Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study
Abstract
:1. Introduction
2. Definition of Structural Flexibility and Testing Methods
3. Flexibility-Based Damage Assessment
3.1. Localizing Damage Using Differences in the Flexibility
3.2. Localization of Damage Using Flexibility-Derived Indices
3.3. Assessing Damage Using Flexibility Sensitivity
3.4. Assessing Damage by Decomposing the Flexibility
3.5. Assessing Damage Using Static Flexibility
3.6. Combinations of Flexibility Methods and Other Methods
4. Conclusions
Funding
Conflicts of Interest
References
- Ciang, C.C.; Lee, J.R.; Bang, H.J. Structural health monitoring for a wind turbine system: A review of damage detection methods. Meas. Sci. Technol. 2008, 19, 122001. [Google Scholar] [CrossRef]
- Li, D.; Ho, S.C.M.; Song, G.; Ren, L.; Li, H. A review of damage detection methods for wind turbine blades. Smart Mater. Struct. 2015, 24, 033001. [Google Scholar] [CrossRef]
- Das, S.; Saha, P.; Patro, S.K. Vibration-based damage detection techniques used for health monitoring of structures: A review. J. Civ. Struct. Health Monit. 2016, 6, 477–507. [Google Scholar] [CrossRef]
- Moughty, J.J.; Casas, J.R. A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions. Appl. Sci. 2017, 7, 510. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection–A review. Eng. Struct. 2018, 156, 105–117. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N. Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 2020, 141, 106445. [Google Scholar] [CrossRef]
- Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. J. Struct. Eng. 2020, 146, 04020073. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Peng, X.; Tian, C.; Yang, Q. Structural Damage Identification Using the Optimal Achievable Displacement Variation. Materials 2022, 15, 8440. [Google Scholar] [CrossRef]
- Yang, Q.W.; Peng, X. A highly efficient method for structural model reduction. Int. J. Numer. Methods Eng. 2023, 124, 513–533. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996. [Google Scholar]
- Stutz, L.T.; Castello, D.A.; Rochinha, F.A. A flexibility-based continuum damage identification approach. J. Sound Vib. 2005, 279, 641–667. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M. Damage detection in structures using changes in flexibility. J. Sound Vib. 1994, 169, 3–17. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M. Experimental verification of flexibility difference method for locating damage in structures. J. Sound Vib. 1995, 184, 311–328. [Google Scholar] [CrossRef]
- Meng, F.; Yu, J.; Ma, W. Cable damage detection of a suspension bridge in terms of dynamically measured flexibility matrix. J. Vib. Shock 2019, 38, 267–275. [Google Scholar]
- Xi, H.; Zhou, J.; Zhou, Y.; Li, X. Damage identification of crane girder based on diagonal element change of flexibility matrix. J. Test Meas. Technol. 2020, 34, 208–214. [Google Scholar]
- Wang, Q.; Zhu, R.; Wang, N.; Luo, M.; Che, Y. Damage detection of pile foundation in high-pile wharf based on modal flexibility. Port Waterw. Eng. 2020, 10, 46–51. [Google Scholar]
- Lu, J.; Qiao, L.; Zhang, C.; Li, Z.; Tian, Y. Research on damage identification of masonry pagodas based on modal flexibility curvature. Chin. J. Comput. Mech. 2023. Available online: https://kns.cnki.net/kcms/detail/21.1373.o3.20230412.1046.004.html (accessed on 13 April 2023).
