Papavasiliou, A.; Tsiklakis, K. The effect of nano-hydroxyapatite/chitosan scaffolds on rat calvarial defects for bone regeneration. Int. J. Implant. Dent. 2021, 7, 40. [Google Scholar] [CrossRef]
- Chen, Y.; Udduttula, A.; Xie, X.; Zhou, M.; Sheng, W.; Yu, F.; Weng, J.; Wang, D.; Teng, B.; Manivasagam, G.; et al. A novel photocrosslinked phosphate functionalized Chitosan-Sr5(PO4)2SiO4 composite hydrogels and in vitro biomineralization, osteogenesis, angiogenesis for bone regeneration application. Compos. Part. B Eng. 2021, 222, 109057. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, P.; Liu, J.; Ke, Q.; Zhang, C.; Guo, Y.; Ding, H. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J. Nanobiotechnol. 2018, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.W.; Yu, W.L.; Zhu, Y.J.; Chen, F.; Zhang, Y.G.; Jiang, Y.Y.; He, Y.H. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc-Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry 2018, 24, 8809–8821. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Qi, C.; Chen, Y.-X.; Zhu, Y.-J.; Sun, T.-W.; Chen, F.; Zhang, C.-Q. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects. Int. J. Nanomed. 2017, 12, 2673–2687. [Google Scholar] [CrossRef] [PubMed]
- Gritsch, L.; Maqbool, M.; Mouriño, V.; Ciraldo, F.E.; Cresswell, M.; Jackson, P.R.; Lovell, C.; Boccaccini, A.R. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium. J. Mater. Chem. B 2019, 7, 6109–6124. [Google Scholar] [CrossRef]
- Balagangadharan, K.; Viji Chandran, S.; Arumugam, B.; Saravanan, S.; Devanand Venkatasubbu, G.; Selvamurugan, N. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int. J. Biol. Macromol. 2018, 111, 953–958. [Google Scholar] [CrossRef]
- Yang, F.; Lu, J.; Ke, Q.; Peng, X.; Guo, Y.; Xie, X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci. Rep. 2018, 8, 7345. [Google Scholar] [CrossRef]
- Dhivya, S.; Keshav Narayan, A.; Logith Kumar, R.; Viji Chandran, S.; Vairamani, M.; Selvamurugan, N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell. Prolif. 2018, 51, e12408. [Google Scholar] [CrossRef]
- Yildizbakan, L.; Iqbal, N.; Ganguly, P.; Kumi-Barimah, E.; Do, T.; Jones, E.; Giannoudis, P.V.; Jha, A. Fabrication and Characterisation of the Cytotoxic and Antibacterial Properties of Chitosan-Cerium Oxide Porous Scaffolds. Antibiotics 2023, 12, 1004. [Google Scholar] [CrossRef]
- Demeyer, S.; Athipornchai, A.; Pabunrueang, P.; Trakulsujaritchok, T. Development of mangiferin loaded chitosan-silica hybrid scaffolds: Physicochemical and bioactivity characterization. Carbohydr. Polym. 2021, 261, 117905. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, M.; Liu, W.; Chen, C.; Cui, W.; Sun, T.; Feng, Q.; Guo, X. Chitosan/nHAC/PLGA microsphere vehicle for sustained release of rhBMP-2 and its derived synthetic oligopeptide for bone regeneration. J. Biomed. Mater. Res. A 2017, 105, 1593–1606. [Google Scholar] [CrossRef]
- Li, J.; Xiong, S.; Ding, L.; Zeng, J.; Qiu, P.; Zhou, J.; Liao, X.; Xiong, L. The mechanism research of non-Smad dependent TAK1 signaling pathway in the treatment of bone defects by recombination BMP-2-loaded hollow hydroxyapatite microspheres/chitosan composite. J. Mater. Sci. Mater. Med. 2019, 30, 130. [Google Scholar] [CrossRef]
- Liao, F.; Peng, X.Y.; Yang, F.; Ke, Q.F.; Zhu, Z.H.; Guo, Y.P. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109999. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Guo, Y.; Yang, Z.; Chen, H.; Ren, K.; Weir, M.D.; Chow, L.C.; Reynolds, M.A.; Zhang, F.; Gu, N.; et al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109955. [Google Scholar] [CrossRef] [PubMed]
