Review on Charge Carrier Transport in Inorganic and Organic Semiconductors
Abstract
:1. Introduction
2. Classification of Inorganic and Organic Semiconductors
2.1. Classification of Inorganic Semiconductors
2.2. Classification of Organic Semiconductors
3. Carrier Generation and Recombination
4. Charge Transport in Semiconductors
5. Techniques Used to Investigate Charge Transport in Organic Semiconductors
6. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laeri, F.; Schüth, F.; Simon, U.; Wark, M. Host-Guest-Systems Based on Nanoporous Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Smith, Z.A.; Taylor, K.D. Renewable and Alternative Energy Resources: A Reference Handbook; ABC-CLIO: Santa Barbara, CA, USA, 2008. [Google Scholar]
- Orton, J.W. The Story of Semiconductors; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Orton, J.W. Semiconductors and the Information Revolution: Magic Crystals That Made IT Happen; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Mönch, W.; Mönch, W. Semiconductor interfaces. In Semiconductor Surfaces and Interfaces; Springer Science & Business Media: Berlin, Germany, 2001; pp. 385–481. [Google Scholar]
- Sarkar, T.K.; Mailloux, R.; Oliner, A.A.; Salazar-Palma, M.; Sengupta, D.L. History of Wireless; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Perlin, J. From Space to Earth: The Story of Solar Electricity; Earthscan: Oxford, UK, 1999. [Google Scholar]
- Hoddeson, L.; Braun, E.; Teichmann, J.; Weart, S. Out of the Crystal Maze: Chapters from the History of Solid State Physics; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Busch, G. Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years. Eur. J. Phys. 1989, 10, 254. [Google Scholar] [CrossRef]
- Lojek, B. History of Semiconductor Engineering; Springer: Berlin, Germany, 2007. [Google Scholar]
- Morris, P.R. A History of the World Semiconductor Industry; History of Technology, Institution of Engineering and Technology: London, UK, 1990. [Google Scholar]
- Loebner, E.E. Subhistories of the light emitting diode. IEEE Trans. Electr. Dev. 1976, 23, 675–699. [Google Scholar] [CrossRef]
- Karl, N. Organic Semiconductors; Madelung, O., Schulz, M., Weiss, H., Eds.; Landolt-Boernstein (New Series); Springer: Berlin, Germany, 1985. [Google Scholar]
- Silinsh, E.A. Organic Molecular Crystals; Springer Science & Business Media: Berlin, Germany, 1980. [Google Scholar]
- Pope, M.; Swenberg, C.E. Electronic Processes in Organic Crystals and Polymers, 2nd ed.; Oxford University Press: New York, NY, USA, 1999; Volume 56. [Google Scholar]
- Chiang, C.K.; Fincher, J.C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical Conductivity in Doped Polyacetylene: Phys. Rev. Lett. 39 (1977) 1098 (Special Issue: The Nobel Prize in Chemistry to Dr. Hideki Shirakawa). Butsuri 2001, 56, 572–575. [Google Scholar]
- Borsenberger, P.M. Organic Photoreceptors For Imaging Systems; Marcel Dekker: New York, NY, USA, 1993; Volume 39. [Google Scholar]
- SkotheimTerje, A. Handbook of Conducting Polymers, 2nd ed.; Dekker: New York, NY, USA, 1998. [Google Scholar]
- Koezuka, H.; Tsumura, A.; Ando, T. Field-effect transistor with polythiophene thin film. Synth. Met. 1987, 18, 699–704. [Google Scholar] [CrossRef]
- Friend, R.H.; Jones, C.A.; Burroughes, J.H. New semiconductor device physics in polymer diodes and transistors. Nature 1988, 335, 137–141. [Google Scholar]
- Horowitz, G.; Fichou, D.; Peng, X.; Xu, Z.; Garnier, F. A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun. 1989, 72, 381–384. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Friend, R.H.; Holmes, A.B.; Marks, R.N.; Bradley, D.D.C.; Brown, A.R.; Burroughes, J.H.; Mackay, K.; Burns, P.L. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar]
