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Abstract: Dust deposition poses a significant challenge in the implementation of photovoltaic panels
(PV) especially in hot and dusty environments, such as the Middle East and North Africa (MENA)
region. This issue leads to progressive degradation of PV efficiency and output power. In this context,
this research work aims to improve PV performance by developing self-cleaning sprays as a preven-
tative solution. Different concentrations of SnO2 and TiO2 nanoceramics were dispersed in isopropyl
alcohol solvent to reduce the mixture’s viscosity and facilitate smooth spraying on solar panels,
whose efficiency was continually assessed in outdoor conditions. Although less commonly used for
this application, the nano-SnO2 was selected for the purpose of enhancing the surface hydrophobicity,
whereas nano-TiO2 was included for its favorable photocatalytic properties. Polydimethylsiloxane
(PDMS) oil, known for its self-cleaning characteristic, was served as the base material in the devel-
oped sprays. The described blend of materials represents a novel combination. The results indicated
that 2.5% nano-SnO2 and 2.5% nano-TiO2 in PDMS oil enhanced efficiency by 5.4% compared to a
non-sprayed panel after five weeks of outdoor exposure. This efficiency gain was experimentally
justified and attributed to the spray’s ability to achieve a water contact angle (WCA) of 100.6◦, form-
ing a hydrophobic surface conducive to self-cleaning. Further characterization results, including
photocatalysis and zeta potential have been gathered and analyzed.

Keywords: solar photovoltaic (PV) cells; self-cleaning coatings; anti-soiling; hydrophobic surfaces;
polydimethylsiloxane (PDMS)

1. Introduction

The Middle East and North Africa (MENA) region holds a substantial amount of solar
potential with average radiation of 2000–3200 KWh/m2 of solar irradiance per year and
daily sunlight hours in the range 9–11 h [1–6]. Because of that, the utilization of solar
photovoltaic (PV) systems has been recently increasing. However, soiling, high ambient
temperatures, and shading act as factors that can adversely influence PV power output
and hence, efficiency [7,8]. Soiling refers to the accumulation of particles such as dust and
dirt. While the MENA region is the most prone to soiling and high temperatures due to
the presence of vast desert areas and arid climates [8], the likelihood of shading does not
necessarily depend on the geography of the location and it may result in mismatching,
preventing the operation of one or more cells of the module. Consequently, these cells
behave as a load, destroying the module [7].
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Soiling hinders the transmission of solar radiation through PV glass [7]. This happens
due to the ability of the dirt particles to scatter, absorb, or reflect incoming solar rays [9].
A study focusing on type of dust has shown that dust particles of lower size have greater
capability of PV performance degradation and that dust particles produced from cement
sources caused the largest power depletion relative to various investigated dust types [10].
For instance, Egypt among other countries was found to have cement dust as the most com-
mon dust in its atmosphere [11]. Besides, it has been proven that PV efficiency reduction
due to dust can reach up to 17.4% per month for panels installed in Egypt at 45◦ tilt an-
gle [12]. Furthermore, it was concluded that PV power could be reduced by 1.7% per g/m2

increase of dust accumulation on PV panels under the weather conditions of the UAE [6].
Moreover, in Adrar, Algeria, solar cells lost 29 to 32% of their efficiency after 6 months of
outdoor exposure [13]. European cities could be prone to PV dust accumulation as well.
For example, a study conducted in Kraków, Poland concluded that dust accumulation
could reach 277.0 mg/m2 on PV panels after a week of exposure [14]. In East China, a total
of 0.644 g/m2 was accumulated on PV modules within a week, resulting in 7.4% of weekly
power degradation [15].

High ambient temperatures, which is the second major problem facing PV perfor-
mance in North Africa and MENA region, it was discovered that each degree Celsius rise
in PV surface temperature reduces efficiency initially by 0.4%–0.5%, with an increasing
exponential rate with greater temperature rises [12]. Also, it was proven that there is a
direct correlation between the quantity of dust deposition to the rise in PV surface tempera-
ture [16]. This also extends to a possibility of surface damage, if not appropriately dealt
with [17].

