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Abstract: Coatings made from metallic glasses are a promising solution for protecting surfaces
of materials in various challenging environments. From an engineering perspective, glassy alloy
coatings containing carbon are of greater importance compared to those without carbon but containing
boron. Despite anticipating improved coating characteristics, there is no data on using high entropy
glassy alloy as a coating material. In this paper, we investigated the influence of the simultaneous
addition of boron and carbon elements on the glass-forming ability, thermal stability, crystallization
behavior, yield strength, hardness, and corrosion resistance of high entropy (Fe, Co, Ni, Cr, Mo)-(B,
C) glassy alloys. It was found that the content of boron and carbon had a significant effect on
the improvements of glass-forming ability, mechanical properties, and corrosion resistance. The
(Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)75(B0.7C0.3)25 bulk glassy alloy exhibits high glass-forming ability,
high yield strength of 3500 MPa, Vickers hardness of 1240, and the highest corrosion resistance among
the alloys. We also discussed the reason for their good engineering properties, and the possibility
of using high entropy glassy alloys as coating materials, in addition to the guidelines for designing
high-performance multicomponent glassy alloys.

Keywords: metallic glasses; high-entropy alloy; high thermal stability; corrosion resistance

1. Introduction

High-entropy bulk metallic glasses (HE-BMG) are a kind of glasses that inherit unique
properties of both high-entropy alloys (HEA) and bulk metallic glasses (BMG), such as high
thermal stability, superior mechanical, and magnetic properties [1–3]. They are composed
of five or more elements in equal or near-equal atomic percent, which have relatively high
mixing entropy compared with conventional metallic glasses based on a single principal
element [3–5]. They also exhibit new structures and phenomena induced by high entropy
effort that can form glassy structures with low cooling rates and extremely stable glassy
phase to crystallization due to slow atomic diffusion and the glassy structure with medium-
range order (MRO) atomic configurations containing coexistent atomic pair with positive
and negative heat of mixing [6–8].

The glass transition phenomenon before crystallization was found in Au-Si-Ge amor-
phous alloy in 1970, which can be identified as the first report on a glassy type of alloy [9].
Twenty years later, Mg- and La-based BMGs without any noble metals were synthesized
by copper mold casting and a new type of material age was created, leading to the present
active research and application states of BMGs and multicomponent alloys [10–12]. Since
then, various types of metallic glasses have been developed successively and most of the
glassy alloys contain a main component element with concentrations of over 40 at.%, which
is called the base element [12]. With the aim of developing BMGs without a dominant
element and examining the influence of high-order multicomponent pairs, Ma et al. used
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equal amounts of five elements—Ti, Zr, Hf, Cu, and Ni—and successfully synthesized a
new kind of equiatomic glassy alloy composed of Ti20Zr20Hf20Cu20Ni20 with a diameter
of 1.5 mm in 2002 [4], which is the first report on high entropy alloy (HEA) and HE-BMG.
Afterward, half of Pd was replaced with Pt in Pd40Cu20Ni20P20 BMG, and an equiatomic
Pd20Pt20Cu20Ni20P20 HE-BMG with a maximum diameter of 10 mm was fabricated by
fluxed water quenching in 2011 [12]. Since then, many researchers have explored the
possibility of synthesizing high entropy BMGs with various combinations of elements and
methods, such as Ti-Zr-Cu-Ni-Be [13], Zr-Hf-Ti-Cu-Ni-Co-Al [14], Fe-Co-Ni-B-Si [15], Er-
Gd-Y-Al-Co [16], Ti-Zr-Hf-Be-Cu-Ni [17], and the recently developed pseudo high entropy
(PHE) BMGs [18], such as Zr-Al-Ni-Cu-Au [19] and Zr-Fe-Ni-Si-B [20]. They are considered
a promising material for exploring the nature of glass and designing novel materials for
structures and coatings that are strong, flexible, and can withstand corrosion, wear, and
erosion [1,2,17,21,22].

