Surface Modification of Metallic Nanoparticles for Targeting Drugs
Abstract
:1. Introduction
2. Historical Overview of Nanoparticles for Drug Delivery Systems
3. Necessity for Surface Modification for Enhanced Targeting Capabilities
4. Metallic Nanoparticles in the Domain of Drug Delivery
5. Therapeutic Applications of Metallic Nanoparticles
6. Biochemical Sensing Applications in Drug Targeting
7. Antimicrobial Therapy
8. Cardiovascular Disease
9. Neurological Disorders
10. Metallic Nanoparticles for Treating Diabetes
11. Surface Modification Strategies
12. Targeting Ligands
13. Advanced Nucleic Acid Strategies in Targeting
14. Active vs. Passive Targeting Approaches
15. Stimuli-Responsive Targeting
16. Challenges and Barriers in Clinical Translation
Accumulation in Scavenger Cells
17. Endosomal Entrapment
18. Low Delivery Efficiency and Poor Clinical Translation
19. Limited Tumor-Targeting Efficiency
20. Protein Corona Formation
Biocompatibility and In Vivo Model Selection
21. Potential and Conclusion
21.1. Regulatory Approvals for Metallic Nanoparticles
21.1.1. Ferumoxtran-10/Combidex®/Sinerem®
21.1.2. GastroMARK™/Umirem®/Ferumoxsil
21.1.3. Resovist®/Cliavist®/Ferucarbotran
22. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhao, J.; Tan, T.; Liu, M.; Zeng, Z.; Zeng, Y.; Zhang, L.; Fu, C.; Chen, D.; Xie, T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int. J. Nanomed. 2020, 15, 2563–2582. [Google Scholar] [CrossRef] [PubMed]
- Milligan, J.; Saha, S. A Nanoparticle’s Journey to the Tumor: Strategies to Overcome First-pass Metabolism and Their Limitations. Cancers 2022, 14, 1741. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Morad, R.; Maaza, M. First Principle Study of Silver Nanoparticle Interactions with Antimalarial Drugs Extracted from Artemisia annua Plant. J. Nanopart. Res. 2020, 22, 331. [Google Scholar] [CrossRef] [PubMed]
- Banu, A.; Gousuddin, M.; Yahya, E. Green Synthesized Monodispersed Silver Nanoparticles’ Characterization and Their Efficacy Against Cancer Cells. Biomed. Res. Ther. 2021, 8, 4476–4482. [Google Scholar] [CrossRef]
- Anderson, S.P.; Gwenin, C. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett. 2019, 14, 188. [Google Scholar] [CrossRef]
- Crossen, S.; Goswami, T. Nanoparticulate Carriers for Drug Delivery. J. Pharm. Biopharm. Res. 2022, 4, 237–247. [Google Scholar] [CrossRef]
- Shukla, P.; Sharma, S.; Rao, P. Nanoparticulate Drug Delivery Systems: A Revolution in Design and Development of Drugs. J. Drug Deliv. Ther. 2021, 11, 188–193. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Willner, I. Aptamer-functionalized Micro- and Nanocarriers for Controlled Release. ACS Appl. Mater. Interfaces 2021, 13, 9520–9541. [Google Scholar] [CrossRef]
- Ways, T.; Ng, K.; Lau, W.; Khutoryanskiy, V. Silica Nanoparticles In Transmucosal Drug Delivery. Pharmaceutics 2020, 12, 751. [Google Scholar] [CrossRef] [PubMed]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on Metal Nanoparticles as Nanocarriers: Current Challenges and Perspectives in Drug Delivery Systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef]
- Islam, N.; Dmour, I.; Taha, M. Degradability of Chitosan Micro/nanoparticles for Pulmonary Drug Delivery. Heliyon 2019, 5, e01684. [Google Scholar] [CrossRef] [PubMed]