PV cleaning approaches can be classified into manual, mechanical and chemical [18].
Mostly, these approaches, except the chemical method, implement the application of
brushes, which puts the panel glass health under potential risk [19]. Manual cleaning is
the most widespread, due to its simplicity and cost effectiveness [7]. Unfortunately, it
is labor intensive, time consuming and consumes significant amounts of water, which is
not environmentally friendly, contradicting the main objective of using solar panels [20].
Mechanical cleaning commonly involves wipers or brushes attached to a rod. Other
forms of mechanical cleaning may involve mechanical blowers that force dust away off
surfaces [21]. Mechanical cleaning systems could be robotic [22], the employed robots may
have built-in water tanks for more efficient water utilization [7,20]. However, in all cases
water cleaning utilizes energy and could negatively affect the surface quality of the panel
surfaces if brushes are used.

Chemical cleaning methods differ from other techniques by being preventative. Typ-
ically, the process mainly involves applying a self- cleaning coating on clean panel glass
before exposure to outdoor dust to influence its surface properties [23]. This method is ad-
vantageous relative to the other specified ones in terms of water consumption, mechanical
and/or electrical power requirements [24]. It relies on the physical and chemical properties
of material constituents involved in the prepared coating [22] and the function of the coating
ranges from being self- cleaning by collecting dust in forms easy to wash off, minimizing
dust accumulation through anti-static effect, promoting antireflection performance and
increasing photocatalytic effect, etc., with a number of commercial cleaning regenerating
sprays available in the market [9]. Often, nanoceramics are integrated to aid in attaining
the required self-cleaning effect [25].

Chemical self-cleaning coatings are categorized into hydrophobic and hydrophilic
coatings, depending upon their surface wettability [24,26]. Surface wettability describes
the tendency of a liquid to spread over a surface and is indicated by water contact angle
(WCA) [27]. If the resulting angle between the resting surface of a water droplet and
its tangent is less than 90◦, the water tends to spread on the surface, and it is classified
as hydrophilic. Whereas, when the WCA is greater than 90◦, the droplet tends to roll
over and the surface is known as hydrophobic [24,26]. This is due to the extremely low
adhesive properties of hydrophobic surfaces [22,28]. Therefore, liquid droplets tend to
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form spherical shapes, which provide them the capability to carry impurities along the
way as they leave tilted surfaces [21]. On the other hand, hydrophilic surfaces have lower
self-cleaning effectiveness, as water droplets do not have the strong tendency to slide away
with dust particles, but rather spread between them, resulting in a greater need for water
quantity and pressure to rinse impurities away [21,29]. The application of suitable coatings
has the ability to significantly decrease the cleaning frequency needed by solar cells [30]. In
this context the arid and dry weather of North Africa and MENA region creates additional
challenges resulting from rare rains and very limited raining periods.

Numerous researchers attempted to develop hydrophilic self-cleaning coatings for
solar PV applications. The larger body of the reported literature attempted to incorporate
nano-TiO2 for its photocatalytic action through solgel preparation procedure. An exper-
imental investigation was conducted to achieve antifogging and antimicrobial features
along with self-cleaning for the glass surfaces of solar panels to enhance their efficiency [31].
The final coating material involved nano-SiO2 & nano-TiO2 that achieved a marginal in-
crease in PV efficiency. Justifications include the coating being too thin or low outdoor
exposure. Coating characterization was performed by photocatalysis test, contact angle
measurement, SEM, FT-IR & UV-Vis spectroscopies. Another study attempted to dope
nitrogen into nano-TiO2, obtaining an increase in voltage up to 0.788 V after exposure to
dust, noting that the improvement increased with nitrogen concentration [32]. Moreover,
doping other materials, such as nickel, cadmium, molybdenum, bismuth, and strontium, in
nano-TiO2 had resulted in superhydrophilic coating of WCA below 5◦ [33].