When we look at the use of BMGs as a coating material, there are some previous papers
that exhibit useful characteristics such as high hardness, high corrosion resistance, high
wear resistance, and high heat resistance strength [23]. Owing to these useful properties,
the Fe-Cr-Mo-B-C BMG coating on stainless steel has been used as a practical material
for vessels with a diameter of 30–50 cm for lead-free soldering liquid which requires
simultaneously high corrosion resistance, high heat-resistant strength, and high heat-
resistant oxidation resistance, etc. [12,24]. The thickness of the surface coating layer reaches
about 0.3 mm and no appreciable voids can be observed. It is well known that high
entropy-type BMGs can have lower atomic diffusivity, higher hardness, good corrosion
resistance, and higher heat resistance strength. However, there has been no data on the use
of HE-BMGs as a coating material, in spite of the expectation of obtaining better coating
characteristics. With the aim of clarifying the usefulness of HE-BMGs as a coating material,
this paper intends to examine the fundamental properties of HE (Fe, Co, Ni, Cr, Mo)-(B, C)
glassy alloys, which can be regarded as a further multiplication of the previous Fe-based
glassy coating material.

2. Materials and Methods

The multicomponent alloy ingots with nominal atomic compositions of (Fe0.25Co0.25
Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 18.5, 20, 22.5 and 25 at.%) were prepared
by arc-melting the mixtures of pure Fe, Co, Ni, Cr, and Mo metals, crystal boron and Fe3C
alloy with purities above 99.8 wt.% under an argon atmosphere [25,26], and the alloys were
melted and solidified for more than 3 cycles to ensure the homogeneity of the alloy ingot.
The specimens used for the present study were in ribbon form with a thickness of about 30
µm, a width of about 1.5 mm by the single roller melt spinning method with a circumferen-
tial velocity of 35 m/s, and in rod form with an outer diameter of 2 mm by copper mold
casting in an argon atmosphere. The structures of the as-quenched and annealed ribbon
and rod samples were measured by X-ray diffraction (XRD, Miniflex 600, Rigaku, Tokyo,
Japan) with Cu Kα radiation. Differential scanning calorimetry (DSC, METTLER TOLEDO
TGA/DSC1/1600, METTLER TOLEDO, Columbus, OH, USA) was used to investigate the
thermal stability related to the glass transition, supercooled liquid area, and crystallization
at a heating rate of 0.67 K/s. A Vickers hardness indenter (Wilson Hardness Tukon 1202,
Wilson, Tokyo, Japan) was used to assess the hardness of the rod sample with a 0.98 N
load. Slip markings around Vickers hardness indents were examined by scanning electron
microscopy (SEM, JEOL JSM-IT800, JEOL, Tokyo, Japan). The mechanical characteristics of
Young’s modulus, yield strength, fracture strength, and fracture strain were investigated at
room temperature in a uniaxial compressive deformation mode using an Instron-style test-
ing apparatus. The sample’s dimensions were 2 mm in height and 2 mm in diameter, and
the starting strain rate was 5 × 10−4/s. The samples were degreased, washed, and dried
in air before immersion in 3 mass% NaCl solution at 298 K for evaluating the corrosion
behavior by electrochemistry test.
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3. Results

Figure 1 shows the (a) XRD patterns and (b) DSC curves of the as-spun (Fe0.25Co0.25
Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 18.5, 20, 22.5, 25 at.%) ribbons. All the
XRD patterns are characterized by the absence of sharp peaks, which means the lack of
long-range ordered structure. Instead, the patterns consist of amorphous diffraction halos,
indicating the formation of only an amorphous phase. The top position of the halos shifts to
a lower angle with increasing B and C content, as arrowed in Figure 1a, indicating that the
average nearest-neighbor atomic spacing in the amorphous phase increases [25]. This phe-
nomenon is opposite to the trend for C-free (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100-xBx glassy
alloys, where the first shell neighbor atomic distance of the component atoms decreases as
the B concentration increases. The distinct difference indicates that the first shell neighbor
distance is significantly affected by the presence of carbon, which is probably due to the
competitive relationship between (ETM, LTM)-B and (ETM, LTM)-C local short-range-order
formation. As is shown in Figure 1b, the onset temperature of the first exothermic peak
(Tx1) increases from 734 K to 860 K, and the glass transition phenomenon becomes more
significant with increasing B and C contents, indicating the glassy phases are formed for the
alloys. For the x = 25 alloy, the shape and area of the first exothermic peak are noticeably
different from those for alloys with lower B and C contents. To investigate the reason for
this phenomenon, we studied the crystallization behavior of the alloys.
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Figure 1. (a) X-ray diffraction (XRD) patterns and (b) differential scanning calorimetry (DSC) curves 
of the as-spun (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 18.5, 20, 22.5, 25 at.%) ribbons. 
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Figure 1. (a) X-ray diffraction (XRD) patterns and (b) differential scanning calorimetry (DSC) curves of
the as-spun (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 18.5, 20, 22.5, 25 at.%) ribbons.

