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Abstract: Zr-Ti-Nb-Ta alloys were synthesized in parallel via multi-target co-sputtering deposition
with physical masking in a pseudo-ternary Ti-Nb-ZrTa alloy system. Sixteen alloys with distinct
compositions were obtained. Comprehensive characterization of phase structure, microstructure,
Young’s modulus, and nanoindentation hardness was undertaken. The Ti-Nb-ZrTa alloys exhibited
two typical phase structures: a single-BCC solid-solution structure, and an amorphous structure.
Nanoindentation quantification confirmed a Young’s modulus ranging from 110 to 130 GPa, alongside
nanoindentation hardness spanning 3.6 to 5.0 GPa. The combination of good hardness and a relatively
low Young’s modulus renders these alloys promising candidates for excellent biomedical materials.
This work not only offers an effective method for the high-throughput synthesis of multi-principal
element alloys, but also sheds light on a strategy for screening the phase structure and mechanical
performance within a given alloy system.

Keywords: high-throughput preparation; phase structure; microstructure; Young’s modulus; nanoin-
dentation hardness

1. Introduction

Multi-principal element alloys (MPEAs) are a novel class of materials obtained via
designing chemical disorders at the atomic scale [1]. Unlike traditional alloys, whose perfor-
mance is designed with a dominant element and fewer additional elements in mind, MPEAs
generally contain several dominant elements (no less than three), aiming to demonstrate
unique mechanical, physical, and chemical properties in a wider composition space [2].
MPEAs usually cover the fields of medium-entropy alloys and high-entropy alloys. Many
excellent properties have been proved in MPEAs, such as breaking the trade-off between
strength andductility [3–5], good thermal stability [6,7], excellent low-temperature duc-
tility [8,9], outstanding corrosion resistance [10–12] and irradiation resistance [13–15], etc.
The complex compositions of MPEAs enable these advantages, but also make alloys’ design
and property prediction more challenging than for traditional alloys. High-throughput
preparation and screening of MPEAs can thus improve design efficiency [16–18].

At present, many efforts have focused on the Zr-Ti-Nb-Ta alloy system. Several Zr-Ti-
Nb-Ta alloys are considered ideal structural materials due to their high strength and excellent
plastic deformation capacity [19–22]. For example, Ti45Zr45Nb5Tax (x = 5, 10, 15 at. %) alloys
with a single-BCC structure showed outstanding tensile ductility (~20%) and high tensile
strength (800~1200 MPa) [22]. However, a wide composition space remains unexplored. In
general, the reported alloy composition is randomly matched, or only a few composition
content variables are set. In this case, besides the reported composition, there may be other
optimal compositions of this alloy system that have not been explored. If we can screen the
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properties within a wider composition space, the results will be more convincing. Multi-
target co-sputtering combined with a shielding mask offers a flexible high-throughput
preparation method, which has been applied to many MPEAs systems, including Al-Cr-Fe-
Ni-Ti [16], Zr-Ti-Nb [17], and Cr-Fe-V-Ta-W [18] alloy systems, to screen disordered alloy
composition, phase structure, mechanical properties, and photothermal absorption ability.

The purpose of this work is to provide effective parallel preparation methods of multi-
principal element alloys in a pseudo-ternary Ti-Nb-ZrTa system. Multi-target co-sputtering
with a physical mask was used to prepare 16 independent Ti-Nb-ZrTa alloys with different
compositions. Based on the composition library developed for the Zr-Ti-Nb-Ta system, the
relationship between phase structure, microstructure, and mechanical properties, as well as
the trends in mechanical properties, were studied and preliminarily screened.