- Luiz, M.T.; di Filippo, L.D.; Dutra, J.A.P.; Viegas, J.S.R.; Silvestre, A.L.P.; Anselmi, C.; Duarte, J.L.; Calixto, G.M.F.; Chorilli, M. New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics 2023, 15, 762. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, J.; Ju, Y.; Serda, R.E.; Croissant, J.G.; Shang, J.; Coker, E.; Agola, J.O.; Zhong, Q.-Z.; Ping, Y.; et al. Modular Metal–organic Polyhedra Superassembly: From Molecular-level Design to Targeted Drug Delivery. Adv. Mater. 2019, 31, 1806774. [Google Scholar] [CrossRef] [PubMed]
- Paswan, S.K. Optimization, and Evaluation of Hyaluronic Acid Conjugated PLGA Nanoparticles of Etoposide for Cancer Treatment. Asian J. Pharm. 2023, 17, 1. [Google Scholar] [CrossRef]
- Awad, A.; Shalaby, M.; Igarashi, I.; Mady, R.; Shaheen, H.; Al-Kuraishy, H. The Evaluation of the Cytotoxicity Effect of Theophylline Loaded with Collagen Nanoparticles. Damanhour J. Vet. Sci. 2022, 8, 5–10. [Google Scholar] [CrossRef]
- Bisen, S. Review on Nanoparticles Used in Drug Delivery for Cancer. GSC Biol. Pharm. Sci. 2021, 16, 062–069. [Google Scholar] [CrossRef]
- Cadet, T.; Davis, C.; RN, P.; Elks, J. The Experiences of Touch Therapies in Symptom Management of Rural and Regional Cancer Patients in Australia. Int. J. Ther. Massage Bodyw. 2022, 15, 66–71. [Google Scholar] [CrossRef]
- Clemons, T.; Singh, R.; Sorolla, A.; Chaudhari, N.; Hubbard, A.; Iyer, K. Distinction Between Active and Passive Targeting of Nanoparticles Dictate Their Overall Therapeutic Efficacy. Langmuir 2018, 34, 15343–15349. [Google Scholar] [CrossRef]
- Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A.M.; Sindhwani, S.; Zhang, Y.; Chen, Y.Y.; MacMillan, P.; Chan, W.C.W. Quantifying the Ligand-coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano 2018, 12, 8423–8435. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, Z.; Liang, S.; Fu, S.; Mu, W.; Guan, L.; Liu, Y.; Chu, Q.; Fang, Y.; Liu, Y.; et al. Reshaping Antitumor Immunity with Chemo-photothermal Integrated Nanoplatform to Augment Checkpoint Blockade-based Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2100437. [Google Scholar] [CrossRef]
- Gu, M.; Luan, J.; Song, K.; Qiu, C.; Zhang, X.; Zhang, M. Development of Paclitaxel Loaded Pegylated Gelatin Targeted Nanoparticles for Improved Treatment Efficacy in Non-small Cell Lung Cancer (Nsclc): An In Vitro and In Vivo Evaluation Study. Acta Biochim. Pol. 2021, 68, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.R.; Lee, Y.H.; Bat-Ulzii, A.; Bhattacharya, M.; Chakraborty, C.; Lee, S.S. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J. Nanobiotechnol. 2022, 20, 501. [Google Scholar] [CrossRef]
- Karakurt, S.; Erturk, S.; Sobaci, I.; Bereket, I.; Seker, S.; Polat, G. Investigation of Structural Differences of Silica, Silver and Iron Nanoparticles on The Proliferation of Human Lung Cancer. Pharm. Pharmacol. Int. J. 2021, 9, 137–141. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, C.; Yin, H.; Jiang, M.; Zhang, J.; Qin, B.; Luo, Z.; Yuan, X.; Yang, J.; Li, W.; et al. Laser Immunotherapy in Combination with Perdurable Pd-1 Blocking for the Treatment Of Metastatic Tumors. ACS Nano 2018, 12, 7647–7662. [Google Scholar] [CrossRef]
- Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of Active Targeting Nanoparticle Delivery System for Chemotherapeutic Drugs and Traditional/herbal Medicines in Cancer Therapy: A Systematic Review. Int. J. Nanomed. 2018, 13, 3921–3935. [Google Scholar] [CrossRef]
- Nagasa, G.; Belete, A. Review on Nanomaterials and Nano-scaled Systems for Topical And Systemic Delivery of Antifungal Drugs. J. Multidiscip. Healthc. 2022, 15, 1819–1840. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Abdouss, M. The Function of Chitosan/agarose Biopolymer on Fe2O3 Nanoparticles and Evaluation of Their Effects on mcf-7 Breast Cancer Cell Line and Expression of bcl2 and bax Genes. Biotechnol. Prog. 2022, 39, e3305. [Google Scholar] [CrossRef]