Figure 2a shows the XRD patterns of as-spun the (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x
(B0.7C0.3)x alloys annealed for 1800 s at each first exothermic peak temperature (Tp1). It
is noticed that the glassy structure has been largely retained, with only a small amount
of face-centered cubic (FCC) crystalline structure precipitated for alloys with B and C
contents of 15%–22.5%, despite the rather long annealing time. The formation of an
extremely stable glassy phase to crystallization is also found in a type of pseudo high
entropy (PHE) glassy alloys [20,27]. The remarkably elevated resistance to crystalliza-
tion can be attributed to the glassy structure, which consists of uniquely coexisting two
types of MRO atomic configurations, including one type of MRO characterized by the
presence of atomic pairs with positive heat of mixing, and another type of MRO exclu-
sively comprised of negative atomic pairs [27]. In contrast, for the alloy with a B and
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C content of 25%, the crystallization of the M23B6 phase from the amorphous phase has
almost completed. This result is consistent with Figure 1 that the alloys with higher B
and C content possess a more loosely packed atomic structure. Figure 2b shows the XRD
patterns of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)80(B0.7C0.3)20 amorphous alloys annealed for
1800 s at 803 K, 966 K, and 1093 K, corresponding to the three exothermic peak temperatures.
It is concluded that the crystallization of the FCC phase, M23B6, and Co(MoB)2 phases
corresponds to the first, second, and third peaks, respectively. The crystallization pro-
cess is as follows: [am] → [am′ (remaining amorphous) + FCC] → [am′′ + FCC + M23B6] →
[FCC + M23B6 + Co(MoB)2]. Remarkably, the presence of [amorphous + FCC] phases
extends across an exceptionally broad temperature interval, ranging from 800 to 960 K.
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Figure 2. (a) XRD patterns of the (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 18.5,
20, 22.5, 25 at.%) alloys annealed for 1800 s at each first exothermic peak temperature (Tp1) of these
as-spun glassy alloys. (b) XRD patterns of as-spun (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)80(B0.7C0.3)20

alloy annealed for 1800 s at 803 K, 966 K and 1093 K, corresponding to the three exothermic peak
temperatures.

The as-cast rods with a diameter of 2 mm were prepared for the x = 17.5–25 alloys. As
is shown by the XRD patterns in Figure 3a, only the alloy with x = 25 shows a glassy phase,
while the alloys with x = 17.5–20 show the precipitation of FCC phase, and additionally,
the alloy with x = 17.5 shows an extra precipitation of Co(MoB)2 phase. The DSC curves
of the as-cast rod samples are shown in Figure 3b. The x = 25 rod alloy shows almost the
same crystalline behavior as the ribbon sample. However, the x = 17.5–20 alloys do not
show the first exothermic peaks. As is shown in Figure 4a,b, only a portion near the outer
periphery of the cylinder formed a glassy structure due to the low cooling rate and low
glass-forming ability. Therefore, the first exothermic peak is almost invisible because of the
low glassy content.
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To illustrate the microstructure of the (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)80(B0.7C0.3)20
alloy rod, the SEM images are presented in Figure 4a–c. As can be seen from Figure 4a,b,
the region near the outer periphery of the cylinder is amorphous. As it moves towards the
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center position of the cylinder, there is a gradual transition from the amorphous phase to a
region where amorphous and crystalline phases coexist, and finally to a region comprising
entirely crystalline structures. As shown in Figure 4c, in addition to the amorphous phase
labeled as region A, there are two types of crystal phases, labeled as region B and C. In
order to elucidate the composition of regions A, B, and C, Energy Dispersive X-ray (EDX)
spectroscopy profiles are presented in Figure 4d–f, respectively. The composition of region
A is close to the original alloy composition, although the carbon content is higher, indicating
it can be identified as the remaining amorphous phase after crystal precipitation. In region
B, there is an increase in boron, chromium, and molybdenum contents, while in region
C, the boron content further elevates, suggesting the presence of Co(Mo, B)2 phase. This
component redistribution behavior is in accordance with the results obtained from XRD
analysis in Figure 3.