2. Materials and Methods
Parallel Preparation

The method of combining co-sputtering deposition with physical masking was applied
to the parallel preparation of the Ti-Nb-Zr-Ta alloy system. The targets were classified into a
ZrTa alloy target, a pure Ti target, and a pure Nb target (all elements with a purity > 99.9 wt.%).
It should be noted that the composition ratio of ZrTa is 1:1. The three targets were 120◦

apart from each other, and all of them focused on the substrate; the schematic diagrams
are shown in Figure 1. Differing from conventional co-sputtering, where the substrate
rotates at a certain rate, the substrate in this work is stable. In this case, the differing relative
positions between the target materials and substrate induce spatial variations in deposition
density, yielding a compositionally graded film on the substrate. To preclude interdiffusion
during deposition, a mask was utilized to shield the substrate. Each sample had a square
geometry with dimensions of 10 mm × 10 mm. In one deposition, 16 distinct composition
samples were synthesized and arranged in a matrix array on the substrate, as depicted in
Figure 1. For unambiguous sample identification, an A-B naming convention was adopted,
where A denotes the vertical axis number and B denotes the horizontal axis number (A
ranges from 1 to 4, and B ranges from 1 to 4), as delineated in Figure 1.
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Figure 1. Schematic diagram of high-throughput preparation via a multi-target co-sputtering method.

All of these targets with a diameter of 50 mm and a thickness of 3 mm were fabricated
via a hot-pressing process. The ZrTa alloy target was mounted on a direct current (DC)
power supply at a power of 80 W. The Ti target was also mounted on a DC power supply
at a power of 100 W. The Nb target was mounted on a (radio frequency) RF power supply
with a power of 80 W. The specific working parameters and physical pictures of targets
are listed in Table 1. A P-type Si (100) wafer covered with a 300 nm silicon–oxide coating
was selected as a substrate for this work. The wafer was disc-shaped, with a diameter of
15.24 cm and with a thickness of 625 nm. Before the co-deposition, the base pressure was
maintained at 5 × 10−4 Pa. Then, high-purity argon was induced into the vacuum chamber,
and targets underwent pre-sputtering cleaning for 15 min. Critically, the baffles above the
targets were blocked during this process. Finally, co-sputtering commenced, fabricating
the “materials library”. It should be noted that the Nb element is a positive element to
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the stable β phase, which is expected to maintain a relatively moderate level of element
content. Hence, the Nb target is the equipment on the RF power supply.

Table 1. The working conditions and physical pictures of targets.

Target Powder Type Powder Parameter Target Pictures

Ti DC 100 W
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The surface morphology and cross-sectional microstructure of alloy films were char-
acterized via field-emission scanning electron microscopy (SEM) (Auriga Field Emission
Scanning Electron Microscope, Carl Zeiss, Jena, Germany). The chemical composition was
analyzed with an SEM device equipped with an energy-dispersive X-ray spectrometer
(EDX). The phase structure of samples was tested with an X-ray diffractometer (XRD,
BRUKERD8 Discover, Bruker, Karlsruhe, Germany), using Cu Kα radiation with a scan-
ning range was 20◦–90◦. It should be noted that the small-angle X-ray scattering (SAXS)
technique was used in this work, and the scanning rate was about 4◦/min. The mechanical
properties were mainly focused on the nanoindentation hardness and Young’s modulus
of samples, which were tested using a nanoindenter and a Berkovich triangular pyramid
indenter (OLS-4100, Olympus, Tokyo, Japan). Each sample was tested at least five points at
different places, and the distance between each indentation was 50 µm. To avoid the effect
of the substrate, the maximum pressing depth for testing hardness was 500 nm.

3. Results
3.1. Composition Analysis of Ti-Zr-Nb-Ta Material Library

As characterized by EDX analysis, the final chemical compositions of the sixteen
samples are shown in Table 2. It was found that the content of the Ti ranges from 13 at. %
to 71 at. %, the content of the Zr element ranges from 14 at. % to 47 at. %, the content of
the Nb element ranges from 7 at. % to 43 at. %, and the content of the Ta element ranges
from 7 at. % to 28 at. %. A pseudo-ternary component phase diagram is presented in
Figure 2, along with a schematic diagram describing the relative positions of the targets and
16 samples. Notably, the compositional analysis revealed that proximity to a given target
resulted in a higher proportion of that target material. Conversely, as the distance from a
given target increased, its proportional composition decreased. The mixing entropies of
Ti-Zr-Nb-Ta alloys were calculated by the following equation, which is described according
to Boltzmann’s hypothesis [23]:

∆Smix = −R
n

∑
i=1

cilnci

where R is the gas constant (R = 8.314 J/(K·mol)), and ci is the mole percent of a certain
component, hence the ∑n

i ci equals 1. The calculation results show that the mixing entropy
of these Ti-Zr-Nb-Ta alloys ranges from 0.9R to 1.36R. In this case, these multi-component
alloys mainly belong to medium-entropy alloys.
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Table 2. Chemical compositions of Ti-Zr-Nb-Ta alloy system.

Number Ti Zr Nb Ta Composition

1-1 71.22 14.14 6.61 7.28 Ti71Zr14Nb7Ta7
1-2 57.46 17.92 15.00 9.62 Ti57Zr18Nb15Ta10
1-3 39.84 20.12 29.26 10.78 Ti40Zr20Nb29Ta11
1-4 26.10 20.26 43.05 10.59 Ti26Zr20Nb43Ta11

2-1 62.01 19.90 7.72 10.37 Ti62Zr20Nb8Ta10
2-2 48.04 24.45 14.35 13.16 Ti48Zr25Nb14Ta13
2-3 33.74 28.84 22.00 15.41 Ti34Zr29Nb22Ta15
2-4 23.89 28.15 32.10 15.86 Ti24Zr28Nb32Ta16

3-1 44.80 31.10 7.60 16.50 Ti45Zr31Nb8Ta16
3-2 34.80 34.98 10.46 19.76 Ti35Zr35Nb10Ta20
3-3 27.29 36.24 15.8 20.67 Ti27Zr36Nb16Ta21
3-4 18.17 40.28 18.97 22.58 Ti18Zr40Nb19Ta23

4-1 28.80 42.34 6.24 22.62 Ti30Zr42Nb6Ta23
4-2 19.77 45.99 8.11 26.13 Ti20Zr46Nb8Ta26
4-3 15.45 46.98 9.73 27.84 Ti15Zr47Nb10Ta28
4-4 13.44 45.28 15.88 25.40 Ti13Zr45Nb16Ta26
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Figure 2. Location of Ti-Zr-Nb-Ta alloys in a pseudo-ternary compositional map.

As depicted in Figure 3, the variation patterns of the constituent elements were
examined separately. The Zr and Ta elements were alloyed in a single target; thus, the
compositional trends for Zr and Ta were consistent. As noted, the sample units were named
A-B, where A denotes the horizontal serial number. It was observed that higher A values
corresponded to increased ZrTa content, as the distance between the sample units and ZrTa
target decreased with increasing A. Hence, the compositional variations followed a simple
linear relationship correlated with the relative distance and position between the sample
unit and target material. The trends in Ti and Nb content, shown in Figure 3c,d, further
validated this relationship.
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3.2. Phase Structure and Microstructure Characterization and Analysis

The phase structures of 16 Zr-Ti-Nb-Al alloys were characterized via XRD, as shown
in Figure 4. Overall, these alloys show two different phase structures including a single-
body-centered cubic (BCC) structure and an amorphous structure. Using an analysis of
composition changes, it can be found that alloys with high ZrTa content are amorphous
structures. Moreover, with the increase in the ZrTa content, the diffraction peaks shift
towards a low angle, which means larger lattice parameters. Combining dhkl =

a√
h2+k2+l

with the Bragg diffraction formula of 2dsinθ = λ, the lattice constant (a) is expressed as
a = λ
√

h2 + k2 + l/2sinθ. Here, λ is the wavelength of X-ray radiation, dhkl is the interplanar
spacing, and θ is the diffraction angle. Typical parameters for the components are listed
in Table 3. The atomic radius of Zr is larger than other components. In this case, as the
content of Zr and Ta increases, the lattice constant increases, resulting in a corresponding
decrease in the diffraction angles of peaks.