- Toksoy, T.; Aktan, A.E. Bridge-condition assessment by modal flexibility. Exp. Mech. 1994, 34, 271–278. [Google Scholar] [CrossRef]
- Aktan, A.E.; Lee, K.L.; Chuntavan, C.; Aksel, T. Modal testing for structural identification and condition assessment of constructed facilities. In Proceedings of the 12th International Modal Analysis Conference, Honolulu, HI, USA, 31 January–3 February 1994; pp. 462–468. [Google Scholar]
- Raghavendrachar, M.; Aktan, A.E. Flexibility by multireference impact testing for bridge diagnostics. J. Struct. Eng. 1992, 118, 2186–2203. [Google Scholar] [CrossRef]
- Zhao, J.; DeWolf, J.T. Sensitivity study for vibrational parameters used in damage detection. J. Struct. Eng. 1999, 125, 410–416. [Google Scholar] [CrossRef]
- Ko, J.M.; Sun, Z.G.; Ni, Y.Q. Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun bridge. Eng. Struct. 2002, 24, 857–868. [Google Scholar] [CrossRef]
- Catbas, F.N.; Brown, D.L.; Aktan, A.E. Use of modal flexibility for damage detection and condition assessment: Case studies and demonstrations on large structures. J. Struct. Eng. 2006, 132, 1699–1712. [Google Scholar] [CrossRef]
- Tomaszewska, A. Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature. Comput. Struct. 2010, 88, 154–164. [Google Scholar] [CrossRef]
- Koo, K.Y.; Sung, S.H.; Park, J.W.; Jung, H.J. Damage detection of shear buildings using deflections obtained by modal flexibility. Smart Mater. Struct. 2010, 19, 115026. [Google Scholar] [CrossRef]
- Sung, S.H.; Koo, K.Y.; Jung, H.J. Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification. J. Sound Vib. 2014, 333, 4123–4138. [Google Scholar] [CrossRef]
- Hu, C.; Xiao, M.; Zhou, H.; Wen, W.; Yun, H. Damage detection of wood beams using the differences in local modal flexibility. J. Wood Sci. 2011, 57, 479–483. [Google Scholar] [CrossRef]
- Altunışık, A.C.; Okur, F.Y.; Karaca, S.; Kahya, V. Vibration-based damage detection in beam structures with multiple cracks: Modal curvature vs. modal flexibility methods. Nondestruct. Test. Eval. 2019, 34, 33–53. [Google Scholar] [CrossRef]
- Meng, F.; Yu, J.; Alaluf, D.; Mokrani, B.; Preumont, A. Modal flexibility based damage detection for suspension bridge hangers: A numerical and experimental investigation. Smart Struct. Syst. 2019, 23, 15–29. [Google Scholar]
- Wickramasinghe, W.R.; Thambiratnam, D.P.; Chan, T.H.T. Damage detection in a suspension bridge using modal flexibility method. Eng. Fail. Anal. 2020, 107, 104194. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R. Computation of structural flexibility for bridge health monitoring using ambient modal data. In Proceedings of the 11th ASCE Engineering Mechanics Conference, Fort Lauderdale, FL, USA, 20–22 May 1996; pp. 1114–1117. [Google Scholar]
- Duan, Z.D.; Yan, G.R.; Ou, J.P.; Spencer, B.F. Damage localization in ambient vibration by constructing proportional flexibility matrix. J. Sound Vib. 2005, 284, 455–466. [Google Scholar] [CrossRef]
- Duan, Z.D.; Yan, G.R.; Ou, J.P.; Spencer, B.F. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs. Struct. Control Health Monit. 2007, 14, 186–196. [Google Scholar] [CrossRef]
- Zhang, Z.; Atkan, A.E. The damage indices for constructed facilities. In Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, USA, 13–16 February 1995; pp. 1520–1529. [Google Scholar]