Figure 5a–c show the change in Vickers hardness along the central axis of the cross-
section of the rod sample with a diameter of 2 mm. It can be observed that the hardness at
the internal center of the cylinder is generally consistent with that in the outer peripheral
regions in Figure 5a, indicating the high glass-forming ability of the x = 25 alloy and
the uniformity of the glassy structure. In contrast, the hardness at the internal center of
the rod is notably lower than that of the region closer to the periphery, corresponding
to the difference in the cooling rates between the inside and outside regions of the rod,
resulting in different structures. Although the hardness of the internal center region is
generally lower than the hardness near the region closer to the periphery, there are some
areas where the hardness is nearly the same as that of the region near the periphery,
which indicates a coexistence of glassy and crystalline phases in Figure 5b. However, the
hardness of the internal center region is much lower than the region near the outer edge,
suggesting that the interior is entirely crystalline and does not form a glassy phase in
Figure 5c. It should be noted that the hardness for the glassy and crystalline coexisting
phases is higher than that of the amorphous phase and has the following relationship:
Hvam < Hvam+FCC < HvFCC+Boride.

To validate this relationship between hardness and phase, we conducted annealing on
the (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)80(B0.7C0.3)20 ribbon sample. The phases and hardness
of the alloy with different annealing temperatures are shown in Figure 5d. At the quenched
state, the hardness is 1180 Hv. With an increase in annealing temperature, the precipitations
of the FCC phase and borides occur, leading to a gradual increase in hardness up to 1670 Hv.
After the precipitation of borides, further increases in the annealing temperature result in
a reduction in hardness due to grain growth and coarsening. It can be observed that the
hardness relationship between different phases in the ribbon samples is consistent with the
relationship observed in the rod-shaped samples.

Figure 6a shows the tensile stress–strain curves of the as-cast rods with a diameter of
2 mm for (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5, 20 and 25) alloys.
The fracture occurs without any noticeable prior change in the rate of elongation for all four
samples, indicating the brittleness under tensile load. The glassy alloy with x = 25 shows
the highest yield strength of 3500 MPa, while the alloy with x = 20 shows the lowest yield
strength of 1830 MPa. Although the alloys are brittle under tension, nanoindentation load-
depth curves show that the alloys are elastic–plastic-type and reveal plastic deformation
under compression [28]. The hardness values at the center of the 2 mm rod samples with
the different B and C contents are shown in Figure 6b. With increasing B and C contents
from x = 15 to x = 25, the hardness increases from 1080 to 1240. The change is consistent
with the above results of Figure 5a–c.
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diameter of 2 mm for (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15–25) alloy.

Figure 7 illustrates the polarization curves of the alloys in ribbon form with x ranging
from 15 to 25. It is observed that as the B and C contents increase, the curves shift towards
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higher potential, suggesting that the increasing of B and C contents causes the reduction
in the active energy of passivation, leading to an enhanced ease in attaining the passive
state. The reason for the changes in corrosion characteristics will be discussed in the
following section.
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4. Discussion

The formation of the amorphous phase occurs in the range of x = 18–24 at.% for melt-
spun alloys of (Fe0.25Co0.25Ni0.25Cr0.25)100−xBx [24], and this range significantly expands
to 11–31 at.% for alloys of (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−xBx [25,26], where the B-
content range conducive to plasticity is also prolonged. In this paper, the simultaneous
addition of B and C, of 25 at.% B and C, the BMG was formed with a diameter of 2 mm.
The alloy rod shows a high yield strength of 3500 MPa, although no plastic deformation is
exhibited. Also, the rod shows a high Vickers hardness of 1237 ± 20. The high strength and
hardness are thought to result from the following: (1) the simultaneous addition of B and C
elements promotes better microstructural homogeneity, reducing the likelihood of localized
weaknesses. This overall improvement in material uniformity enhances its mechanical
properties, including yield strength. (2) B and C atoms interact with the base metal atoms
due to the strong attractive forces between them, as demonstrated by the large negative
heats of mixing among them [8]. The interaction results in strong atomic clusters, which
hinder the formation of shear bands and local rearrangement of atoms. This interaction
increases the resistance of the material to plastic deformation.