- Navidi, G.; Allahvirdinesbat, M.; Al-Molki, S.M.M.; Davaran, S.; Panahi, P.N.; Aghazadeh, M.; Akbarzadeh, A.; Eftekhari, A.; Safa, K.D. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. Int. J. Biol. Macromol. 2021, 187, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Maji, K.; Nandi, S.K. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 713–728. [Google Scholar] [CrossRef]
- Deng, N.; Sun, J.; Li, Y.; Chen, L.; Chen, C.; Wu, Y.; Wang, Z.; Li, L. Experimental study of rhBMP-2 chitosan nano-sustained release carrier-loaded PLGA/nHA scaffolds to construct mandibular tissue-engineered bone. Arch. Oral. Biol. 2019, 102, 16–25. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, D.; Tong, S.; Tian, Y.; Wang, X. Comparison studies of mineralized and non-mineralized SF/CS hybrid bone scaffolds co-cultured with the osteoblast cell line MC3T3-E1 in vitro. Int. J. Clin. Exp. Med. 2017, 10, 8969–8978. [Google Scholar]
- Ji, C.; Zhang, C.; Xu, Z.; Chen, Y.; Gan, Y.; Zhou, M.; Li, L.; Duan, Q.; Huang, T.; Lin, J. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front. Bioeng. Biotechnol. 2023, 11, 1193605. [Google Scholar] [CrossRef]
- Reyna-Urrutia, V.A.; Estevez, M.; González-González, A.M.; Rosales-Ibáñez, R. 3D scaffolds of caprolactone/chitosan/polyvinyl alcohol/hydroxyapatite stabilized by physical bonds seeded with swine dental pulp stem cell for bone tissue engineering. J. Mater. Sci. Mater. Med. 2022, 33, 81. [Google Scholar] [CrossRef]
- Shi, C.; Hou, X.; Zhao, D.; Wang, H.; Guo, R.; Zhou, Y. Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. J. Mech. Behav. Biomed. Mater. 2022, 126, 105062. [Google Scholar] [CrossRef]
- Gallinari, M.d.O.; Bordini, E.A.F.; Stuani, V.d.T.; Cassiano, F.B.; Melo, C.C.d.S.B.d.; Almeida, J.M.d.; Cintra, L.T.Â.; De Souza Costa, C.A.; Soares, D.G. Assessment of the regenerative potential of macro-porous chitosan-calcium simvastatin scaffolds on bone cells. Braz. Oral. Res. 2023, 37, e018. [Google Scholar] [CrossRef] [PubMed]
- Abazari, M.F.; Nejati, F.; Nasiri, N.; Khazeni, Z.A.S.; Nazari, B.; Enderami, S.E.; Mohajerani, H. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019, 720, 144096. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, Z.; Miszuk, J.M.; Zhu, M.; Lansakara, T.I.; Tivanski, A.V.; Banas, J.A.; Sun, H. Vanillin-bioglass cross-linked 3D porous chitosan scaffolds with strong osteopromotive and antibacterial abilities for bone tissue engineering. Carbohydr. Polym. 2021, 271, 118440. [Google Scholar] [CrossRef] [PubMed]
- Jolly, R.; Khan, A.A.; Ahmed, S.S.; Alam, S.; Kazmi, S.; Owais, M.; Farooqi, M.A.; Shakir, M. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 109, 110554. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Aghdam, F.; Jahed, V.; Dehghan-Niri, M.; Ganji, F.; Vasheghani-Farahani, E. Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Carbohydr. Polym. 2021, 269, 118311. [Google Scholar] [CrossRef]
- Lavanya, P.; Vijayakumari, N. Copper and manganese substituted hydroxyapatite/chitosan-polyvinyl pyrrolidone biocomposite for biomedical applications. Bull. Mater. Sci. 2021, 44, 222. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Pei, X.; Zhang, X.; Cheng, X.; Hu, S.; Gao, X.; Wang, J.; Chen, J.; Wan, Q. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 36978–36995. [Google Scholar] [CrossRef]
- Nie, L.; Deng, Y.; Li, P.; Hou, R.; Shavandi, A.; Yang, S. Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels for Bone Regeneration. Acs. Omega 2020, 5, 10948–10957. [Google Scholar] [CrossRef]
- Pietraszek, A.; Ledwójcik, G.; Lewandowska-Łańcucka, J.; Horak, W.; Lach, R.; Łatkiewicz, A.; Karewicz, A. Bioactive hydrogel scaffolds reinforced with alkaline-phosphatase containing halloysite nanotubes for bone repair applications. Int. J. Biol. Macromol. 2020, 163, 1187–1195. [Google Scholar] [CrossRef]