- Roacho-Pérez, J.A.; Garza-Treviño, E.N.; Delgado-Gonzalez, P.; G-Buentello, Z.; Delgado-Gallegos, J.L.; Chapa-Gonzalez, C.; Sánchez-Domínguez, M.; Sánchez-Domínguez, C.N.; Islas, J.F. Target Nanoparticles Against Pancreatic Cancer: Fewer Side Effects in Therapy. Life 2021, 11, 1187. [Google Scholar] [CrossRef]
- Thenmozhi, T. Functionalization of Iron Oxide Nanoparticles with Clove Extract to Induce Apoptosis in Mcf-7 Breast Cancer Cells. 3 Biotech 2020, 10, 82. [Google Scholar] [CrossRef]
- Wei, Q.; Arami, H.; Santos, H.A.; Zhang, H.; Li, Y.; He, J.; Zhong, D.; Ling, D.; Zhou, M. Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. Adv. Sci. 2021, 8, 2002788. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, Y.; Duan, Y.; Lai, X.; Cui, S.; Xu, N.; Tang, C.; Lu, L. Nosharmacological Interventions for Cancer-related Fatigue: A Systematic Review and Bayesian Network Meta-analysis. Worldviews Evid. Based Nurs. 2019, 16, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Cheng, R.; Yang, Z.; Tian, Z. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, L.; Cao, Y.; Yu, S.; He, C.; Chen, X. A Nanocomposite Vehicle Based on Metal–organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS Appl. Mater. Interfaces 2020, 12, 22581–22592. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Maraz, K.; Shahida, S.; Tarannum, R.; Khan, R. A Review on the Synthesis, Surface Modification and Drug Delivery of Nanoparticles. Glob. J. Eng. Technol. Adv. 2021, 8, 32–45. [Google Scholar] [CrossRef]
- Cao, S.J.; Xu, S.; Wang, H.M.; Ling, Y.; Dong, J.; Xia, R.D.; Sun, X.H. Nanoparticles: Oral Delivery for Protein and Peptide Drugs. AAPS PharmSciTech 2019, 20, 190. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Li, X. Controlling the Interaction Between Starchy Polyelectrolyte Layers for Adjusting Protein Release from Nanocapsules in A Simulated Gastrointestinal Tract. Foods 2022, 11, 2681. [Google Scholar] [CrossRef]
- Nathanael, A.; Oh, T. Biopolymer Coatings for Biomedical Applications. Polymers 2020, 12, 3061. [Google Scholar] [CrossRef]
- Perry, S.; McClements, D. Recent Advances In Encapsulation, Protection, and Oral Delivery of Bioactive Proteins And Peptides Using Colloidal Systems. Molecules 2020, 25, 1161. [Google Scholar] [CrossRef]
- Pessoa, B.; Collado-Gonzalez, M.; Sandri, G.; Ribeiro, A. Chitosan/albumin Coating Factorial Optimization of Alginate/dextran Sulfate Cores for Oral Delivery of Insulin. Marine Drugs 2023, 21, 179. [Google Scholar] [CrossRef]
- Raghunath, I.; Koland, M.; Vadakkepushpakath, A.; Kumar, L.; Shenoy, S. Herbal Bioenhancers With Nanocarriers: A Promising Approach for Oral Peptide Delivery. Int J. Pharm. Investig. 2022, 13, 7–13. [Google Scholar] [CrossRef]
- Ren, L.; Jia, L.; Wang, H. A Coordinative Dendrimer Achieves Excellent Efficiency in Cytosolic Protein and Peptide Delivery. Angew. Chem. Int. Ed. 2020, 59, 4711–4719. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Mavelli, G.; Vaidya, S.; Drum, C. Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int. J. Mol. Sci. 2022, 23, 9856. [Google Scholar] [CrossRef] [PubMed]
