Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils
Abstract
:1. Introduction
2. Materials and Methodologies
2.1. Materials and Sample Treatment
2.2. Methodologies
3. Results and Discussion
3.1. Effect of FGP Content on the Strength of Granite Residual Soils
3.2. Sensitivity Analysis of Available Indexes on the Residual Frictional Angle of Granite Residual Soils
3.3. Discussion of the Different Prediction Models for Residual Frictional Angles by Representative Indexes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 137–160. [Google Scholar] [CrossRef]
- Insley, A.E.; Chatterji, P.K.; Smith, L.B. Use of residual strength for stability analyses of embankment foundations containing preexisting failure surfaces. Can. Geotech. J. 1977, 14, 408–428. [Google Scholar] [CrossRef]
- Marcuson, W.F.; Hynes, M.E.; Franklin, A.G. Evaluation and Use of Residual Strength in Seismic Safety Analysis of Embankments. Earthq. Spectra 1990, 6, 529–572. [Google Scholar] [CrossRef]
- Skempton, A.W. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique 1985, 35, 3–18. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Yang, H.Q.; Huang, L.P.; Chen, R.; Chen, X.S.; Liu, S.Y. Mechanical behavior of intact completely decomposed granite soils along multi-stage loading–unloading path. Eng. Geol. 2019, 260, 105242. [Google Scholar] [CrossRef]
- Meng, F.Y.; Chen, R.; Wu, H.N.; Xie, S.W.; Liu, Y. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil. Tunn. Undergr. Space Technol. 2020, 103, 103504. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, J.J.; Huang, H.; Huang, Y.X.; Wang, Y.Q.; Garg, A. Strength of Unsaturated Granite Residual Soil of Shantou Coastal Region Considering Effects of Seepage Using Modified Direct Shear Test. Indian Geotech. J. 2021, 51, 719–731. [Google Scholar] [CrossRef]
- Wu, N.S. A Study on Characteristics and Some Engineering Problems of Granite Residual Soil with Structural Nature. Ph.D. Thesis, Nanjing Forestry University, Jiangsu, China, 2005. (In Chinese). [Google Scholar]
- Saito, R.; Fukuoka, H.; Sassa, K. Experimental Study on the Rate Effect on the Shear Strength. Disaster Mitig. Debris Flows Slope Fail. Landslides 2006, 421–427. [Google Scholar]
- Suzuki, M.; Hai, N.V.; Yamamoto, T. Ring shear characteristics of discontinuous plane. Soils Found. 2017, 57, 1–22. [Google Scholar] [CrossRef]
- Duong, N.T.; Suzuki, M.; Hai, N.V. Rate and acceleration effects on residual strength of Kaolin and kaolin-bentonite mixtures in ring shearing. Soils Found. 2018, 58, 1153–1172. [Google Scholar] [CrossRef]
- Wang, Y.C.; Cong, L. Effects of water content shearing rate on residual shear stress Arab. J. Sci. Eng. 2019, 44, 8915–8929. [Google Scholar] [CrossRef]
- LaGatta, D.P. Residual Strength of Clay and Clay-Shales by Rotation Shear Tests. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1970. [Google Scholar]
- So, E.K.; Okada, F. Some factors influencing the residual strength of remoulded clays. Soils Found. 1978, 18, 107–118. [Google Scholar] [CrossRef]
- Li, D.; Yin, K.; Glade, T.; Leo, C. Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the three gorges reservoir. Sci. Rep. 2017, 7, 5503. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.N.; Fan, W.; Jiang, C.C.; Peng, X.L. Experimental study on the shear behavior of loess and paleosol based on ring shear tests. Eng. Geol. 2019, 250, 11–20. [Google Scholar] [CrossRef]
- Gibo, S.; Egashira, K.; Ohtsubo, M. Residual strength of smectite-dominated soils from the Kamenose landslide in Japan. Can. Geotech. J. 1987, 24, 456–462. [Google Scholar] [CrossRef]
- Eid, H.T.; Rabie, K.H.; Wijewickreme, D. Drained residual shear strength at effective normal stresses relevant to soil slope stability analyses. Eng. Geol. 2016, 204, 94–107. [Google Scholar] [CrossRef]
- Bishop, A.W.; Green, G.E.; Garga, V.K.; Andresen, A.; Brown, J.D. A new ring shear apparatus and its application to measurement of residual strength. Geotechnique 1971, 21, 273–328. [Google Scholar] [CrossRef]
- JSCE. A Guide to Soil Testing; Japan Society of Civil Engineers: Tokyo, Japan, 2003. (In Japanese) [Google Scholar]
- JICE River Earthworks Design. In: River Earthworks Manual, April 2009. Available online: https://www.jice.or.jp/tech/material/detail/11 (accessed on 13 December 2023). (In Japanese).