- Porrelli, D.; Gruppuso, M.; Vecchies, F.; Marsich, E.; Turco, G. Alginate bone scaffolds coated with a bioactive lactose modified chitosan for human dental pulp stem cells proliferation and differentiation. Carbohydr. Polym. 2021, 273, 118610. [Google Scholar] [CrossRef]
- Radwan-Praglowska, J.; Janus, L.; Piatkowski, M.; Bogdal, D.; Matysek, D. 3D Hierarchical, Nanostructured Chitosan/PLA/HA Scaffolds Doped with TiO2/Au/Pt NPs with Tunable Properties for Guided Bone Tissue Engineering. Polymers 2020, 12, 792. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.N.; Veeresh, V.; Mallick, S.P.; Sinha, S.; Rastogi, A.; Srivastava, P. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int. J. Biol. Macromol. 2020, 153, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tamburaci, S.; Tihminlioglu, F. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int. J. Biol. Macromol. 2020, 142, 643–657. [Google Scholar] [CrossRef]
- Turk, S.; Altinsoy, I.; Efe, G.C.; Ipek, M.; Ozacar, M.; Bindal, C. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018, 92, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Zou, Q.; Zou, W.; Xie, Z.; Li, Z.; Zhao, X.; Du, C. Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti-osteosarcoma effect. Biomater. Sci. 2021, 9, 3319–3333. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Liu, X.; Ge, Y.; Zhang, S. Ursolic Acid Loaded-Mesoporous Hydroxylapatite/ Chitosan Therapeutic Scaffolds Regulate Bone Regeneration Ability by Promoting the M2-Type Polarization of Macrophages. Int. J. Nanomed. 2021, 16, 5301–5315. [Google Scholar] [CrossRef]
Chitosan or Its Derivatives | Minerals | Important Conclusions | Reference |
---|---|---|---|
Chitosan | HA | The scaffolds promoted osteogenic differentiation of pre-osteoblasts in vitro and demonstrated excellent tissue integration in vivo. | [83] |
Carboxymethyl chitosan (CMC) | HA | Human dental pulp stem cells (hDPSCs) on 1:5 HA-CMC scaffolds displayed increased cell viability/proliferation and enhanced DSPP as well as VEGF expressions. | [84] |
Chitosan | Mesoporous zinc silicate (mZS) | The 0.3 wt% of mZS loading composite scaffolds showed good biocompatibility and no obvious toxicity. Addition of mZS also improved the antibacterial activity of scaffolds. | [86] |
Chitosan | HA | 75/25 w/w HA/CS scaffolds provided an effective space for new bone formation. | [87] |
Water-soluble phosphate functionalized chitosan (CSMAP) | Strontium phosphosilicate (SPS) | The bioactive Sr, P and silicon were released from CSMAP-SPS hydrogels in a sustained and controlled manner at a non-toxic level. | [88] |
Chitosan | LaPO4; β-TCP | The scaffolds showed no obvious toxicity or effects on cell morphology, and they accelerated bone generation in a rat cranial defect model. | [89] |
Chitosan | Zinc-containing nanoparticle-decorated ultralong hydroxyapatite nanowires (Zn-UHANWs) | The scaffold can enhance the osteogenic differentiation of rBMSCs and facilitate new bone formation in the bone defect region. | [90] |
Chitosan | HA; Whitlockite (WH) | The WH-CS scaffolds had a better biocompatibility, enhancing proliferation and osteogenic differentiation ability of human bone mesenchymal stem cells (hBMSCs) than HA/CS scaffolds. | [91] |
Chitosan or Its Derivatives | Minerals | Other Inorganic Componets | Bioactive Molecule | Important Conclusions | Reference |
---|---|---|---|---|---|
Chitosan | HA | Strontium; Copper | None | The release of copper and strontium followed significantly different profiles due to the different nature of the loading. | [92] |
Chitosan | HA | Nano-zirconium dioxide (nZrO2) | MicroRNA (miRNA)-miR-590-5p | CS/HA/nZrO2 scaffolds promoted osteoblast differentiation, and this effect was further increased in the presence of miR-590-5p in C3H10T1/2 cells. | [93] |