As for reported investigations on hydrophobic coatings, SiO2 nanoparticles were the
most prominent. A thin film coating based on ammonia, as a catalyst, showed signifi-
cant increase in WCA [34]. The thin film was capable of increasing PV voltage by 20%
when uncatalyzed and by 40% when catalyzed. Under Middle Eastern/Egyptian climatic
conditions, Alamri et al. measured the performance of a 160 W PV panel covered with
a commercial hydrophobic coating constituting of SiO2 nanoparticles for 45 days and it
resulted in a 15% efficiency increase compared to an uncoated panel [25]. Nano-SnO2,
although uncommon, was used with silicone oil and successfully increased the WCA
of glass surface and its self-cleaning behavior [35]. This coating maintained the surface
hydrophobicity despite being subjected to repetitive peeling cycles. The development of
superhydrophobic coatings which are significant by larger WCA, as well as their inclu-
sion of hybrid nanoceramics usually of SiO2 and TiO2 resulted transparent anti-reflective
self-cleaning coatings characterized by high water contact angles greater than 150 and
a sliding angle of less than 10 with a micro-/nano-hierarchical structure that prevents
water and other dust particles from reaching the substrate [36], resulting from both the
superhydrophobic surface roughness and surface chemistry. The significant role of WCA
larger than 150 with approximate spherical shapes enables effective capture and removal
of dust [37].

Recently, polydimethylsiloxane (PDMS) oil was employed in several studies to as-
sess its self-cleaning ability. Syafiq et al. discovered a covalent bond between PDMS,
nano-calcium carbonate (CaCO3) and nano-TiO2 that resulted in a significant increase
in WCA [38]. In addition, the study assessed and validated the self-cleaning ability of
the coating by investigating the adherence of Methylene Blue (MB) solution to a coated
substrate, which was almost non-existent. Furthermore, McShea et al. attempted doping
various nanoceramics, each individually, in PDMS for medical hygienic applications [39].
and the results have revealed that all coatings exhibited satisfactory hydrophobicity with
SiO2-PDMS being the most hydrophobic and it was concluded that PDMS-doped TiO2
showed the highest self-cleaning behavior. Our team’s previous study [8] reported an
increase in PV efficiency by 14%–15%, as well as improvements in surface temperature
and the reported results obtained through different solar panels’ coating attempts included
coatings based on PDMS, which showed significant promising results [8]. The previous
study [8] focused on concept proving of the utilization of PDMS as the carrier fluid for the
coating, since the application of PDMS for solar coating was not reported before. However,



Coatings 2024, 14, 1239 4 of 13

the study lacked characterization of the prepared coating, therefore the current study aims
at further exploring the characteristics of PDMS- based coating, as well as the effect of
incorporating various nanoceramic particles in the self-cleaning sprays. This research
extends previous work with a more systematic approach in examining the development
of nanoparticle-based coatings to enhance the surface properties of solar panels. Several
previous studies have utilized nanoparticles to enhance the surface properties of solar
panels for self-cleaning, but most of them focused on nano-TiO2 and nano-SiO2.

This study employs advanced techniques and methodologies to explore the potential
benefits of nanoparticle-enhanced PDMS coatings. In this context, this research aims to
investigate the effects of materials like nano-SnO2 dispersed in PDMS, with and without
nano-TiO2, on the efficiency of PV solar panels. Additionally, the study examines the
performance of nano-TiO2 as the sole nanoparticle to determine whether it would be out-
performed by the presence of nano-SnO2. These materials were chosen for their promising
self-cleaning capabilities, as reported in previous literature. Sprays were developed instead
of conventional coatings to provide a user-friendly approach and pave the way for future
commercialization.