Table 3. The parameters of the constituent elements of Ti-Zr-Nb-Ta alloy systems.

Element Atomic Radius
r (nm)

Lattice Parameter
a (nm)

Ti 0.143 0.32998
Zr 0.160 0.3609
Nb 0.143 0.33007
Ta 0.146 0.33013
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Figure 5 presents SEM images of the sixteen Ti-Zr-Nb-Ta alloys, arranged correspond-
ing to the specimen locations on the substrate. As shown, the morphologies of the alloys
somewhat varied with composition. The images can be broadly categorized into two
topographic groups, delineated by colored lines: (1) a rough surface with granular features,
and (2) a relatively smooth surface without particles. Combining these images with a phase
structure analysis, it was found that the alloys with granular features possess a single-BCC
phase structure, while the alloys with smooth surface features possess an amorphous struc-
ture. In other words, alloys with a BCC phase structure displayed distinct nanocrystalline
structures, whereas amorphous alloys lacked such nanocrystalline characteristics.
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According to the composition analysis, the amorphous alloys contain a relatively
high Zr and Ta content, and possess a relatively large atomic radius. The formation of
amorphous phases in several films can be rationalized in two ways: (1) the amorphous alloy
films possess a high Zr and Ta content, which exacerbates the atomic size mismatch within
these alloys, thereby hindering the formation of a highly crystalline structure; (2) the higher
cooling rate inherent to magnetron sputtering, compared to melting methods, induces
a non-equilibrium state in the sputtered films, and this further facilitates amorphous
structure formation. Briefly, an increase in the atomic size mismatch will correspondingly
cause an increase in atomic size strain within the HEA lattice. In this case, the instability
of the lattice will be exacerbated. At the same time, with the support of a high cooling
rate in the sputtering, the amorphous phase will dominate in HEA films with a high Zr
content. It should be noted that the microstructure of films was significantly affected by
the atomic diffusion ability. For crystal films, the lattice was in a stable state with lower
lattice energy versus the metastable state. In this case, the deposited atoms for crystal films
possess a stronger diffusion ability, enabling rapid surface diffusion. Consequently, the
grain boundaries were mobile, imparting a granular surface morphology.

3.3. Mechanical Properties’ Characterization and Analysis

The mechanical properties of Ti-Zr-Nb-Ta alloys were tested via nanoindentation,
mainly focusing on the hardness and Young’s modulus. For clarity, the tested indentation
hardness values were compiled into contour maps, as presented in Figure 6. Overall, the
hardness across the 16 specimens spanned 5 to 8.5 GPa. A region of relatively high hardness
existed within these Ti-Zr-Nb-Ta alloys. In conjunction with their microscopic morphology
and phase structure analysis, the amorphous films exhibited greater hardness versus the
BCC-structured alloys. Compared to the crystalline films, the amorphous films contained a
higher ZrTa content. The large atomic size difference in the amorphous films increased their
structural disorder. The extensive lattice distortion inherent to the amorphous structures
resulted in high dislocation migration resistance, which was the primary rationale for the
enhanced hardness of the amorphous alloys.
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The Young’s modulus of Ti-Zr-Nb-Ta alloys was also tested via nanoindentation. The
measured Young’s modulus of the films spanned 110 to 133 GPa, as presented in Figure 7.
Notably, alloys 2-3 and 2-4 exhibited relatively high Young’s modulus values, while the
Young’s modulus of the other alloys was at a relatively low level. Through compari-
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son, it was discerned that Young’s modulus trend did not correlate with the observed
hardness changes.
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Moreover, the cooling rate of films obtained via magnetron sputtering is higher than
that of bulk alloy fabricated using a melting method, which induces a non-equilibrium
state in films. In this case, the films generally show a semi-crystal structure or fine-grained
structure, resulting in a significant increase in dislocation migration resistance. Hence,
for a given composition, the hardness of films was typically greater than that of bulk
alloys. Notably, with changes in alloy composition, the mechanical properties of both
films and bulk alloys displayed consistent trends. This arose because several intrinsic
physical parameters like atomic size mismatch, modulus mismatch, and valence electron
concentration (VEC) solely depended on composition. Therefore, this combinatorial film
library could feasibly guide the design of Ti-Zr-Nb-Ta bulk alloys. Concurrently, the
synergistic design of MPEAs based on principles of VEC theory and average shear modulus
mismatch has been proven to enable excellent biomedical MPEAs [22]. Briefly, integrating
this combinatorial film library with a synergistic design philosophy for bulk MPEAs will
expedite the development of superior biomedical alloys.