Chitosan | Mesoporous calcium silicate (MCS) | SrFe12O19 particles | Doxorubicin (DOX) | The MCS scaffolds possessed the excellent anti-tumor efficacy via the synergetic effect of DOX drug release and hyperthermia ablation. | [94] |
Chitosan | Pigeonite (Pg) | Calcium polyphosphate (CaPP) | None | The inclusion of iron-containing Pg particles at 0.25% concentration in CS/CaPP scaffolds showed enhanced bioactivity by protein adsorption and biomineralization, compared with that shown by CS/CaPP scaffolds alone. | [95] |
Chitosan | Silica | ZnO | Mangiferin | With the higher amount of nano-ZnO, the compressive strength and modulus increased. | [97] |
Chitosan | HA | None | p24; rhBMP-2 | This research showed that the composite vehicle could exhibit sustained release of osteogenic factors. | [98] |
Chitosan | HA | None | Bone Morphogenetic Protein (BMP-2) | The BMP-2-TAK1-p38-OSX signaling pathway may play an important role in bone repair mediated by rhBMP-2 loaded hollow HA microspheres/CS composite. | [99] |
Chitosan | Mesoporous calcium silicate (MCS) | Gadolinium (Gd) | None | The scaffolds supported the cell spreading and proliferation, and stimulated the new bone in-growth toward scaffold interiors. | [100] |
Chitosan | Calcium phosphate cement (CPC) | Iron oxide nanoparticles (IONP) | None | CPC with 3% IONP doubled its flexural strength and had the greatest promotion of osteogenic differentiation of the stem cells. | [101] |
Chitosan | Silicoalumino phosphates (SAPO-34) | Fe; Ca | None | Fe-Ca-SAPO-34/CS scaffold possessed excellent cytocompatibility, and supported the adhesion, spreading, and proliferation of cells. | [102] |
Chitosan or Its Derivatives | Minerals | Other Organic Componets | Other Inorganic Componets | Bioactive Molecule | Important Conclusions | Reference |
---|---|---|---|---|---|---|
Carboxymethyl chitosan (CMC) | HA | Collagen (Col) | None | None | Synergistic mineralization can increase the mechanical strength and decrease the degradation rate of collagen scaffolds at the same time such that the BMC scaffolds can better promote the regeneration of bone tissue in defects. | [38] |
Chitosan | HA; β-TCP; BG | Gelatin | None | None | The gelatin-chitosan scaffold with 30 wt% of synthesized 58S bioactive glass (GCB30) showed higher capacity to proliferate MSCs cultured onto it as compared to other composite scaffolds. | [103] |
Chitosan | HA | Polylactic-coglycolic acid (PLGA) | None | Recombinant human bone morphogenetic protein 2 (rhBMP-2) | PLGA/HA/CS/rhBMP-2 scaffold complex effectively controlled the early burst effect of rhBMP-2. | [104] |
Chitosan | HA | Polyvinyl-alcohol (PVA) | None | Platelet-rich plasma (PRP); Mesenchymal stem cells (MSCs) | The in vivo results demonstrated that in the animals implanted with PVA-chitosan-HA, the defect was repaired to a good extent, but in those animals that received MSCs-seeded PVA-chitosan-HA, the defects were almost filled. | [110] |
Chitosan | BG | Vanillin | None | None | The 3D porous chitosan-vanillin-BG (CVB) scaffold had improved mechanical properties, anti-microbial ability, and osteoconductivity. | [111] |
Chitosan | HA | Phoenix dactylifera seeds (PD) | None | None | The PD-CS scaffold is a potential candidate to promote osteoblast cell growth and osteogenic differentiation. | [112] |
Chitosan | Halloysite nanotubes (mHNTs): aluminosilicate | β-Glycerophosphate (GP) | None | Icariin (IC) | IC/mHNTs led to the improved mechanical strength of chitosan hydrogel and enhanced differentiation of encapsulated human adipose-derived stem cells (hASCs) into bone tissue. | [113] |