- Sedyakina, N.; Kuskov, A.; Velonia, K.; Feldman, N.; Lutsenko, S.; Rizos, A. Modulation of Entrapment Efficiency and In Vitro Release Properties of Bsa-loaded Chitosan Microparticles Cross-linked with Citric Acid as A Potential Protein–drug Delivery System. Materials 2020, 13, 1989. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Qiao, R.; Yan, S.; Yuan, D.; Zhao, Q.; Yun, G.; Davis, T.P.; Li, W. Microfluidic Mass Production of Stabilized and Stealthy Liquid Metal Nanoparticles. Small 2018, 14, 1800118. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V. Supplementation of Polymeric Reservoirs with Redox-responsive Metallic Nanoparticles as a New Concept for the Smart Delivery of Insulin in Diabetes. Materials 2023, 16, 786. [Google Scholar] [CrossRef] [PubMed]
- Volpatti, L.; Matranga, M.; Cortinas, A.; Delcassian, D.; Daniel, K.; Langer, R.; Anderson, D. Glucose-responsive Nanoparticles for Rapid and Extended Self-regulated Insulin Delivery. ACS Nano 2019, 14, 488–497. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Zhao, D.; Li, D.; He, C.; Chen, X. A Ph-triggered Self-unpacking Capsule Containing Zwitterionic Hydrogel-coated Mof Nanoparticles for Efficient Oral Exendin-4 Delivery. Adv. Mater. 2021, 33, 2102044. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Nikam, R.; Gore, K. Folate Receptor-mediated Sirna Delivery: Recent Developments and Future Directions for Rnai Therapeutics. Nucleic Acid Ther. 2021, 31, 245–270. [Google Scholar] [CrossRef]
- Lu, Z.; Laney, V.; Hall, R.; Ayat, N. Environment-responsive Lipid/sirna Nanoparticles for Cancer Therapy. Adv. Healthc. Mater. 2020, 10, 2001294. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Ang, H.L.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Hushmandi, K.; Delfi, M.; Khan, H.; Ashrafizadeh, M.; et al. Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021, 10, 3348. [Google Scholar] [CrossRef]
- Choi, M.; Choi, W.; Jung, C.; Kim, S. The Surface Modification and Characterization of Sio2 Nanoparticles for Higher Foam Stability. Sci. Rep. 2020, 10, 19399. [Google Scholar] [CrossRef]
- El-Boubbou, K. Multifunctional Magnetic Iron Oxide Nanoparticles For Intracellular Imaging and Drug Delivery To Cancer Cells. Int. J. Mater. Mech. Manuf. 2017, 5, 231–234. [Google Scholar] [CrossRef]
- García-Torra, V.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Barroso, E.; Vazquez-Carrera, M.; García, M.L.; Sánchez-López, E.; Souto, E.B. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics 2021, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Gulati, N.; Stewart, P.; Steinmetz, N. Bioinspired Shielding Strategies for Nanoparticle Drug Delivery Applications. Mol. Pharm. 2018, 15, 2900–2909. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Khazaei, M.; Koosheshi, M. Improving the Stability of Nanofluids Via Surface-modified Titanium Dioxide Nanoparticles for Wettability Alteration of Oil-wet Carbonate Reservoirs. Mater. Res. Express 2022, 9, 035005. [Google Scholar] [CrossRef]
- Kong, W.; Sun, T.; Chen, B.; Chen, X.; Ai, F.; Zhu, X.; Li, M.; Zhang, W.; Zhu, G.; Wang, F. A General Strategy for Ligand Exchange on Upconversion Nanoparticles. Inorg. Chem. 2017, 56, 872–877. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, X.; Li, S.; Zhang, J.; Lin, W.; Wang, L. Polyethyleneimine-oleic Acid Micelles-stabilized Palladium Nanoparticles as Highly Efficient Catalyst to Treat Pollutants with Enhanced Performance. Polymers 2021, 13, 1890. [Google Scholar] [CrossRef]
- Lenne, Q.; Mattiuzzi, A.; Jabin, I.; Poul, N.; Leroux, Y.; Lagrost, C. Functionalizing Gold Nanoparticles with Calix[4]arenes Monolayers for Enhancing Selectivity and Stability in Orr Electrocatalysis. Adv. Mater. Interfaces 2020, 7, 2001557. [Google Scholar] [CrossRef]