- Holtz, R.D.; Kovacs, W.D. An Introduction to Geotechnical Engineering; Editor Skrable, K., Ed.; University of Michigan: Ann Arbor, MI, USA, 1981; pp. 88–89. [Google Scholar]
- Chen, X.P.; Liu, D. Residual strength of slip zone soils. Landslides 2014, 11, 305–314. [Google Scholar] [CrossRef]
- Stark, T.D.; Vettel, J.J. Bromhead ring shear test procedure. Geotech. Test. J. 1992, 15, 24–32. [Google Scholar] [CrossRef]
- Anderson, W.F.; Hammoud, F. Effect of testing procedure in ring shear tests. ASTM Geotech. Test. J. 1988, 11, 204–207. [Google Scholar] [CrossRef]
- Skempton, A.W. Long-term stability of clay slopes. Geotechnique 1964, 14, 77–102. [Google Scholar] [CrossRef]
- Scaringi, G.; Di Maio, C. Influence of displacement rate on residual shear strength of clays. Procedia Earth Planet. Sci. 2016, 16, 137–145. [Google Scholar] [CrossRef]
- Bromhead, E.N. A simple ring shear apparatus. Ground Eng. 1979, 12, 40–44. [Google Scholar]
- Fang, C.; Shimizu, H.; Nishimura, S.; Hiramatsu, K.; Onishi, T.; Nishiyama, T. Seismic risk evaluation of irrigat-ion tanks: A case study in Ibigawa-Cho, Gifu Prefecture, Japan. Int. J. GEOMATE 2018, 14, 1–6. [Google Scholar] [CrossRef]
- Mishra, S.; Deeds, N.; Ruskauff, G. Global sensitivity analysis techniques for probabilistic ground water modeling. Ground Water 2009, 47, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Erdal, D.; Xiao, S.N.; Nowak, W.; Cirpka, O. Sampling behavioral model parameters for ensemble-based sensitivity analysis using Gaussian process emulation and active subspaces. Stoch. Environ. Res. Act. Subsp. 2020, 34, 1813–1830. [Google Scholar] [CrossRef]
- De, P.K.; Furdas, B. Discussion –Correlation between Atterberg plasticity limits and residual shear strength of natural soils. Geotechnique 1973, 23, 600–601. [Google Scholar] [CrossRef]
- Wen, B.P.; Aydin, A.; Duzgoren-Aydin, N.S.; Li, Y.R.; Chen, Y.R.; Xiao, S.D. Residual strength of slip zones of large landslides in the Three Gorges area, China. Eng. Geol. 2007, 93, 82–98. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Khalid, U.; Ijaz, N.; Mujtaba, H.; Haider, A.; Farooq, K.; Ijaz, Z. Machine learning-based intelligent modeling of hydraulic conductivity of sandy soils considering a wide range of grain sizes. Eng. Geol. 2022, 311, 106899. [Google Scholar] [CrossRef]
- Farooq, F.; Rehman, Z.U.; Shahzadi, M.; Mujtaba, H.; Khalid, U. Optimization of Sand-Bentonite Mixture for the Stable Engineered Barriers using Desirability Optimization Methodology: A Macro-Micro-Evaluation. KSCE J. Civil. Eng. 2022, 27, 40–52. [Google Scholar] [CrossRef]
- Khalid, U.; Rehman, Z.U.; Mujtaba, H.; Farooq, K. 3D response surface modeling based in-situ assessment of physico-mechanical characteristics of alluvial soils using dynamic cone penetrometer. Trans. Geot. 2022, 36, 100781. [Google Scholar] [CrossRef]
- Mujtaba, H.; Shimobe, S.; Farooq, K.; ur Rehman, Z.; Khalid, U. Relating gradational parameters with hydraulic conductivity of sandy soils: A renewed attempt. Arabian J. Geosci. 2021, 14, 1920. [Google Scholar] [CrossRef]
- Seyeek, J. Residual shear strength of soils. Bull. Int. Assoc. Eng. Geol. 1978, 17, 73–75. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H.; McCone, S. Drained shear strength parameters for analysis of landslides. J. Geotech. Geoenviron Eng. 2005, 131, 575–588. [Google Scholar] [CrossRef]
- Lupini, J.F.; Skinner, A.E.; Vaughan, P.R. The drained residual strength of cohesive soils. Geotechnique 1981, 31, 181–213. [Google Scholar] [CrossRef]