2. Materials and Methods
2.1. Materials

All materials were delivered by Nano Gate (Cairo, Egypt) and used without further
purification. The available SnO2 and TiO2 nanoceramic particles had spherical-like shapes
of an average size lower than 20 nm and 10 nm, respectively. Nano-SnO2 was selected for
its ability to enhance self-cleaning by increasing the surface roughness and thus, WCA [35].
In addition, it is chemically and thermally stable in outdoor environments and has adequate
optical transmission [40]. Nano-TiO2, although usually used for hydrophilic surfaces, was
included to benefit from its photocatalytic effect [41]. The utilized PDMS oil was of brand
LANXESS (Cologne, Germany). It is a viscous transparent fluid of 0.965 g/cm3 density
at 20 ◦C. PDMS is hydrophobic by nature and has a viscosity of 350 cSt. The purchased
isopropyl alcohol (2-Propanol) was of brand Sigma Aldrich (MO, St. Louis, MI, USA), and
99.99% purity. It is a colorless and volatile liquid of a molecular weight of 60.10 g/mol
and 0.785 g/cm3 density at 20 ◦C. Its melting and boiling points are −89 ◦C and 82.6 ◦C,
respectively. Moreover, PDMS is considered a superior candidate for this application due
to other economic and performance benefits [38–42]. Methylene Blue (MB) powder of 82%
concentration was employed in this study. It has a dark green appearance and a molecular
weight of 319.86 g/mol. The brand name was LOBA CHEMIE (Mumbai, India). The
bulk density of the powder ranges between 400–600 kg/m3 and it has a 50 g/L solubility.
The melting point of the powder pigment is 180 ◦C. This pigment was chosen in order
to validate the photocatalysis of the employed nanoparticles by studying their ability to
degrade it. For sterilization purposes, ethyl alcohol (Sigma Aldrich) of 100% concentration
and 46.07 g/mol molecular weight was used when necessary.

2.2. Preparation of Spray Material and Samples

In this study, four spray materials consisting mainly of PDMS solution, three of which
mixed with dispersed nanoceramics, were developed. Specifically, Spray 1 contained 5%
nano-SnO2, while Spray 2 contained 2.5% SnO2 and 2.5% TiO2, and Spray 3 had 5% TiO2.
While Spray 4 is the spray that did not include any nanoparticle with the PDMS solution.
For each of Sprays 1, 2 & 3, a beaker was rinsed with distilled water and disinfected. The
equivalent of the recorded weight percentage(s) of each spray was transferred to the beaker,
where 50 mL of isopropyl alcohol were added. Then, the described mixtures were exposed
for 20 min to probe sonication (brand sonics, one of VCX models, Newtown, CT, USA) at
room temperature and 5 min of ultrasonication (brand Jeio Tech, model UCP 10, Daejeon,
Republic of Korea) for additional homogenization. Next, PDMS oil was magnetically stirred
for 20 min with the obtained mixture on a 1:1 ratio. To form Spray 4, magnetic stirring of
isopropyl alcohol and PDMS was also conducted in a similar manner at a 1:1 ratio.
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10 mL of each produced spray material was sprayed homogeneously on a polycrys-
talline 5 W panel (ReneSola RS-SL5TU-18P-polycrystalline-260 mm × 220 mm × 18 mm)
of 0.0572 m2 area with maximum power 5 W with open circuit voltage of 22 V and max
current power of 0.27 A) and left for 24 h to dry. An unsprayed panel was included in
the experiment to aid in comparison. Also, three spray shots were applied on sterilized
76.2 × 24.4 mm2 glass substrates for characterization purposes.

2.3. Characterization

To investigate the surface wettability of the produced samples, the setup in Figure 1
was formed. A dropper was positioned above the substrate by a holder and two cameras
recording the front and top views of the released droplets. The holder was moved such
that several droplets hits different spots on the substrate to provide several readings for
average calculation.
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Figure 1. A schematic of the WCA measurement setup, where a dropper release drops at different
positions on the sprayed substrates and a camera captures a picture of the droplet before it hits the
substrate for initial diameter measurement.