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Gregory, P. Industrial applications of phthalocyanines. J. Porphyr. Phthalocyanines 2012, 4, 432–437. [Google Scholar] [CrossRef]
- Hohnholz, D.; Steinbrecher, S.; Hanack, M. Applications of phthalocyanines in organic light emitting devices. J. Mol. Struct. 2000, 521, 231–237. [Google Scholar] [CrossRef]
- Melville, O.A.; Lessard, B.H.; Bender, T.P. Phthalocyanine-based organic thin-film transistors: A review of recent advances. ACS Appl. Mater. Interfaces 2015, 7, 13105–13118. [Google Scholar] [CrossRef] [PubMed]
- Serpone, N.; Emeline, A. Semiconductor Photocatalysis—Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, J.; Liu, H.; Huang, J. Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. Eng. 2018, 93, 590–602. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.G.; Dargusch, M.S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.L.; Yang, Y.L.; Chen, Z.G. Flexible thermoelectric materials and devices: From materials to applications. Mater. Today 2021, 46, 62–108. [Google Scholar] [CrossRef]
- Liu, W.D.; Yang, L.; Chen, Z.G.; Zou, J. Promising and eco-friendly Cu2X-based thermoelectric materials: Progress and applications. Adv. Mater. 2020, 32, 1905703. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Shahzad, S.; Cui, Y. A review on recent developments of thermoelectric materials for room-temperature applications. Sustain. Energy Technol. Assess. 2020, 37, 100604. [Google Scholar] [CrossRef]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Wang, W.; Yan, Q.; Zhou, Y.; Zhu, L.; Cao, B.; Wei, B. Near Zero-threshold Voltage P-N Junction Diodes Based on Super-semiconducting Nanostructured Ag/Al Arrays. Adv. Mater. 2023, 35, 2210612. [Google Scholar] [CrossRef]
- Le Thi, H.Y.; Ngo, T.D.; Phan, N.A.N.; Yoo, W.J.; Watanabe, K.; Taniguchi, T.; Aoki, N.; Bird, J.P.; Kim, G.H. Self-Forming p–n Junction Diode Realized with WSe2 Surface and Edge Dual Contacts. Small 2022, 18, 2204547. [Google Scholar] [CrossRef] [PubMed]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.; Kim, Y.H.; Ko, B.M.; Eom, J. Bipolar junction transistor exhibiting excellent output characteristics with a prompt response against the selective protein. Adv. Funct. Mater. 2022, 32, 2204781. [Google Scholar] [CrossRef]
- Marinov, O.; Deen, M.J.; Jiménez-Tejada, J.A. Low-frequency noise in downscaled silicon transistors: Trends, theory and practice. Phys. Rep. 2022, 990, 1–179. [Google Scholar] [CrossRef]
- Cheng, Z.; Pang, C.S.; Wang, P.; Le, S.T.; Wu, Y.; Shahrjerdi, D.; Radu, I.; Lemme, M.C.; Peng, L.M.; Duan, X.; et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 2022, 5, 416–423. [Google Scholar] [CrossRef]
- Dai, C.; Liu, Y.; Wei, D. Two-dimensional field-effect transistor sensors: The road toward commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef]
- Meng, L.; Xin, N.; Hu, C.; Sabea, H.A.; Zhang, M.; Jiang, H.; Ji, Y.; Jia, C.; Yan, Z.; Zhang, Q.; et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 2022, 13, 1410. [Google Scholar] [CrossRef]
- Choi, S.; Park, D.G.; Kim, M.J.; Bang, S.; Kim, J.; Jin, S.; Huh, K.S.; Kim, D.; Mitard, J.; Han, C.E.; et al. Automatic Prediction of Metal–Oxide–Semiconductor Field-Effect Transistor Threshold Voltage Using Machine Learning Algorithm. Adv. Intell. Syst. 2023, 5, 2200302. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.H.; bin Mohd Yusoff, A.R.; Congreve, D.N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H.J. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203–216. [Google Scholar] [CrossRef]