- Lu, Q.; Ren, G.; Zhao, Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures. J. Sound Vib. 2002, 253, 1101–1114. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.C.; Guo, S.L.; Wu, Z.S. Flexibility-based structural damage detection with unknown mass for IASC-ASCE benchmark studies. Eng. Struct. 2013, 48, 486–496. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Shiao, S.Y.; Liao, W.I. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors. Meas. Sci. Technol. 2017, 29, 015108. [Google Scholar] [CrossRef]
- Lee, E.T.; Eun, H.C. Damage detection approach based on the second derivative of flexibility estimated from incomplete mode shape data. Appl. Math. Model. 2017, 44, 602–613. [Google Scholar] [CrossRef]
- Bernagozzi, G.; Mukhopadhyay, S.; Betti, R.; Landi, L.; Diotallevi, P.P. Output-only damage detection in buildings using proportional modal flexibility-based deflections in unknown mass scenarios. Eng. Struct. 2018, 167, 549–566. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Q.W.; Sun, B.X.; Liang, C.F. A Virtual Load Method for Damage Identification of Beam Structures. Recent Pat. Eng. 2018, 12, 117–126. [Google Scholar] [CrossRef]
- Li, C.H.; Yang, Q.W.; Liang, C.F.; Lu, C. Study on damage assessment for beam type structures by virtual load method. J. Mech. Strength 2019, 45, 1194–1200. [Google Scholar]
- Liu, M.; Lv, J.; Wang, Z.; Zhou, F. Research on optimal placement of strain sensor and damage detection based on strain flexibility. J. Wuhan Univ. Technol. 2019, 41, 99–108. [Google Scholar]
- Tang, S.; Luo, C.; Fang, Z.; Su, B.; Zhang, X.; Chu, J. Structural damage identification method based on curvature norm difference of modal flexibility matrix. Chin. J. Appl. Mech. 2020, 37, 982–989. [Google Scholar]
- Tang, S.; Luo, C.; Fang, Z.; Zhang, X.; Chu, J. Influence of mode shape normalization on flexibility curvature damage index of beam structure. Chin. J. Comput. Mech. 2020, 37, 340–348. [Google Scholar]
- Li, G.; Luo, S.; Zhang, L. Damage diagnosis of modal flexibility based on degree of freedom reduction. Chin. Q. Mech. 2020, 41, 554–561. [Google Scholar]
- Wang, X.; Zhao, Q. Analysis of damage identification of suspension bridges based on variation rate of flexibility curvature difference. J. Lanzhou Inst. Technol. 2021, 28, 5–8. [Google Scholar]
- He, W.Y.; Ren, W.X.; Cao, L.; Wang, Q. FEM free damage detection of beam structures using the deflections estimated by modal flexibility matrix. Int. J. Struct. Stab. Dyn. 2021, 21, 2150128. [Google Scholar] [CrossRef]
- Aulakh, D.S.; Bhalla, S. Piezo sensor based multiple damage detection under output only structural identification using strain modal flexibility. Mech. Syst. Signal Process. 2023, 194, 110272. [Google Scholar] [CrossRef]
- Liu, R. Damage identification method of variable cross-section continuous beam bridge based on flexibility curvature area difference. J. Jiamusi Univ. (Nat. Sci. Ed.) 2023, 41, 113–116. [Google Scholar]
- Wu, D.; Law, S.S. Model error correction from truncated modal flexibility sensitivity and generic parameters. I: Simulation. Mech. Syst. Signal Process. 2004, 18, 1381–1399. [Google Scholar] [CrossRef]
- Wu, D.; Law, S.S. Eigen-parameter decomposition of element matrices for structural damage detection. Eng. Struct. 2007, 29, 519–528. [Google Scholar]
- Yan, W.J.; Ren, W.X. Closed-form modal flexibility sensitivity and its application to structural damage detection without modal truncation error. J. Vib. Control 2014, 20, 1816–1830. [Google Scholar] [CrossRef]
- Sarmadi, H.; Entezami, A.; Ghalehnovi, M. On model-based damage detection by an enhanced sensitivity function of modal flexibility and LSMR-Tikhonov method under incomplete noisy modal data. Eng. Comput. 2022, 38, 111–127. [Google Scholar] [CrossRef]