The readings were collected by measuring the size of the droplet before hitting and
immediately after hitting the substrate surface to be substituted in Equation (1) [43] to
obtain the value of the contact angle.

d f = di × 3

√√√√ 8(
tan θ

2

)
×

(
3 + tan2 θ

2

) (1)

where d f is the droplet diameter after it hits the surface, di is the droplet diameter before
hitting the surface and θ is the contact angle.

Furthermore, to investigate the photocatalysis of the employed nanomaterials,
10−5 moles of MB powder were mixed with 1 L of water for the photocatalysis test. 100 mL
of the aqueous MB solution was magnetically stirred with 0.1 g of each nanoceramic for
2 h. Another mixture was made but with both nanoceramics combined, specifically, 0.05 g
each. The three samples were left in a dark compartment overnight, after which they were
exposed to UV radiation (350 nm–800 nm) in a photoreactor (Horus company). Samples
were withdrawn from the reactor according to pre-decided intervals, which were 0 min,
10 min, 30 min, 1 h, 2 h, 3 h, and 4 h. Finally, all the samples were tested for absorbance
using the spectrophotometer (accuracy +/−0.0015) to correlate the results to photocatalytic
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activity. It was noticed that the more degraded MB concentrations exhibited less absorbance
and greater photocatalytic effect.

Finally, Malvern nano series zeta sizer (Worcestershire, UK) was used to conduct
the zetapotential test for the purpose of determining the stability of the nanoparticles in
the samples.

2.4. Experimental Setup and Procedure

Individually, each panel was vertically placed facing a 400 V lab light source at a fixed
distance. The light source consisted of twenty-one tungsten halogen lamps of 400 W that
provided light of wavelength range 350 nm–2500 nm. PROVA 1011 PV system analyzer
(New Taipei City, Taiwan) was connected to the panel through cables. The readings of
the PV parameters from the analyzer were gathered directly after 2 min of light exposure
to ensure power generation. After collecting the first set of readings, the panels were
placed outdoors under real operating Egyptian conditions at 30◦ tilt angle. The second set
of readings were gathered after dust accumulation through the described experimental
setup over a course of about a month. The panel energy efficiency was calculated using
Equation (2).

η =
Pmax

A × I
× 100 (2)

where η is the electrical energy efficiency, Pmax is the maximum power in watt, A is the
solar panel area and I is the irradiance in w/m2.

3. Results and Discussion
3.1. Apperance of PDMS-Based Coatings

After the sprayed substrates were left to dry, the appearance of the coatings was ob-
served. The substrates covered with PDMS-SnO2 coating exhibited a brownish-appearance
due to the brown color of the SnO2 nanoparticles. The substrates coated with both SnO2
and TiO2 nanoparticles had a light brown surface, as half the nanoparticle concentration
was SnO2 and the other half was white TiO2, resulting in a lighter mix of colors and
more transparency. The spray with TiO2 as the sole nanoparticle resulted in a whitish-
semi-transparent surface. As expected, spraying PDMS without nanoparticles gave the
substrate a shiny transparent look. The substrates with nanomaterials induced a slightly
rough shape.

3.2. Water Contact Angle (WCA)

Table 1 lists the calculated WCAs using the measured droplet diameters. As expected,
all WCAs of substrates covered with nanoceramic-based sprays are categorized as hy-
drophobic. Typically, the bare glass showed a hydrophilic surface of a 15.26◦ WCA. Despite
being known as a hydrophobic oil, PDMS (without nanoparticles), resulted in a WCA of
80.82◦. This is due to being stirred with isopropyl alcohol solvent prior spraying. However,
the WCA was improved to 115.9◦ by the addition of 5% nano-SnO2. This is attributed to
the ability of nano-SnO2 to increase surface roughness and hence, reduce wettability [35].
On the other hand, the presence of 5% nano-TiO2 caused a WCA of 94.23◦. This increase
is justified by the roughness added by the nanoparticles, however, it is not as high as the
value resulting from the addition of nano-SnO2, because TiO2 is known to photo-induce
hydrophilicity [31]. A reasonable WCA of 100.6◦ was achieved when both nanoceramics
were involved, each contributing to its effect on surface properties. Each reported WCA
value is the average of at least three droplets’ measurements.
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Table 1. Measured droplet diameters and calculated contact angles.