4. Discussions

The parallel preparation of Ti-Zr-Nb-Ta alloys was studied utilizing multi-target co-
sputtering combined with physical masking. Sixteen specimens with different compositions
were fabricated. Based on a preliminary investigation of this alloy, several issues were
highlighted, as follows:

(1) The material library displayed extensive coverage across multi-principal compo-
nent alloy compositions. Regarding component gradients, the elemental content decreased
towards the periphery, with the deposition source at the center. Accordingly, the composi-
tion range of each component can be modulated by altering the relative position between
the target material and substrate. Additionally, modifying the sputtering power of individ-
ual targets and adjusting the target-to-substrate distance can further tune the composition
range of the material library.

(2) The sixteen Ti-Zr-Nb-Ta alloys exhibit two typical structures, including a single-
BCC phase structure and an amorphous structure. Microstructural characterization re-
vealed distinct morphological features associated with each phase structure. Specifically,
the films with a BCC phase structure exhibited a rough surface morphology of nanocrys-



Coatings 2023, 13, 1650 9 of 10

tals, while the films with an amorphous structure showed a relatively smooth surface
morphology. Moreover, alloy films containing more ZrTa show larger lattice parameters,
with the diffraction peaks shifting to the low angle of alloys. Accordingly, this combinato-
rial material library enabled rapid screening of the phase structure, microstructure, and
lattice constant.

(3) The mechanical properties of multi-principal alloys were also examined utilizing the
material library. The Young’s modulus and nanoindentation hardness of the Ti-Zr-Nb-Ta alloys
spanned 110 to 130 GPa and 5 to 8.5 GPa, respectively, exhibiting relatively high hardness
and a low modulus. Contour mapping enabled clear visualization of the compositional
dependence of the hardness and modulus, providing a platform to screen compositions for
target mechanical properties.

(4) Overall, the Ti-Zr-Nb-Ta alloys exhibited a low modulus, and the constituent
elements demonstrated biocompatibility. Compared to classic biomedical materials, such
as Ti-6Al-4V alloy (with a Young’s modulus of 110 GPa), CoCrMo alloy (with a Young’s
modulus of 230 GPa), and 316L SS (with a Young’s modulus of 210 GPa), the Ti-Zr-Nb-Ta
alloys spanned a Young’s modulus range of 110–130 GPa. Therefore, the Ti-Zr-Nb-Ta alloys
show potential for application in biomedical materials. This work provides a foundation
that will enable the future screening and design of Ti-Zr-Nb-Ta biomedical alloys.

5. Conclusions

In summary, this work enables parallel fabrication of Ti-Zr-Nb-Ta, multi-principal
element alloys with excellent mechanical performance, characterized by a low Young’s
modulus and high strength. Preliminary studies indicate the Ti-Zr-Nb-Ta system holds
great potential as a biomedical material class. This high-throughput fabrication process
pioneers a new paradigm for the parallel synthesis and screening of biomaterials. Moving
forward, evaluating corrosion resistance, wear resistance, and fracture toughness should
be key priorities. Ultimately, this combinatorial approach is expected to accelerate the
discovery and optimization of MPEAs for next-generation biomedical applications.
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