- Fang, M.H.; Bao, Z.; Huang, W.T.; Liu, R.S. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes. Chem. Rev. 2022, 122, 11474–11513. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, B.; Yang, T.; Lai, R.; Lan, D.; Friend, R.H.; Di, D. Toward Stable and Efficient Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2022, 32, 2109495. [Google Scholar] [CrossRef]
- Deng, Y.; Fan, Z.F.; Zhao, B.B.; Wang, X.G.; Zhao, S.; Wu, J.; Grillot, F.; Wang, C. Mid-infrared hyperchaos of interband cascade lasers. Light Sci. Appl. 2022, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Schioppo, M.; Kronjaeger, J.; Silva, A.; Ilieva, R.; Paterson, J.; Baynham, C.; Bowden, W.; Hill, I.; Hobson, R.; Vianello, A.; et al. Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network. Nat. Commun. 2022, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S.M.; et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Dong, S.; Zhang, K.; Zhou, Z.; Xue, Q.; Song, Y.; Du, Z.; Ren, M.; Huang, F. Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 2022, 12, 2200453. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2) 2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of nanostructured TiO2 in UV photodetectors: A review. Adv. Mater. 2022, 34, 2109083. [Google Scholar] [CrossRef]
- Zha, J.; Luo, M.; Ye, M.; Ahmed, T.; Yu, X.; Lien, D.H.; He, Q.; Lei, D.; Ho, J.C.; Bullock, J.; et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 2022, 32, 2111970. [Google Scholar] [CrossRef]
- Liu, W.; Lv, J.; Peng, L.; Guo, H.; Liu, C.; Liu, Y.; Li, W.; Li, L.; Liu, L.; Wang, P.; et al. Graphene charge-injection photodetectors. Nat. Electron. 2022, 5, 281–288. [Google Scholar] [CrossRef]
- DeLongchamp, D.M.; Kline, R.J.; Herzing, A. Nanoscale structure measurements for polymer-fullerene photovoltaics. Energy Environ. Sci. 2012, 5, 5980–5993. [Google Scholar] [CrossRef]
- Giridharagopal, R.; Ginger, D.S. Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems. J. Phys. Chem. Lett. 2010, 1, 1160–1169. [Google Scholar] [CrossRef]
- Selberherr, S. Analysis and Simulation of Semiconductor Devices; Springer: Vienna, Austria, 1984; Volume 1, pp. 1160–1169. [Google Scholar] [CrossRef]
- Sze, S.M.; Lee, M.K. Semiconductor Devices, Physics and Technology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mostefai, A. Comparison between Silicon (Si) and Gallium Arsenide (GaAs) Using MATLAB. J. Nano-Electron. Phys. 2022, 14, 04028. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Wan, F.; Fu, C.; Xu, C.H.; Liang, F.X.; Luo, L.B. Progress in ultraviolet photodetectors based on II–VI group compound semiconductors. J. Mater. Chem. C 2022, 10, 12929–12946. [Google Scholar] [CrossRef]
- Djurišić, A.; Ng, A.M.C.; Chen, X. ZnO nanostructures for optoelectronics: Material properties and device applications. Prog. Quantum Electron. 2010, 34, 191–259. [Google Scholar] [CrossRef]
- French, R.H.; Müllejans, H.; Jones, D.J. Optical properties of aluminum oxide: Determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 1998, 81, 2549–2557. [Google Scholar] [CrossRef]
- Abdelhamid, M.E.; O’Mullane, A.P.; Snook, G.A. Storing energy in plastics: A review on conducting polymers & their role in electrochemical energy storage. RSC Adv. 2015, 5, 11611–11626. [Google Scholar]
- Yonenaga, I. Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans. 2005, 46, 1979–1985. [Google Scholar] [CrossRef]