Chitosan | CuMn-HA | Polyvinyl pyrrolidone (PVD) | None | None | 10, 20, 30 wt% of CuMn-CS-HA biocomposite exhibited great material characteristics where 30% (BC-3) displayed the minimum swelling. BC-3 has improved mechanical properties, physiochemical characteristics and apatiteforming capabilities. | [114] |
Chitosan | Zeolitic imidazolate framework-8 nanoparticle (ZIF-8) | Catechol(CA) | None | None | The 30 mg/1.2 mg CA/ZIF-8 hydrogel and bone powders showed the largest new bone formation area and thickness. | [115] |
Hydroxyethyl chittosan (HECS) | BCP | Polyvinyl alcohol(PVA) | None | None | The reinforced HECS/PVA/BCP hydrogel with promising mechanical and biological properties has the potential for application in bone regeneration. | [116] |
Chitosan | Halloysite (HAL) | Alkaline phosphatase (ALP); collagen | None | None | Mineral was formed in both CS and Collagen-CS scaffolds with HAL-ALP, the process was more effective for collagen-containing hydrogels. Collagen-CS scaffolds containing 30% of HAL-ALP have the highest potential as bioactive material for bone regeneration. | [117] |
Lactose-modified chitosan (CTL) | HA | Alginate | None | None | The scaffolds showed remarkable stability up to 60 days of aging. CTL-coating did not affect cell proliferation, but stimulated cell differentiation. | [118] |
Chitosan | HA | Poly (lactic acid) | Au; Pt; TiO2 | None | The highest bioactivity in contact with cells exhibited samples modified with HA and amorphous titanium dioxide NPs, while scaffolds containing nanogold showed highest positive impact on DC-stimulated in vitro biomineralization. | [119] |
Chitosan | BG | Chondroitin sulfate | None | None | The scaffold facilitates enhanced ALP activity, biomineralization and collagen type I expression of cells and thereby chitosan/chondroitin sulfate/BG might be a suitable candidate for bone tissue engineering. | [120] |
Chitosan | Calcined diatomite; Polyhedral oligomeric silsesquioxanes (POSS); Si-HA | Na-carboxymethyl cellulose (Na-CMC) | None | None | All inorganic reinforcements increased the mechanical strength, enhanced the water uptake capacity and fastened the degradation rate. The nanocomposite scaffolds did not show any cytotoxic effect and enhanced the surface mineralization in osteogenic medium. | [121] |
Chitosan | HA | Collagen (Col) | Functionalized multiwalled carbon nanotube | None | The Col/f-MWCNT/CS scaffolds had higher in vitro bioactivity, large surface area, and a good pore volume, interconnected porous microstructure. | [122] |
Carboxymethyl chitosan (CMC) | HA | Poly(dopamine) (PDA) | None | None | HA/PDA/CMC composite scaffolds could promote more osteogenic differentiation of mouse bone marrow stromal cells (mBMSCs) than scaffolds without PDA in vitro and the effect was not hindered by the photothermal process. | [123] |
Chitosan | HA | Ursolic acid | None | None | The HA-CS-UA scaffolds had good anti-inflammatory, osseointegration, osteo-inductivity, and bone regeneration. | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Meng, Y.; Wang, Y.; Wang, Y.; Wang, Z. Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering. Coatings 2023, 13, 1644. https://doi.org/10.3390/coatings13091644
Li Y, Meng Y, Wang Y, Wang Y, Wang Z. Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering. Coatings. 2023; 13(9):1644. https://doi.org/10.3390/coatings13091644
Chicago/Turabian StyleLi, Yiyuan, Yufeng Meng, Yuning Wang, Yun Wang, and Zuolin Wang. 2023. "Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering" Coatings 13, no. 9: 1644. https://doi.org/10.3390/coatings13091644
APA StyleLi, Y., Meng, Y., Wang, Y., Wang, Y., & Wang, Z. (2023). Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering. Coatings, 13(9), 1644. https://doi.org/10.3390/coatings13091644