Substrate
No.

Materials in
Spray

Initial Diameter
(mm)

Equilibrium
Diameter (mm)

Calculated Contact
Angle (◦)

1 PDMS + SnO2 4.44 4.29 115.9

2 PDMS + SnO2 +
TiO2

4.5 5.14 100.6

3 PDMS + TiO2 4.36 5.29 94.23

4 PDMS 4.29 5.81 81.45

5 None 4.67 12.63 15.26

3.3. Photocatalysis

Absorbance tests by UV-Vis-NIR spectrophotometer were applied on the extracted
MB samples to easily indicate the level of degradation experienced by the dye. The lower
the absorbance value, the less presence of MB, meaning that degradation had occurred,
and the utilized nanomaterial is photocatalytic. The employed nano-TiO2 showed high
photocatalytic behavior, as the longer the MB solution samples were exposed to UV ra-
diation, the greater the experienced degradation by MB. This is revealed by the chart in
Figure 2, as the absorption values continued to decrease, the longer the samples were
exposed to UV radiation. For instance, the MB solution sample that was exposed to UV
radiation for 4 h showed the lowest absorbance values by being at the bottom of all curves.
On the other hand, the MB samples mixed with nano-SnO2 (see Figure 3) showed very
slight change in absorbance values in the wavelength range 580–675 nm, indicating little
photocatalytic effect.

When both nano-TiO2 & nano-SnO2 were mixed with MB, a photocatalytic behavior,
as displayed by Figure 4, had resulted but not to the significant extent as when only the
nano-TiO2 was present. This is owed to reducing the amount of nano-TiO2 to half the
amount relative to the first situation, and replacing it by nano-SnO2. Thus, a moderate
photocatalytic effect had resulted. As evidenced by Figure 4, the peak absorbance of this
sample after 4 h was 0.255, whereas, when TiO2 was the only present nanoceramic, no peak
was identified, as the absorbance value approached 0, as shown by Figure 2.
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3.4. Zeta Potential

Table 2 records the mean zeta potential values of the dispersed nanoceramics in each
of the three sprays that contained nanomaterial(s). Note that all values are under −20 mV,
namely: 0.626, 0.366 and 1.62 mV, respectively, for SnO2, SnO2 + TiO2 and TiO2 containing
PDMS + isopropane solutions. These values (close to zero) suggest that the particles are
prone to aggregation [44], as a stable and homogenous mixture of suspended particles
would have a minimum zeta potential value of ±30 mV [45,46]. However, this opens the
doors to investigate whether the stability levels would be improved if lower concentra-
tions of nanoparticles were dispersed in the mixture, or if a pretreatment process to the
nanoparticles would be beneficial, etc. Besides, attempting to enhance the homogenization
of these particles through altering the preparation process may provide more satisfactory
zeta potential values [46].
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Table 2. Zeta potential test results of the various nanoparticles solutions containing PDMS + iso-
propane.