- Nag, B.R. Electron Transport in Compound Semiconductors; Springer Science & Business Media: Berlin, Germany, 2012; Volume 11. [Google Scholar]
- Kuech, T.F. III-V compound semiconductors: Growth and structures. Prog. Cryst. Growth Charact. Mater. 2016, 62, 352–370. [Google Scholar] [CrossRef]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Tamargo, M.C. II-VI Semiconductor Materials and Their Applications; CRC Press: Boca Raton, FL, USA, 2002; Volume 12. [Google Scholar]
- Yuan, L.D.; Deng, H.X.; Li, S.S.; Wei, S.H.; Luo, J.W. Unified theory of direct or indirect band-gap nature of conventional semiconductors. Phys. Rev. B 2018, 98, 245203. [Google Scholar] [CrossRef]
- Zollner, S.; Cardona, M.; Gopalan, S. Isotope and temperature shifts of direct and indirect band gaps in diamond-type semiconductors. Phys. Rev. B 1992, 45, 3376. [Google Scholar] [CrossRef]
- Pelant, I.; Kŭsová, K. Towards a germanium and silicon laser: The history and the present. Crystals 2019, 9, 624. [Google Scholar] [CrossRef]
- Pan, Z.; Röhr, J.A.; Ye, Z.; Fishman, Z.S.; Zhu, Q.; Shen, X.; Hu, S. Elucidating charge separation in particulate photocatalysts using nearly intrinsic semiconductors with small asymmetric band bending. Sustain. Energy Fuels 2019, 3, 850–864. [Google Scholar] [CrossRef]
- Bonilla, L.L. Theory of solitary waves and spontaneous current instabilities in dc voltage biased extrinsic semiconductors. Phys. D Nonlinear Phenom. 1992, 55, 182–196. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, Q.; Wang, J.Y.; Liu, D.; Wang, J.; Wang, Z.L. Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor. Nano Energy 2019, 66, 104185. [Google Scholar] [CrossRef]
- Ostroverkhova, O. Handbook of Organic Materials for Optical and (Opto) Electronic Devices: Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Baldo, M.; Soos, Z.; Forrest, S. Local order in amorphous organic molecular thin films. Chem. Phys. Lett. 2001, 347, 297–303. [Google Scholar] [CrossRef]
- Silinsh, E.A. Organic Molecular Crystals: Their Electronic States; Springer Science & Business Media: Berlin, Germany, 2012; Volume 16. [Google Scholar]
- Jones, J.T.; Hasell, T.; Wu, X.; Bacsa, J.; Jelfs, K.E.; Schmidtmann, M.; Chong, S.Y.; Adams, D.J.; Trewin, A.; Schiffman, F.; et al. Modular and predictable assembly of porous organic molecular crystals. Nature 2011, 474, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Henisch, H.; Smith, W. Switching in organic polymer films. Appl. Phys. Lett. 1974, 24, 589–591. [Google Scholar] [CrossRef]
- Gu, C.; Huang, N.; Chen, Y.; Zhang, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions. Angew. Chem. Int. Ed. 2016, 55, 3049–3053. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M.I.; Lin, Y.; Campoy-Quiles, M.; et al. Doping approaches for organic semiconductors. Chem. Rev. 2021, 122, 4420–4492. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381. [Google Scholar] [CrossRef]
- Charoughchi, S.; Liu, J.T.; Berteau-Rainville, M.; Hase, H.; Askari, M.S.; Bhagat, S.; Forgione, P.; Salzmann, I. Sterically-Hindered Molecular p-Dopants Promote Integer Charge Transfer in Organic Semiconductors. Angew. Chem. Int. Ed. 2023, 62, e202304964. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, Y.; Zhang, J.; Marcinskas, M.; Malinauskas, T.; Magomedov, A.; Nugraha, M.I.; Kaltsas, D.; Naphade, D.R.; Harrison, G.T.; et al. 18.9% Efficient Organic Solar Cells Based on n-Doped Bulk-Heterojunction and Halogen-Substituted Self-Assembled Monolayers as Hole Extracting Interlayers. Adv. Energy Mater. 2022, 12, 2202503. [Google Scholar] [CrossRef]