- Yang, Q.W. A mixed sensitivity method for structural damage detection. Commun. Numer. Methods Eng. 2009, 25, 381–389. [Google Scholar] [CrossRef]
- Yang, Q.W. A flexibility-based method for structural damage identification using ambient modal data. Int. J. Space Struct. 2009, 24, 153–159. [Google Scholar] [CrossRef]
- Li, J.; Wu, B.; Zeng, Q.C.; Lim, C.W. A generalized flexibility matrix based approach for structural damage detection. J. Sound Vib. 2010, 329, 4583–4587. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Zhong, H.; Wu, B. Structural damage detection using generalized flexibility matrix and changes in natural frequencies. AIAA J. 2012, 50, 1072–1078. [Google Scholar] [CrossRef]
- Katebi, L.; Tehranizadeh, M.; Mohammadgholibeyki, N. A generalized flexibility matrix-based model updating method for damage detection of plane truss and frame structures. J. Civ. Struct. Health Monit. 2018, 8, 301–314. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z. An improved generalized flexibility matrix approach for structural damage detection. Inverse Probl. Sci. Eng. 2020, 28, 877–893. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Li, Z. The generalized flexibility matrix method for structural damage detection with incomplete mode shape data. Inverse Probl. Sci. Eng. 2021, 29, 2019–2039. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Q.W. Sensor placement and structural damage evaluation by improved generalized flexibility. IEEE Sens. J. 2021, 21, 11654–11664. [Google Scholar] [CrossRef]
- Li, J.; Pang, D.; Zhang, J.; Du, G. Structural damage identification of beam bridges based on diagonal index of generalized flexibility curvature matrix. J. Railw. Sci. Eng. 2022, 19, 722–732. [Google Scholar]
- Hanumanthappa, S. A new structural damage detection method for cantilever beam using generalized flexibility quotient difference method. J. Vib. Eng. Technol. 2023, 11, 1525–1533. [Google Scholar] [CrossRef]
- Tang, G.; Wu, B.; Tang, P. Truss damage identification based on reciprocal variable and generalized flexibility matrix. Chin. J. Appl. Mech. 2023. Available online: https://kns.cnki.net/kcms/detail//61.1112.O3.20230223.1334.006.html (accessed on 23 February 2023).
- Liu, Y.; Zhao, P.; Xu, T.; Liu, W.; Yao, L. Void damage identification of slab track based on generalized flexibility curvature information entropy. Railw. Stand. Des. 2023. Available online: https://kns.cnki.net/kcms/detail/11.2987.u.20230314.1441.018.html (accessed on 15 March 2023).
- Cao, S.S.; Yang, Q.W.; Peng, X. Structural Damage Identification Using the First-Order Vibration-Mode-Based Frequency-Shift Flexibility Sensitivity Algorithm. Axioms 2023, 12, 551. [Google Scholar] [CrossRef]
- Bernal, D. Load vectors for damage localization. J. Eng. Mech. 2002, 128, 7–14. [Google Scholar] [CrossRef]
- Gao, Y. Structural Health Monitoring Strategies for Smart Sensor Networks; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2005. [Google Scholar]
- Spencer, B.F., Jr.; Nagayama, T. Smart sensor technology: A new paradigm for structural health monitoring. In Proceedings of the Asia-Pacific Workshop on Structural Health Monitoring, Yokohama, Japan, 7–9 December 2006. [Google Scholar]
- Bernal, D. Flexibility-based damage localization from stochastic realization results. J. Eng. Mech. 2006, 132, 651–658. [Google Scholar] [CrossRef]
- Gao, Y.; Spencer, B.F.; Bernal, D. Experimental verification of the flexibility-based damage locating vector method. J. Eng. Mech. 2007, 133, 1043–1049. [Google Scholar] [CrossRef]