- Li, S.; Ng, Y.; Lau, H.; Torsæter, O.; Stubbs, L. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions For Enhanced Oil-recovery Applications. Nanomaterials 2020, 10, 1522. [Google Scholar] [CrossRef]
- Lin, T.-C.; Cao, C.; Sokoluk, M.; Jiang, L.; Wang, X.; Schoenung, J.M.; Lavernia, E.J.; Li, X. Aluminum with Dispersed Nanoparticles by Laser Additive Manufacturing. Nat. Commun. 2019, 10, 4124. [Google Scholar] [CrossRef]
- Miao, Z.; Liu, P.; Wang, Y.; Li, K.; Huang, D.; Yang, H.; Zhao, Q.; Zha, Z.; Zhen, L.; Xu, C.-Y. Pegylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. Small 2019, 15, 1903596. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, M.; Yuryev, S.; Lapin, A.; Goronchko, V. The Effect of High-temperature Nanoparticle-based Modification on the Structure of Zinc Oxide Powders. J. Phys. Conf. Ser. 2022, 2291, 012019. [Google Scholar] [CrossRef]
- Pánek, M.; Hýsek, Š.; Dvořák, O.; Zeidler, A.; Oberhofnerová, E.; Šimůnková, K.; Šedivka, P. Durability of the Exterior Transparent Coatings on Nano-Photostabilized English Oak Wood and Possibility of Its Prediction before Artificial Accelerated Weathering. Nanomaterials 2019, 9, 1568. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yang, S.; Chen, Y.; Zhao, J.; Fang, W.; Luo, D. Thermal Conductivity and Stability of Hydrocarbon-based Nanofluids with Palladium Nanoparticles Dispersed by Modified Hyperbranched Polyglycerol. ACS Omega 2020, 5, 31156–31163. [Google Scholar] [CrossRef] [PubMed]
- Ren, E.; Zhang, C.; Li, D.; Pang, X.; Liu, G. Leveraging Metal Oxide Nanoparticles For Bacteria Tracing and Eradicating. View 2020, 1, 20200052. [Google Scholar] [CrossRef]
- Sugahara, Y. Development of Chemical Synthesis Methods Based on Fusion of Inorganic and Organic Chemistry for Ceramic Powder Preparation and Surface Modification Methods of Nanoparticles and Nanosheets. J. Jpn. Soc. Powder Powder Metall. 2022, 69, 13–21. [Google Scholar] [CrossRef]
- Sáenz-Galindo, A.; López-López, L.I.; Fabiola, N.; Castañeda-Facio, A.O.; Rámirez-Mendoza, L.A.; Córdova-Cisneros, K.C.; de Loera-Carrera, D. Applications of Carboxylic Acids in Organic Synthesis, Nanotechnology and Polymers. Carboxylic Acid Key Role Life Sci. 2018, 35. [Google Scholar] [CrossRef]
- Talebzadeh, S.; Queffélec, C.; Knight, D. Surface Modification of Plasmonic Noble Metal–metal Oxide Core–shell Nanoparticles. Nanoscale Adv. 2019, 1, 4578–4591. [Google Scholar] [CrossRef]
- Tsalsabila, A.; Herbani, Y.; Sari, Y. Study of Lysine and Asparagine as Capping Agent for Gold Nanoparticles. J. Phys. Conf. Ser. 2022, 2243, 012102. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, L.; Lyu, P.; Wang, Y.; Li, C.; Xiao, X.; Dai, F.; Xu, W.; Liu, X.; Deng, B. Is It Possible to Fabricate a Nanocomposite with Excellent Mechanical Property Using Unmodified Inorganic Nanoparticles Directly? ACS Appl. Mater. Interfaces 2018, 10, 15357–15363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lou, H.; Zhang, W.; Wang, M. Mussel-inspired Surface Coating to Stabilize and Functionalize Supramolecular J-aggregate Nanotubes Composed of Amphiphilic Cyanine Dyes. Langmuir 2022, 38, 8160–8168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Gan, L. Exsolved Metallic Iron Nanoparticles In Perovskite Cathode To Enhance CO2 Electrolysis. J. Solid State Electrochem. 2021, 26, 409–417. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Hushmandi, K.; Rahmani Moghadam, E.; Zarrin, V.; Hosseinzadeh Kashani, S.; Bokaie, S.; Najafi, M.; Tavakol, S.; Mohammadinejad, R.; Nabavi, N.; et al. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering 2020, 7, 91. [Google Scholar] [CrossRef]