Type of Nanoceramic in Sample Zeta Potential Value (mV)

5% SnO2 +0.626

2.5% SnO2 + 2.5% TiO2 +0.366

5% TiO2 +1.62

3.5. PV Efficiency

Figure 5 exhibits the electrical energy efficiency curves of the test panels. Overall,
the electrical energy efficiencies of the panels decline with time, probably due to the
accumulated dust, during the experiment’s timeframe. The role of dust on impairing
light rays from being received by the solar cells and rise in surface temperature have
been shown [8]. The panels sprayed with PDMS & nano-SnO2 and with PDMS & TiO2
interchange between the 2nd and 3rd highest achieved electrical energy efficiency level.
As indicated by the discussed characterization results, spray 1 (PDMS + SnO2) results in
greater WCA than that of Spray 3 (PDMS + TiO2), therefore, it is expected to be more likely
to slide deposited dirt or dust than panel 3. However, Spray 3 has shown a significantly
greater photocatalytic behavior and hence, it is the most capable of degrading dirt. It is
believed that the described superiority of each of the two sprays has caused results that are
close to each other. Combining both nanomaterials to simultaneously make use of their
advantageous features resulted in the overall greatest efficiency level, such that the surface
is both sufficiently hydrophobic and photocatalytic. From previously obtained data, this
panel has a WCA of 100.6◦, allowing a satisfactory slippage of dust and dirt, as well as
its degradation. On the other hand, during approximately half the experimental period,
the panel sprayed with only PDMS showed the lowest efficiency values and then crossed
with the efficiency curve of the non-sprayed panel to become the second lowest curve. This
implies that the spray may have to carry a nanoceramic to positively impact PV efficiency.
The non-sprayed panel produced the lowest efficiency, probably because it accumulated
more dust over time relative to the rest of the panels that were under the effects of the
investigated surface-enhancing materials [41,47–49].
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Finally, this work has reported new findings regarding the application of transparent
PDMS- based nanoceramic composite coating. The aim of the work was to investigate
the role of using PDMS as the main fluid carrier for producing superhydrophobic self-
cleaning coating for solar cells. Previous work [41,47–49] has emphasized the significance
of using transparent self-cleaning coatings in the glass panel application especially for the
photovoltaic (PV) panel industry. This work has investigated the application of PDMS with
and without SnO2 and/or TiO2 nanoparticles to examine their self-cleaning behavior on the
performance of PV panels. This was achieved by sonicating the mentioned nanoparticles
in a solvent to be magnetically stirred with PDMS oil. The mixture was sprayed onto
solar cells that were exposed to outdoor conditions. Efficiencies of the employed solar
cells were observed several times during the experiment. For interpretational reasons, the
WCA of the sprays, photocatalysis and zeta potential of the nanomaterials were studied.
The superior performance of the nanoparticles-based sprays when compared with sprays
without nanoparticles indicated that the presence of the utilized nanoparticles in the spray
is essential for the providence of an instant positive effect [41,47–49]. The spray that
includes a mixture of both nano-TiO2 and nano-SnO2 was found to be highly beneficial,
achieving higher performance compared to sprays with individual types of nanoparticles.
This was particularly evident for solar panels installed in highly dust-prone regions. The
obtained results suggest that the nanoparticles-based sprays are expected to reduce the
need for cleaning solar PV panels for over a month while maintaining higher performance
levels compared to those without sprays.

At this stage it is worth mentioning that the use of PDMS for PV self-cleaning coating
applications has only been explored recently. While a significant number of publications of
PDMS applications for coating surfaces for biomedical applications appear in literature, few
research articles focus on PV applications [8,38,39,41,42,47–52]. Since the most significant
characteristics defining superhydrophobic coatings are their water contact angles greater
than 150 and a sliding angle of less than 10 [36], this work paid special attention to the WCA
measurement relevant to other reported work. The developed transparent coating material
(in this work) exhibited WCAs in the range 94–116◦, with electrical energy efficiency in
the range of 12.75%–15.3%. It was shown by previous work that WCA around 155.1◦ [47]
and 103.9◦ [48] were verified for superhydrophobic self-cleaning PDMS-based coatings,
123◦ for PDMS/SiO2 nanocoating [49], while others [41] reported WCAs around 154◦, from
74.8◦ to 135.58◦ [50], 144.15◦ by using ZnO as the ceramic additive [51] and 158.41 ± 1.58◦

with 4◦ sliding angle [52]. Using hexamethyldisilazane-modified silica [47] antireflective
buffer layer and an epoxy modified silicone/fumed silica superhydrophobic surface layer
exhibited a coating with a transmittance 4.3% higher than the bare glass and achieving a
static water contact angle of 155.1◦ and a sliding angle of 0.1◦. Electrical energy efficiency
(13.7%) was reported for nano PDMS-coated panels with an increase mounting to 30.7%
higher than the reference panel was reported [49]. Thus, it is shown that the developed
transparent coating material (in this work) has WCAs values within the range of values
reported in literature.