- Bernal, D.; Gunes, B. Damage localization in output-only systems: A flexibility based approach. In Proceedings of the International Modal Analysis Conference IMAC-XX, Los Angeles, CA, USA, 4–7 February 2002; pp. 1185–1191. [Google Scholar]
- Gao, Y.; Spencer, B.F. Damage localization under ambient vibration using changes in flexibility. Earthq. Eng. Eng. Vib. (Engl. Version) 2002, 1, 136–144. [Google Scholar] [CrossRef]
- Sim, S.H.; Spencer, B.F., Jr. Multi-scale smart sensing for monitoring civil infrastructure. In Proceedings of the World Forum on Smart Materials and Smart Structures Technology, Chongqing/Nanjing, China, 22–27 May 2008. [Google Scholar]
- Yang, Q.W.; Liu, J.K. Damage identification by the eigenparameter decomposition of structural flexibility change. Int. J. Numer. Methods Eng. 2009, 78, 444–459. [Google Scholar] [CrossRef]
- Yang, Q.W. A new damage identification method based on structural flexibility disassembly. J. Vib. Control 2011, 17, 1000–1008. [Google Scholar] [CrossRef]
- Weng, S.; Zhu, H.P.; Xia, Y.; Mao, L. Damage detection using the eigenparameter decomposition of substructural flexibility matrix. Mech. Syst. Signal Process. 2013, 34, 19–38. [Google Scholar] [CrossRef]
- Yang, Q.W.; Sun, B.X.; Lu, C. An improved spectral decomposition flexibility perturbation method for finite element model updating. Adv. Mech. Eng. 2018, 10, 1687814018814920. [Google Scholar] [CrossRef]
- Qi, X.; Yang, T.; Du, Y. Damage detection of composite beams based on proportional flexibility matrix. Compos. Sci. Eng. 2021, 3, 33–37. [Google Scholar]
- Li, G.; Luo, S.; Su, R.; Wang, Z.; Wang, C. Research on Damage Diagnosis Based on Flexibility Matrix Decomposition. Appl. Math. Mech. 2021, 42, 292–298. [Google Scholar]
- Sun, Y.; Yang, Q.W.; Peng, X. Structural Damage Assessment Using Multiple-Stage Dynamic Flexibility Analysis. Aerospace 2022, 9, 295. [Google Scholar] [CrossRef]
- Sanayei, M.; Scampoli, S.F. Structural element stiffness identification from static test data. J. Eng. Mech. 1991, 117, 1021–1036. [Google Scholar] [CrossRef]
- Sanayei, M.; Onipede, O. Damage assessment of structures using static test data. AIAA J. 1991, 29, 1174–1179. [Google Scholar] [CrossRef]
- Banan, M.R.; Banna, M.R.; Hjelmstad, K.D. Parameter estimation of structures from static response, I: Computational aspects. J. Struct. Eng. 1994, 120, 3243–3258. [Google Scholar] [CrossRef]
- Banan, M.R.; Banna, M.R.; Hjelmstad, K.D. Parameter estimation of structures from static response, II: Numerical simulation studies. J. Struct. Eng. 1994, 120, 3259–3283. [Google Scholar] [CrossRef]
- Hjelmstad, K.D.; Shin, S. Damage detection and assessment of structures from static response. J. Eng. Mech. 1997, 123, 568–576. [Google Scholar] [CrossRef]
- Oh, B.H.; Jung, B.S. Structural damage assessment with combined data of static and modal tests. J. Struct. Eng. 1998, 124, 956–965. [Google Scholar] [CrossRef]
- Wang, X.; Hu, N.; Fukunaga, H.; Yao, Z.H. Structural damage identification using static test data and changes in frequencies. Eng. Struct. 2001, 23, 610–621. [Google Scholar] [CrossRef]
- Chou, J.H.; Ghaboussi, J. Genetic algorithm in structural damage detection. Comput. Struct. 2001, 79, 1335–1353. [Google Scholar] [CrossRef]
- Hu, X.F.; Shenton, H.W., III. Structural damage identification using static dead load strain measurements. In Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, NY, USA, 2–5 June 2002. [Google Scholar]
- Jang, S.A.; Sim, S.H.; Spencer, B.F., Jr. Structural health monitoring using static strain. In Proceedings of the World Forum on Smart Materials and Smart Structures Technology, Chongqing/Nanjing, China, 22–27 May 2008. [Google Scholar]