The reasons for higher corrosion resistance with increasing B and C contents could
probably be attributed to several factors, including: (1) The increasing of B and C can
enhance the glass-forming ability of the alloy, thereby making the internal structure of the
glassy phase more uniform, preventing the formation of crystalline phases that are more
prone to corrosion. (2) B and C elements can form stable carbide and boride compounds,
which are more chemically inert, acting as a barrier against corrosive agents [29]. (3) B
and C elements can also increase the passivation potential and decrease the corrosion
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current density of glassy alloys, which means they can make the alloys more resistant to
electrochemical reactions that cause corrosion [30].

Here, we want to discuss the design of high-entropy glassy alloys. As is known,
three empirical guidelines for the formation of BMGs are as follows [10]: (1) the alloy
should be multicomponent, comprising a minimum of three elements; (2) there should
be significant atomic size mismatches, exceeding approximately 12%, among the main
elements; and (3) the main element pairs should exhibit negative heats of mixing. For
high entropy alloys, although some authors have characterized alloys consisting of four
components as high entropy alloys, the universally accepted definition is alloys with equal
or relatively large proportions of five or more elements [5,31], usually exhibiting small
atomic size mismatches below 5% and nearly zero heat of mixing. As multicomponent
alloys, the number of the elements is well agreed with the first empirical guidelines. For the
atomic size mismatching and heat of mixing, the constituent elements in high entropy bulk
metallic glasses (HE-BMGs) are divided into two groups. For one group, the constituent
elements have large atomic size mismatches exceeding 12% and significantly negative heats
of mixing, consistent with the formation criteria for traditional BMGs. In contrast, the
elements in the other group exhibit small atomic size mismatches below 5% and nearly zero
heat of mixing, in alignment with the formation criteria for crystalline high-entropy alloys.
As a result, HE BMGs exist in an intermediate state where component characteristics from
both conventional BMGs and crystalline high-entropy alloys are combined.

Therefore, the HE-BMGs with the simultaneous presence of multiple elements in nearly
equal proportions and the absence of a well-defined crystal structure, can be regarded as
a class of advanced materials that combine the characteristics of HEAs with the glassy
structure typical of metallic glasses. The design and development of high-entropy glassy
alloys involve a balance of alloying elements and processing conditions to achieve the
desired material properties while keeping the glassy structure. In the present alloy system,
B and C elements are essential to improve the glass-forming ability and form the glassy
structure for ribbon samples. With the increase in B and C contents to 25%, the 2 mm
rod samples are fully glassy phase. The following possible benefits of using the present
HE-BMGs as coating materials are encouraging: High thermal stability allows them to
withstand high temperatures without crystallization, which is a crucial property for coatings
used in high-temperature environments. Additionally, the HE-BMGs are good options
for protective coatings in hostile situations due to their exceptional corrosion resistance.
The high hardness makes them effective in providing protective coatings against abrasion.
However, challenges such as processing techniques and cost-effectiveness need to be
addressed for practical applications. Further research and development are necessary to
optimize the properties of the HE-BMG coatings and ensure their successful application in
various industries [32–34].

5. Conclusions

We examined the structure, thermal stability, mechanical properties, and corrosion
resistance of the high entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)100−x(B0.7C0.3)x (x = 15, 17.5,
18.5, 20, 22.5, 25) alloys in ribbon and rod forms, with the aim of clarifying the simultaneous
addition effect of B and C elements. The results obtained are summarized as follows:

(1) The amorphous phase was formed in all ribbon alloys with x ranging from 15 to 25,
but only in the rod with a diameter of 2 mm when x was 25.

(2) The crystallization process can be represented as [am] → [am′ + FCC] →
[am′′ + FCC + M23B6] → [FCC + M23B6 + Co(MoB)2] for the amorphous (Fe, Co,
Ni, Cr, Mo)-(B, C) alloy.

(3) For the as-cast rods, the glassy alloy with x = 25 shows the highest yield strength of
3500 MPa and Vickers hardness of 1240.

(4) The amorphous (Fe, Co, Ni, Cr, Mo)-(B, C) alloys show higher corrosion resistance
with increasing B and C contents.
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Further experiments, such as the tribological effect and adhesion testing, are necessary
to explore the potential applications of the present HE alloys as a coating material, even
though their good characteristics have already been reported for the (Fe, Cr, Mo)-(B, C)
bulk glassy alloys.
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