This work opens the door for further research on some important topics aiming at
optimizing the spray composition. The selection of the polymeric- based fluid carrier for
manufacturing the self- cleaning coatings has been investigated by researchers and recently,
the application of PDMS has been explored, based on its superior surface properties in
other applications [8]. However, modifying the PDMS structure to integrate anti-reflection,
antistatic, photocatalytic, etc. properties is still open for investigations. Also, in this work
since the simultaneous presence of nano-SnO2 and nano-TiO2 in PDMS exhibited the best
efficiency relative to the rest of the applied sprays, it is worth investigating the optimal
concentrations for each of them. This could be accomplished by varying the concentration
percentage of each and determining which results in the most desirable PV efficiency.
Furthermore, it would be beneficial to observe the PV efficiency for longer than 5 weeks
to specify the time at which the panels should be cleaned and resprayed. Also, some
reported results from a study that simulated the thermal behavior of PV systems showing
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that the adoption of PDMS and PET coatings with 200 µm film thickness coatings slightly
improve the temperature reductions by up to 1.15 ◦C in the case of PET and 1.35 ◦C in
the case of PDMS [53] calls for designing some tests including temperature measurements.
Finally, real- life implementation in urban and rural areas need more emphasis in future
studies [54,55].

4. Conclusions

The following conclusions present the main findings of this work:

(1) The addition of SnO2 and/or TiO2 nanoparticles to PDMS oil- spray increase the
hydrophobicity of the sprayed surfaces, as evidenced by the increased (94–116) contact
angles obtained. The spray with a mixture of both nano-TiO2 and nano-SnO2 resulted
the highest energy efficiency and performance compared to sprays with individual
types of nanoparticles. This contributes to the self-cleaning effect of the nanoparticle-
based sprays, especially in highly dust-prone regions.

(2) However, mixtures or dispersions of either nano-TiO2 or nano-SnO2 alone could be
sufficient, providing acceptable performance and thus can be utilized in less dusty
environments.

(3) The strong photocatalytic characteristics of TiO2 played a significant role in achieving
a self-cleaning effect, as observed from the energy efficiency results, thereby reducing
PV efficiency degradation.
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10. Adıgüzel, E.; Özer, E.; Akgündoğdu, A.; Yılmaz, A.E. Prediction of dust particle size effect on efficiency of photovoltaic modules
with ANFIS: An experimental study in Aegean region, Turkey. Sol. Energy 2019, 177, 690–702. [CrossRef]

11. El-Sybaee, I.M.; El-Keway, A.A.; Elmeadawy, M.I.; Abdel-Maksoud, M.A. Study the effect of dust deposition on solar photovoltaic
and solar radiation. Misr J. Agric. Eng. 2018, 35, 1397–1408. [CrossRef]

12. Tanesab, J.; Parlevliet, D.; Whale, J.; Urmee, T.; Pryor, T. The contribution of dust to performance degradation of PV modules in a
temperate climate zone. Sol. Energy 2015, 120, 147–157. [CrossRef]

13. Mostefaoui, M.; Ziane, A.; Bouraiou, A.; Khelifi, S. Effect of sand dust accumulation on photovoltaic performance in the Saharan
environment: Southern Algeria (Adrar). Environ. Sci. Pollut. Res. 2019, 26, 259–268. [CrossRef] [PubMed]
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