- Bakhtiari-Nejad, F.; Rahai, A.; Esfandiari, A. A structural damage detection method using static noisy data. Eng. Struct. 2005, 27, 1784–1793. [Google Scholar] [CrossRef]
- Yang, Q.W.; Sun, B.X. Structural damage localization and quantification using static test data. Struct. Health Monit. 2011, 10, 381–389. [Google Scholar] [CrossRef]
- Chen, X.Z.; Zhu, H.P.; Chen, C.Y. Structural damage identification using test static data based on grey system theory. J. Zhejiang Univ. Sci. A 2005, 6, 790–796. [Google Scholar] [CrossRef]
- Kouchmeshky, B.; Aquino, W.; Bongard, J.C.; Lipson, H. Co-evolutionary algorithm for structural damage identification using minimal physical testing. Int. J. Numer. Methods Eng. 2007, 69, 1085–1107. [Google Scholar] [CrossRef]
- Zhao, L.; Shenton, H.W., III. Structural damage detection using best approximated dead load redistribution. Struct. Health Monit. 2005, 4, 319–339. [Google Scholar] [CrossRef]
- Ma, Q.; Solís, M.; Galvín, P. Wavelet analysis of static deflections for multiple damage identification in beams. Mech. Syst. Signal Process. 2021, 147, 107103. [Google Scholar] [CrossRef]
- Fang, R.; Wu, Y.; Wei, W.; Na, L.; Biao, Q.; Jiang, P.; Yang, Q. An improved static residual force algorithm and its application in cable damage identification for cable-stayed bridges. Appl. Sci. 2022, 12, 2945. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Q.W. Damage detection in beam-like structures using static shear energy redistribution. Front. Struct. Civ. Eng. 2022, 16, 1552–1564. [Google Scholar] [CrossRef]
- Xiao, F.; Meng, X.; Zhu, W.; Chen, G.S.; Yan, Y. Combined joint and member damage identification of semi-rigid frames with slender beams considering shear deformation. Buildings 2023, 13, 1631. [Google Scholar] [CrossRef]
- Yang, Q.W.; Peng, X. A Fast Calculation Method for Sensitivity Analysis Using Matrix Decomposition Technique. Axioms 2023, 12, 179. [Google Scholar] [CrossRef]
- Yang, Q.W.; Qin, F.J.; Peng, X. Structural Fault Diagnosis Based on Static and Dynamic Response Parameters. Coatings 2023, 13, 920. [Google Scholar] [CrossRef]
- Yan, A.; Golinval, J.C. Structural damage localization by combining flexibility and stiffness methods. Eng. Struct. 2005, 27, 1752–1761. [Google Scholar] [CrossRef]
- Jaishi, B.; Ren, W.X. Structural finite element model updating using ambient vibration test results. J. Struct. Eng. 2005, 131, 617–628. [Google Scholar] [CrossRef]
- Grande, E.; Imbimbo, M. A multi-stage approach for damage detection in structural systems based on flexibility. Mech. Syst. Signal Process. 2016, 76, 455–475. [Google Scholar] [CrossRef]
- Yan, T.; Zhou, G.; Wu, Z.; Wang, W. Research on structural damage identification of the offshore platform based on modal flexibility and FEM updating. J. Mach. Des. 2021, 38, 14–21. [Google Scholar]
- Hakim, S.J.S.; Razak, H.A. Modal parameters based structural damage detection using artificial neural networks-a review. Smart Struct. Syst. 2014, 14, 159–189. [Google Scholar] [CrossRef]
- Gomes, G.F.; Mendéz, Y.A.D.; Alexandrino, P.D.S.L.; da Cunha, S.S., Jr.; Ancelotti, A.C., Jr. The use of intelligent computational tools for damage detection and identification with an emphasis on composites—A review. Compos. Struct. 2018, 196, 44–54. [Google Scholar] [CrossRef]
- Gomes, G.F.; Mendez, Y.A.D.; da Silva Lopes Alexandrino, P.; da Cunha, S.S.; Ancelotti, A.C. A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN. Arch. Comput. Methods Eng. 2019, 26, 883–897. [Google Scholar] [CrossRef]