- Chen, H.; Jeong, S.Y.; Tian, J.; Zhang, Y.; Naphade, D.R.; Alsufyani, M.; Zhang, W.; Griggs, S.; Hu, H.; Barlow, S.; et al. A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy Environ. Sci. 2023, 16, 1062–1070. [Google Scholar] [CrossRef]
- Khorasani, A.E.; Schroder, D.K.; Alford, T.L. Optically Excited MOS-Capacitor for Recombination Lifetime Measurement. IEEE Electr. Dev. Lett. 2014, 35, 986–988. [Google Scholar] [CrossRef]
- Duche, D.; Torchio, P.; Escoubas, L.; Monestier, F.; Simon, J.J.; Flory, F.; Mathian, G. Improving light absorption in organic solar cells by plasmonic contribution. Sol. Energy Mater. Sol. Cells 2009, 93, 1377–1382. [Google Scholar] [CrossRef]
- Mai, S.; Syzranov, S.; Efetov, K. Photocurrent in a visible-light graphene photodiode. Phys. Rev. B 2011, 83, 033402. [Google Scholar] [CrossRef]
- Song, S.; Chen, Q.; Jin, L.; Sun, F. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 2013, 5, 9615–9619. [Google Scholar] [CrossRef]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Dumke, W.P. Spontaneous radiative recombination in semiconductors. Phys. Rev. 1957, 105, 139. [Google Scholar] [CrossRef]
- Schlangenotto, H.; Maeder, H.; Gerlach, W. Temperature dependence of the radiative recombination coefficient in silicon. Phys. Status Solidi (A) 1974, 21, 357–367. [Google Scholar] [CrossRef]
- Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Hall, R.N. Electron-Hole Recombination in Germanium. Phys. Rev. 1952, 87, 387. [Google Scholar] [CrossRef]
- Auger, P. Sur les rayons β secondaires produits dans un gaz par des rayons X. CR Acad. Sci. (F) 1923, 177, 169. [Google Scholar]
- Fitzgerald, D.; Grove, A. Surface recombination in semiconductors. Surf. Sci. 1968, 9, 347–369. [Google Scholar] [CrossRef]
- Liu, Y.; Zojer, K.; Lassen, B.; Kjelstrup-Hansen, J.; Rubahn, H.G.; Madsen, M. Role of the charge-transfer state in reduced Langevin recombination in organic solar cells: A theoretical study. J. Phys. Chem. C 2015, 119, 26588–26597. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Burlakov, V.M.; Leijtens, T.; Ball, J.M.; Goriely, A.; Snaith, H.J. Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States. Phys. Rev. Appl. 2014, 2, 034007. [Google Scholar] [CrossRef]
- Hall, R. Germanium rectifier characteristics. In Proceedings of the Physical Review; American Physical Soc One Physics Ellipse: College PK, MD, USA, 1951; Volume 83, p. 228. [Google Scholar]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2003. [Google Scholar]
- Eades, W.D.; Swanson, R.M. Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J. Appl. Phys. 1985, 58, 4267–4276. [Google Scholar] [CrossRef]
- Huang, H.T.; Cao, W.; Lin, H.H.; Chin, Y.C. GaAs1-xSbx/GaAs single quantum well for long wavelength photonic devices. Solid State Electron. Lett. 2019, 1, 98–104. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 6th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2005. [Google Scholar]
- Kasap, S.O. Electronic Materials and Devices; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- O’Connell, R. The equation of motion of an electron. Phys. Lett. A 2003, 313, 491–497. [Google Scholar] [CrossRef]
- Parker, S.P. McGraw-Hill Encyclopedia of Physics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Wetzelaer, G.A.H.; Koster, L.J.A.; Blom, P.W.M. Validity of the Einstein Relation in Disordered Organic Semiconductors. Phys. Rev. Lett. 2011, 107, 066605. [Google Scholar] [CrossRef]
- Baranovskii, S.; Thomas, P.; Adriaenssens, G. The concept of transport energy and its application to steady-state photoconductivity in amorphous silicon. J. Non-Cryst. Solids 1995, 190, 283–287. [Google Scholar] [CrossRef]