- Yamashita, E.; Cikmit, A.A.; Tsuchida, T.; Hashimoto, R. Strength estimation of cement-treated marine clay with wide ranges of sand and initial water contents. Soils Found. 2020, 60, 1065–1083. [Google Scholar] [CrossRef]
- Hossien, R.M.; Mahsa, G.; Bahram, G.; Seyed, M.S. A predictive equation for residual strength using a hybrid of subset selection of maximum dissimilarity method with Pareto optimal multi-gene genetic programming. Geosci. Front. 2021, 12, 101222. [Google Scholar] [CrossRef]
Water Content (%) | Void Ratio, e | Average Particle Size, d50 (mm) | Uniformity Coefficient, Cu | Curvature Radius, Cc | Specific Gravity, Gs | Gravel Content (%) | Sand Content (%) | Silt and Clay Content (%) |
---|---|---|---|---|---|---|---|---|
>2 mm | 0.075–2 mm | <0.075 mm | ||||||
26.26 | 0.84 | 0.32 | 85.65 | 0.37 | 18.30 | 26.00 | 34.10 | 39.90 |
Quartz | Kaolinite | Illite | Hematite |
---|---|---|---|
62.3 | 31.9 | 3.7 | 2.1 |
No. | Sample Characters | Ratios of CGPs and FGPs in Each Sample Used in Drained Ring Shear Tests (%) | |
---|---|---|---|
CGPs: 0.075–0.425 mm | FGPs: 0–0.075 mm | ||
1 | HM1 | 100 | 0 |
2 | HM2 | 70.59 | 29.41 |
3 | HM3 | 60.01 | 39.99 |
4 | HM4 | 51.62 | 48.38 |
5 | HM5 | 44.46 | 55.54 |
6 | HM6 | 38.38 | 61.62 |
7 | HM7 | 32.42 | 67.58 |
8 | HM8 | 28.58 | 71.42 |
9 | HM9 | 24.59 | 75.41 |
10 | HM10 | 21.40 | 78.60 |
11 | HM11 | 15.09 | 84.91 |
12 | HM12 | 10.26 | 89.74 |
13 | HM13 | 6.25 | 93.75 |
14 | HM14 | 2.88 | 97.12 |
15 | HM15 | 0 | 100 |
Sample Character | (%) | (%) | (%) | (%) | ϕr (°) | |
---|---|---|---|---|---|---|
HM1 | 0 | × | × | × | × | 32.94 |
HM2 | 29.41 | 2.40 | 24.65 | × | × | 30.85 |
HM3 | 39.99 | 1.50 | 25.10 | 14.68 | 10.42 | 27.81 |
HM4 | 48.38 | 1.06 | 28.43 | 15.08 | 13.35 | 25.75 |
HM5 | 55.54 | 0.80 | 30.87 | 15.58 | 15.29 | 23.69 |
HM6 | 61.62 | 0.62 | 31.50 | 16.00 | 15.50 | 21.66 |
HM7 | 67.58 | 0.47 | 32.74 | 16.96 | 15.78 | 21.47 |
HM8 | 71.42 | 0.40 | 33.82 | 18.36 | 15.46 | 20.41 |
HM9 | 75.41 | 0.32 | 34.45 | 18.97 | 15.48 | 19.90 |
HM10 | 78.60 | 0.27 | 36.64 | 19.49 | 17.15 | 18.01 |
HM11 | 84.91 | 0.17 | 40.16 | 19.96 | 20.2 | 15.98 |
HM12 | 89.74 | 0.11 | 42.01 | 20.42 | 21.59 | 14.15 |
HM13 | 93.75 | 0.06 | 45.19 | 20.81 | 24.38 | 13.90 |
HM14 | 97.12 | 0.03 | 46.27 | 21.18 | 25.09 | 13.87 |
HM15 | 100 | 0 | 47.03 | 21.69 | 25.34 | 13.97 |
Factor | Intercept | (%) | (%) | (%) | (%) | |
---|---|---|---|---|---|---|
Coefficient | 35.8379 | −0.0413 | 3.0793 | 0 | −0.5188 | −0.2945 |
Multiple R | 0.9910 | |||||
R2 | 0.9821 | |||||
Adjusted R2 | 0.8482 |
Index | ϕr (°) | (%) | (%) | (%) | (%) |
---|---|---|---|---|---|
ϕr (°) | – | 0.94 | 0.94 | 0.90 | 0.96 |
(%) | 0.94 | – | 0.91 | 0.97 | 0.95 |
(%) | 0.94 | 0.91 | – | 0.82 | 0.96 |
(%) | 0.90 | 0.97 | 0.82 | – | 0.89 |
(%) | 0.96 | 0.95 | 0.96 | 0.89 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Li, Y.; Gu, C.; Xing, B. Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils. Coatings 2024, 14, 105. https://doi.org/10.3390/coatings14010105
Fang C, Li Y, Gu C, Xing B. Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils. Coatings. 2024; 14(1):105. https://doi.org/10.3390/coatings14010105
Chicago/Turabian StyleFang, Chen, Ying Li, Chunsheng Gu, and Baodong Xing. 2024. "Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils" Coatings 14, no. 1: 105. https://doi.org/10.3390/coatings14010105
APA StyleFang, C., Li, Y., Gu, C., & Xing, B. (2024). Effect of Fine-Grained Particles and Sensitivity Analysis of Physical Indexes on Residual Strength of Granite Residual Soils. Coatings, 14(1), 105. https://doi.org/10.3390/coatings14010105