- Das, M.; Sahu, S.; Parhi, D.R. Composite materials and their damage detection using AI techniques for aerospace application: A brief review. Mater. Today Proc. 2021, 44, 955–960. [Google Scholar] [CrossRef]
- Perera, R.; Ruiz, A.; Manzano, C. An evolutionary multiobjective framework for structural damage localization and quantification. Eng. Struct. 2007, 29, 2540–2550. [Google Scholar] [CrossRef]
- Perera, R.; Ruiz, A. A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization. Mech. Syst. Signal Process. 2008, 22, 970–991. [Google Scholar] [CrossRef]
- Na, C.; Kim, S.P.; Kwak, H.G. Structural damage evaluation using genetic algorithm. J. Sound Vib. 2011, 330, 2772–2783. [Google Scholar] [CrossRef]
- Greco, A.; Pluchino, A.; Cannizzaro, F.; Caddemi, S.; Caliò, I. Closed-form solution based genetic algorithm software: Application to multiple cracks detection on beam structures by static tests. Appl. Soft Comput. 2018, 64, 35–48. [Google Scholar] [CrossRef]
- Aghaeidoost, V.; Afshar, S.; Tajaddod, N.Z.; Asgarian, B.; Shokrgozar, H.R. Damage detection in jacket-type offshore platforms via generalized flexibility matrix and optimal genetic algorithm (GFM-OGA). Ocean Eng. 2023, 281, 114841. [Google Scholar] [CrossRef]
- Liu, H.; Song, G.; Jiao, Y.; Zhang, P.; Wang, X. Damage Identification of Bridge Based on Modal Flexibility and Neural Network Improved by Particle Swarm Optimization. Math. Probl. Eng. 2014, 2014, 640925. [Google Scholar] [CrossRef]
- Amiri, G.G.; Hosseinzadeh, A.Z.; Razzaghi, S.A.S. Generalized flexibility-based model updating approach via democratic particle swarm optimization algorithm for structural damage prognosis. Int. J. Optim. Civ. Eng. 2015, 5, 445–464. [Google Scholar]
- Hosseinzadeh, A.Z.; Amiri, G.G.; Razzaghi, S.S.; Koo, K.Y.; Sung, S.H. Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix. J. Sound Vib. 2016, 381, 65–82. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, J.; Lu, Z. Structural damage detection using improved particle swarm optimization. Inverse Probl. Sci. Eng. 2018, 26, 792–810. [Google Scholar] [CrossRef]
- Nadjafi, S.; Ghodrati Amiri, G.; Zare Hosseinzadeh, A.; Seyed Razzaghi, S.A. An effective approach for damage identification in beam-like structures based on modal flexibility curvature and particle swarm optimization. J. Rehabil. Civ. Eng. 2020, 8, 109–120. [Google Scholar]
- Minh, H.L.; Khatir, S.; Rao, R.V.; Abdel Wahab, M.; Cuong-Le, T. A variable velocity strategy particle swarm optimization algorithm (VVS-PSO) for damage assessment in structures. Eng. Comput. 2023, 39, 1055–1084. [Google Scholar] [CrossRef]
- Daei, M.; Mirmohammadi, S.H. A flexibility method for structural damage identification using continuous ant colony optimization. Multidiscip. Model. Mater. Struct. 2015, 11, 186–201. [Google Scholar] [CrossRef]
- Majumdar, A.; Nanda, B. A comparative study on inverse vibration based damage assessment techniques in beam structure using ant colony optimization and particle swarm optimization. Adv. Sci. Eng. Med. 2020, 12, 918–923. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, X.; Zhu, Z.; Luo, J.; Huang, M. Two stage structural damage identification method based on improved whale algorithm and modal flexibility. J. Civ. Eng. Manag. 2021, 38, 71–77. [Google Scholar]
- Khatir, S.; Tiachacht, S.; Le Thanh, C.; Tran-Ngoc, H.; Mirjalili, S.; Wahab, M.A. A new robust flexibility index for structural damage identification and quantification. Eng. Fail. Anal. 2021, 129, 105714. [Google Scholar] [CrossRef]