- Fishchuk, I.; Kadashchuk, A.; Ullah, M.; Sitter, H.; Pivrikas, A.; Genoe, J.; Bässler, H. Electric field dependence of charge carrier hopping transport within the random energy landscape in an organic field effect transistor. Phys. Rev. B 2012, 86, 045207. [Google Scholar] [CrossRef]
- Klauk, H. Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643–2666. [Google Scholar] [CrossRef] [PubMed]
- Pernstich, K.; Rössner, B.; Batlogg, B. Field-effect-modulated Seebeck coefficient in organic semiconductors. Nat. Mater. 2008, 7, 321–325. [Google Scholar] [CrossRef]
- Hulea, I.N.; Fratini, S.; Xie, H.; Mulder, C.L.; Iossad, N.N.; Rastelli, G.; Ciuchi, S.; Morpurgo, A.F. Tunable Fröhlich polarons in organic single-crystal transistors. Nat. Mater. 2006, 5, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Ciuchi, S.; Hatch, R.; Höchst, H.; Faber, C.; Blase, X.; Fratini, S. Molecular fingerprints in the electronic properties of crystalline organic semiconductors: From experiment to theory. Phys. Rev. Lett. 2012, 108, 256401. [Google Scholar] [CrossRef] [PubMed]
- Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A.J.; Pecunia, V.; Nasrallah, I.; et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 2014, 515, 384–388. [Google Scholar] [CrossRef]
- Alves, H.; Molinari, A.; Xie, H.; Morpurgo, A. Metallic conduction at organic charge-transfer interfaces. Nat. Mater. 2008, 7, 574–580. [Google Scholar] [CrossRef]
- Mattheus, C.C.; Dros, A.B.; Baas, J.; Oostergetel, G.T.; Meetsma, A.; de Boer, J.L.; Palstra, T.T. Identification of polymorphs of pentacene. Synth. Met. 2003, 138, 475–481. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; da Silva Filho, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952. [Google Scholar] [CrossRef]
- Brotherton, S.D. Introduction to Thin Film Transistors: Physics and Technology of TFTs; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Lee, S.; Ghaffarzadeh, K.; Nathan, A.; Robertson, J.; Jeon, S.; Kim, C.; Song, I.H.; Chung, U.I. Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 2011, 98, 203508. [Google Scholar] [CrossRef]
- Ba, H. Charge transport in disordered organic photoconductors. Phys. Stat. Sol. B 1993, 175, 15–56. [Google Scholar]
- Mott, N.F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 1969, 19, 835–852. [Google Scholar] [CrossRef]
- Vissenberg, M.; Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 1998, 57, 12964. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Review on polymers for thermoelectric applications. Materials 2014, 7, 6701–6732. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.R. Organic Electronics: Foundations to Applications; Oxford University Press: New York, NY, USA, 2020. [Google Scholar]
- Yuan, D.; Liu, W.; Zhu, X. Efficient and air-stable n-type doping in organic semiconductors. Chem. Soc. Rev. 2023, 52, 3842–3872. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawi, A.G.S.; Aziz, S.B.; Dannoun, E.M.A.; Iraqi, A.; Nofal, M.M.; Murad, A.R.; Hussein, A.M. A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells. Polymers 2023, 15, 164. [Google Scholar] [CrossRef]
- Giannini, S.; Blumberger, J. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics. Acc. Chem. Res. 2022, 55, 819–830. [Google Scholar] [CrossRef]
- Shin, D.H.; Lee, D.H.; Choi, S.J.; Kim, S.; Kim, H.; Watanabe, K.; Taniguchi, T.; Campbell, E.E.; Lee, S.W.; Jung, S. Microscopic Quantum Transport Processes of Out-of-Plane Charge Flow in 2D Semiconductors Analyzed by a Fowler–Nordheim Tunneling Probe. Adv. Electron. Mater. 2023, 9, 2300051. [Google Scholar] [CrossRef]