- Busatto, S.; Pham, A.; Suh, A.; Shapiro, S.; Wolfram, J. Organotropic Drug Delivery: Synthetic Nanoparticles and Extracellular Vesicles. Biomed. Microdevices 2019, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.-H.; Lee, J.; Kim, J.; Kang, M.-s.; Paik, J.K.; Ku, S.; Cho, H.-M.; Irudayaraj, J.; Kim, D.-H. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors 2018, 18, 207. [Google Scholar] [CrossRef]
- Colby, A.; Liu, R.; Doyle, R.; Merting, A.; Zhang, H.; Savage, N.; Chu, N.-Q.; Hollister, B.A.; McCulloch, W.; Burdette, J.E.; et al. Pilot-scale Production of Expansile Nanoparticles: Practical Methods for Clinical Scale-up. J. Control. Release 2021, 337, 144–154. [Google Scholar] [CrossRef]
- Mousavi-Khattat, M.; Keyhanfar, M.; Razmjou, A. A Comparative Study of Stability, Antioxidant, Dna Cleavage and Antibacterial Activities of Green and Chemically Synthesized Silver Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1022–1031. [Google Scholar] [CrossRef]
- Ohta, S.; Kikuchi, E.; Ishijima, A.; Azuma, T.; Sakuma, I.; Ito, T. Investigating the Optimum Size of Nanoparticles for Their Delivery into the Brain Assisted By Focused Ultrasound-induced Blood–brain Barrier Opening. Sci. Rep. 2020, 10, 18220. [Google Scholar] [CrossRef]
- Rodriguez-Garraus, A.; Azqueta, A.; Vettorazzi, A.; Cerain, A. Genotoxicity of Silver Nanoparticles. Nanomaterials 2020, 10, 251. [Google Scholar] [CrossRef]
- Simon, J.; Kuhn, G.; Fichter, M.; Gehring, S.; Landfester, K.; Mailänder, V. Unraveling the In Vivo Protein Corona. Cells 2021, 10, 132. [Google Scholar] [CrossRef]
- Tong, H. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of A Novel Method. Pharmaceutics 2020, 12, 732. [Google Scholar] [CrossRef]
- Wang, Y.; Biby, A.; Xi, Z.; Liu, B.; Rao, Q.; Xia, X. One-pot Synthesis of Single-crystal Palladium Nanoparticles with Controllable Sizes for Applications in Catalysis and Biomedicine. ACS Appl. Nano Mater. 2019, 2, 4605–4612. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, S.; Qin, K.; Fan, X.; An, L. Macrophages Loaded With Fe Nanoparticles for Enhanced Photothermal Ablation of Tumors. J. Funct. Biomater. 2022, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, D.; Yu, H. Fabrication of Protein-coated Titanium Dioxide Nanoparticles for Cellular Uptake Fluorescence Imaging and Treatment of Colorectal Cancer. Mater. Res. Express 2021, 8, 125008. [Google Scholar] [CrossRef]
- Zhao, Z.; Zheng, L.; Chen, W.; Weng, W.; Song, J.; Ji, J. Delivery Strategies of Cancer Immunotherapy: Recent Advances and Future Perspectives. J. Hematol. Oncol. 2019, 12, 126. [Google Scholar] [CrossRef]
- Ejigah, V.; Owoseni, O.; Bataille-Backer, P.; Ogundipe, O.; Fisusi, F.; Adesina, S. Approaches to improve macromolecule and nanoparticle accumulation in the tumor microenvironment by the enhanced permeability and retention effect. Polymers 2022, 14, 2601. [Google Scholar] [CrossRef]
- Farokhzad, O.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 1, 3–44. [Google Scholar] [CrossRef]
- Ryu, J.; Yoon, H.; Sun, I.; Kwon, I.; Kim, K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv. Mater. 2020, 51, 2002197. [Google Scholar] [CrossRef]
- Shreffler, J.; Pullan, J.; Dailey, K.; Mallik, S.; Brooks, A. Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification. Int. J. Mol. Sci. 2019, 23, 6056. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, J.; Jiang, Z.; Yang, Y.; Liu, J.; Hua, W.; Mao, Y.; Li, C.; Lu, W.; Qian, J.; et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 2019, 10, 3561. [Google Scholar] [CrossRef]