- Kourehli, S.S. Damage quantification method using artificial neural network and static response with limited sensors. J. Vibroeng. 2015, 17, 1317–1325. [Google Scholar]
- Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Wahab, M.A. An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Eng. Struct. 2019, 199, 109637. [Google Scholar] [CrossRef]
- Ahmadi-Nedushan, B.; Fathnejat, H. A modified teaching–learning optimization algorithm for structural damage detection using a novel damage index based on modal flexibility and strain energy under environmental variations. Eng. Comput. 2022, 38, 847–874. [Google Scholar] [CrossRef]
- Mei, J.; Wu, L.; Chen, E.; Xiao, W.; Zhong, L.; Guo, J.; Li, W. A novel structural damage detection method using a hybrid IDE–BP model. Knowl.-Based Syst. 2023, 273, 110606. [Google Scholar] [CrossRef]
DOF Number | Flexibility Change | |
---|---|---|
No Noise | With Noise | |
1 | 0 | 0 |
2 | 0.038 | 0.065 |
3 | 0.154 | 0.191 |
4 | 0.352 | 0.353 |
5 | 0.639 | 0.847 |
6 | 1.021 | 1.606 |
7 | 1.501 | 2.363 |
8 | 2.078 | 2.928 |
9 | 2.744 | 3.795 |
10 | 3.485 | 4.655 |
11 | 4.279 | 5.416 |
12 | 5.099 | 6.467 |
13 | 5.133 | 5.982 |
14 | 4.378 | 4.954 |
15 | 3.642 | 4.059 |
16 | 2.947 | 4.419 |
17 | 2.314 | 3.286 |
18 | 1.754 | 1.951 |
19 | 1.274 | 1.584 |
20 | 0.875 | 1.289 |
21 | 0.555 | 0.917 |
22 | 0.311 | 0.578 |
23 | 0.138 | 0.208 |
24 | 0.035 | 0.051 |
25 | 0 | 0 |
DOF Number | Flexibility Change | |
---|---|---|
No Noise | With Noise | |
1 | 0 | 0 |
2 | 0.057 | 0.069 |
3 | 0.109 | 0.114 |
4 | 0.156 | 0.131 |
5 | 0.197 | 0.189 |
6 | 0.231 | 0.247 |
7 | 0.260 | 0.281 |
8 | 0.282 | 0.267 |
9 | 0.298 | 0.303 |
10 | 0.307 | 0.315 |
11 | 0.310 | 0.297 |
12 | 0.345 | 0.381 |
13 | 0.341 | 0.332 |
14 | 0.302 | 0.294 |
15 | 0.299 | 0.240 |
16 | 0.290 | 0.368 |
17 | 0.275 | 0.292 |
18 | 0.255 | 0.207 |
19 | 0.229 | 0.231 |
20 | 0.199 | 0.207 |
21 | 0.163 | 0.165 |
22 | 0.122 | 0.138 |
23 | 0.076 | 0.065 |
24 | 0.026 | 0.024 |
25 | 0 | 0 |
DOF Number | Flexibility Change | |
---|---|---|
No Noise | With Noise | |
1 | 0 | 0 |
2 | 0.023 | 0.028 |
3 | 0.046 | 0.048 |
4 | 0.068 | 0.057 |
5 | 0.088 | 0.085 |
6 | 0.108 | 0.115 |
7 | 0.125 | 0.135 |
8 | 0.140 | 0.133 |
9 | 0.153 | 0.156 |
10 | 0.162 | 0.167 |
11 | 0.169 | 0.162 |
12 | 0.194 | 0.214 |
13 | 0.194 | 0.189 |
14 | 0.169 | 0.165 |
15 | 0.163 | 0.130 |
16 | 0.154 | 0.196 |
17 | 0.144 | 0.163 |
18 | 0.154 | 0.133 |
19 | 0.169 | 0.169 |
20 | 0.183 | 0.197 |
21 | 0.196 | 0.205 |
22 | 0.209 | 0.224 |
23 | 0.222 | 0.221 |
24 | 0.234 | 0.238 |
25 | 0 | 0 |
Bar Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Internal force | 1.097 | 2.365 | 0.480 | 2.429 | 0.136 | 0.247 | 4.489 | 1.207 | 3.225 | 2.467 | 1.745 | 0.917 | 0.109 |
Bar number | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
Internal force | 0.515 | 0.000 | 2.021 | 4.253 | 1.687 | 1.317 | 5.796 | 0.618 | 3.366 | 0.166 | 0.260 | 0.541 | 1.497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Yang, Q.; Qin, F.; Sun, B. Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study. Coatings 2024, 14, 31. https://doi.org/10.3390/coatings14010031
Peng X, Yang Q, Qin F, Sun B. Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study. Coatings. 2024; 14(1):31. https://doi.org/10.3390/coatings14010031
Chicago/Turabian StylePeng, Xi, Qiuwei Yang, Fengjiang Qin, and Binxiang Sun. 2024. "Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study" Coatings 14, no. 1: 31. https://doi.org/10.3390/coatings14010031
APA StylePeng, X., Yang, Q., Qin, F., & Sun, B. (2024). Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study. Coatings, 14(1), 31. https://doi.org/10.3390/coatings14010031