- Ferry, D.K.; Weinbub, J.; Nedjalkov, M.; Selberherr, S. A review of quantum transport in field-effect transistors. Semicond. Sci. Technol. 2022, 37, 043001. [Google Scholar] [CrossRef]
- Semeniuk, O.; Juska, G.; Oelerich, J.O.; Wiemer, M.; Baranovskii, S.; Reznik, A. Charge transport mechanism in lead oxide revealed by CELIV technique. Sci. Rep. 2016, 6, 33359. [Google Scholar] [CrossRef]
- Funahashi, M. Time-of-Flight Method for Determining the Drift Mobility in Organic Semiconductors. In Organic Semiconductors for Optoelectronics; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 161–178. [Google Scholar]
- Karl, N. Charge carrier transport in organic semiconductors. Synth. Met. 2003, 133, 649–657. [Google Scholar] [CrossRef]
- Zubair, M.; Ang, Y.S.; Ang, L.K. Thickness dependence of space-charge-limited current in spatially disordered organic semiconductors. IEEE Trans. Electr. Dev. 2018, 65, 3421–3429. [Google Scholar] [CrossRef]
- Hall, E.H. On a new action of the magnet on electric currents. Am. J. Math. 1879, 2, 287–292. [Google Scholar] [CrossRef]
- Ellmer, K. Hall effect and conductivity measurements in semiconductor crystals and thin films. In Characterization of Materials; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–16. [Google Scholar]
- Morab, S.; Sundaram, M.M.; Pivrikas, A. Time-Dependent Charge Carrier Transport with Hall Effect in Organic Semiconductors for Langevin and Non-Langevin Systems. Nanomaterials 2022, 12, 4414. [Google Scholar] [CrossRef] [PubMed]
- Bruevich, V.; Choi, H.H.; Podzorov, V. The Photo-Hall Effect in High-Mobility Organic Semiconductors. Adv. Funct. Mater. 2021, 31, 2006178. [Google Scholar] [CrossRef]
- Choi, H.H.; Paterson, A.F.; Fusella, M.A.; Panidi, J.; Solomeshch, O.; Tessler, N.; Heeney, M.; Cho, K.; Anthopoulos, T.D.; Rand, B.P.; et al. Hall effect in polycrystalline organic semiconductors: The effect of grain boundaries. Adv. Funct. Mater. 2020, 30, 1903617. [Google Scholar] [CrossRef]
- Yi, H.; Gartstein, Y.N.; Podzorov, V. Charge carrier coherence and Hall effect in organic semiconductors. Sci. Rep. 2016, 6, 23650. [Google Scholar] [CrossRef]
Material | Band Gap (eV) |
---|---|
Si | 1.11 |
Ge | 0.67 |
GaAs | 1.43 |
CdS | 2.42 |
ZnO | 3.37 |
7.0 | |
9.0 |
Group IIB | Group IIIA | Group IVA | Group VA | Group VIA |
---|---|---|---|---|
B | C | N | O | |
Boron | Carbon | Nitrogen | Oxygen | |
Al | Si | P | S | |
Aluminium | Silicon | Phosphorus | Sulfur | |
Zn | Ga | Ge | As | Se |
Zinc | Gallium | Germanium | Arsenic | Selenium |
Cd | In | Sn | Sb | Te |
Cadmium | Indium | Tin | Antimony | Tellurium |
Hg | Tl | Pb | Bi | Po |
Mercury | Thallium | Lead | Bismuth | Polonium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morab, S.; Sundaram, M.M.; Pivrikas, A. Review on Charge Carrier Transport in Inorganic and Organic Semiconductors. Coatings 2023, 13, 1657. https://doi.org/10.3390/coatings13091657
Morab S, Sundaram MM, Pivrikas A. Review on Charge Carrier Transport in Inorganic and Organic Semiconductors. Coatings. 2023; 13(9):1657. https://doi.org/10.3390/coatings13091657
Chicago/Turabian StyleMorab, Seema, Manickam Minakshi Sundaram, and Almantas Pivrikas. 2023. "Review on Charge Carrier Transport in Inorganic and Organic Semiconductors" Coatings 13, no. 9: 1657. https://doi.org/10.3390/coatings13091657
APA StyleMorab, S., Sundaram, M. M., & Pivrikas, A. (2023). Review on Charge Carrier Transport in Inorganic and Organic Semiconductors. Coatings, 13(9), 1657. https://doi.org/10.3390/coatings13091657