- Tsoi, K.M.; MacParl, S.A.; Ma, X.Z.; Spetzler, V.N.; Echeverri, J.; Ouyang, B.; Fadel, S.M.; Sykes, E.A.; Goldaracena, N.; Kaths, J.M.; et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 2016, 15, 1212–1221. [Google Scholar] [CrossRef]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef]
- Kostyrko, K.; Román, M.; Lee, A.G.; Simpson, D.R.; Dinh, P.T.; Leung, S.G.; Marini, K.D.; Kelly, M.R.; Broyde, J.; Califano, A.; et al. UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma. Nat. Commun. 2023, 14, 3966. [Google Scholar] [CrossRef] [PubMed]
- Dirisala, A.; Uchida, S.; Toh, K.; Li, J.; Osawa, S.; Tockary, T.A.; Liu, X.; Abbasi, S.; Hayashi, K.; Mochida, Y.; et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 2020, 6, eabb8133. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.G.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The endosomal escape of nanoparticles: Toward more efficient cellular delivery. Bioconjug. Chem. 2018, 2, 263–272. [Google Scholar] [CrossRef]
- Perche, F.; Yi, Y.; Hespel, L.; Mi, P.; Dirisala, A.; Cabral, H.; Miyata, K.; Kataoka, K. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials 2016, 90, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Makale, M.; Karmali, P.P.; Sharikov, Y.; Tsigelny, I.; Merkulov, S.; Kesari, S.; Wrasidlo, W.; Ruoslahti, E.; Simberg, D. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug. Chem. 2012, 23, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Ke, W.; Dirisala, A.; Toh, K.; Tanaka, M.; Li, J. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 2023, 198, 114895. [Google Scholar] [CrossRef]
- Zhang, X.; Servos, M.R.; Liu, J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 2012, 28, 3896–3902. [Google Scholar] [CrossRef]
- Cutler, J.I.; Auyeung, E.; Mirkin, C.A. Spherical nucleic acids. J. Am. Chem. Soc. 2012, 134, 1376–1391. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J. Freezing-Driven DNA Adsorption on Gold Nanoparticles: Tolerating Extremely Low Salt Concentration but Requiring High DNA Concentration. Langmuir 2019, 35, 6476–6482. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem. Commun. 2014, 50, 8568–8570. [Google Scholar] [CrossRef] [PubMed]
- Prigodich, A.E.; Randeria, P.S.; Briley, W.E.; Kim, N.J.; Daniel, W.L.; Giljohann, D.A.; Mirkin, C.A. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 2012, 84, 2062–2066. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.R.; Burmakina, S.; Thomas, C.S.; Spackman, E.; García-Sastre, A.; Swayne, D.E.; Palese, P. A combination in-ovo vaccine for avian influenza virus and newcastle disease virus. Vaccine 2008, 26, 522–531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelkawi, A.; Slim, A.; Zinoune, Z.; Pathak, Y. Surface Modification of Metallic Nanoparticles for Targeting Drugs. Coatings 2023, 13, 1660. https://doi.org/10.3390/coatings13091660
Abdelkawi A, Slim A, Zinoune Z, Pathak Y. Surface Modification of Metallic Nanoparticles for Targeting Drugs. Coatings. 2023; 13(9):1660. https://doi.org/10.3390/coatings13091660
Chicago/Turabian StyleAbdelkawi, Abdullah, Aliyah Slim, Zaineb Zinoune, and Yashwant Pathak. 2023. "Surface Modification of Metallic Nanoparticles for Targeting Drugs" Coatings 13, no. 9: 1660. https://doi.org/10.3390/coatings13091660
APA StyleAbdelkawi, A., Slim, A., Zinoune, Z., & Pathak, Y. (2023). Surface Modification of Metallic Nanoparticles for Targeting Drugs. Coatings, 13(9), 1660. https://doi.org/10.3390/coatings13091660