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Abstract: Currently, fast-melting SBS (Styrene-Butadiene-Styrene)-modified asphalt is widely used
in pavements. However, in practical applications, complex environmental factors accelerate the
deterioration of asphalt material properties, significantly affecting the service life of roads during
their operational period. This study aims to examine the effects of complex environmental factors,
including thermal oxidation, ultraviolet radiation, and various concentrations of salt solutions, on the
high and low-temperature rheological properties of fast-melting SBS-modified asphalt (abbreviated
as SBS-T-modified asphalt). Pressure aging–ultraviolet aging coupling and pressure aging–ultraviolet
aging different concentration salt solution coupling were selected as the aging groups to simulate
complex environmental conditions. Additionally, base asphalt and pressure-aged asphalt were
used as control groups. The rheological properties of SBS-T-modified asphalt were evaluated using
a dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results indicate that
multiple-factor coupling aging reduces both the high-temperature and low-temperature performance
of SBS-T-modified asphalt compared to single-factor aging, although the impact on rheological
properties is not consistent across all conditions. After the combined effects of UV aging and pressure
aging, the rutting resistance and high-temperature performance of SBS-T-modified asphalt are most
severely impacted. However, when coupled with salt-solution aging, the rutting resistance of SBS-
T-modified asphalt improves, with the complex modulus increasing by approximately 30%. This
indicates that the presence of the salt solution enhances the high-temperature performance of the
asphalt. An analysis of the low-temperature rheological properties of SBS-T-modified asphalt based
on Burgers model shows that the low-temperature rheological performance of SBS-T-modified asphalt
worsens under three-factor coupling aging compared to two-factor or single-factor aging, leading
to poorer crack resistance. Notably, after adding salt solutions, the thermal sensitivity of SBS-T-
modified asphalt increases significantly, with the ∆Tc value decreasing approximately sixfold for
every 2% increase in salt concentration.

Keywords: fast-melting SBS-modified asphalt; coupled aging; high-temperature performance;
low-temperature performance; Burgers model

1. Introduction

Over the long-term use of asphalt pavements, various types of distresses such as
cracking, pumping, raveling, and delamination occur on road surfaces due to the influence
of temperature, sunlight, water, and vehicle loads, ultimately affecting the service life of the
asphalt pavement. Modifying asphalt is one of the key methods to enhance asphalt perfor-
mance and improve the service quality of asphalt pavements, with SBS block copolymers
being effective in improving both the low-temperature and high-temperature performance
of asphalt, and their mechanical properties in complex environments directly affect the
mechanical properties of asphalt concrete and road performance [1]. As a material with
excellent high- and low-temperature properties, SBS-modified asphalt, prepared using

Coatings 2024, 14, 1241. https://doi.org/10.3390/coatings14101241 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings14101241
https://doi.org/10.3390/coatings14101241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings14101241
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings14101241?type=check_update&version=1


Coatings 2024, 14, 1241 2 of 20

dry-process modification techniques, has been widely used in pavement construction and
maintenance, differing from traditional wet-process modification techniques. The dry
process eliminates the processing steps in the modified asphalt plant by separating the use
of the modifier and the base asphalt, with the SBS modifier being directly added to the
mixing drum. This process consumes significantly less energy than the wet process used to
produce the same amount of modified asphalt. Some researchers have explored the road
performance of dry-process direct-addition SBS modifiers and analyzed various test results,
showing that the technical requirements of direct-addition SBS-modified asphalt meet the
standard specifications, with certain performance indicators even outperforming those
of the wet-process method [2]. However, the study did not further take into account the
impact of aging factors. Asphalt aging is a progress; an essential characteristic of asphalt
pavements is their resistance to cracking induced by thermal shrinkage during temperature
reductions or by the repeated action of traffic loads, typically exacerbated by ageing. De-
creasing air and pavement temperatures lead to the development of tensile stresses within
the asphalt mixture. Owing to bitumen’s intrinsic viscoelastic properties, it possesses the
ability to relax and thereby reduce these tensile stresses over time. The tive process and
its rate of development significantly impacts the service life of pavements. The essence
of asphalt aging lies in the chemical structural changes of various compounds within the
asphalt, which result in an increased solubility parameter difference between asphaltenes
and maltenes. This leads to reduced compatibility between these components, ultimately
manifesting as a decline in the performance of asphalt in road applications [3]. The addition
of an SBS modifier significantly enhances the high- and low-temperature performance of
asphalt and is, therefore, widely applied in engineering practice. However, after aging, the
unsaturated double bonds in the SBS modifier can easily degrade, leading to a significant
reduction in performance [4]. In addition, SBS-T-modified asphalt exhibits different perfor-
mance characteristics depending on the temperature and loading duration. Under high
temperatures and slow-moving loads, it behaves as a purely viscous material, making it
prone to plastic deformation and rutting. At low temperatures and high loading rates, it
behaves elastically but eventually becomes brittle, leading to low-temperature cracking [5].
The issues of high-temperature rutting and low-temperature cracking in asphalt pavements
are primarily related to the rheological properties of asphalt. These characteristics must be
evaluated and described using appropriate technical indicators [6,7]. Some researchers have
studied the low-temperature performance of different types of asphalt using the Bending
Beam Rheometer (BBR) test and fitted the BBR creep stiffness curves and master stiffness
curves with the Burgers model equation. The results demonstrated that the Burgers model
equation can effectively fit both the BBR creep stiffness curves and the master stiffness
curves [8]. Therefore, this study also utilizes the Burgers model to conduct a more in-depth
investigation into the low-temperature performance of modified asphalt. In conclusion,
researchers from various countries have proposed different optimization indicators based
on the rheological and mechanical properties of asphalt, resulting in varying evaluation
outcomes and differing applicability. These indicators still have certain limitations and
inapplicability in evaluating the high- and low-temperature performance of asphalt [9].
Most researchers use a dynamic shear rheometer (DSR) and bending beam rheometer
(BBR) to study the rheological properties of modified asphalt. However, the research on
the high- and low-temperature rheological performance of SBS-T-modified asphalt under
different coupled aging conditions is still not thorough enough. Therefore, it is necessary
to investigate the impact of coupled aging on the rheological properties of dry-process
SBS-modified asphalt.

Laboratory aging simulation tests can more precisely control test conditions and
accelerate the aging process, making them a common method for evaluating asphalt
aging characteristics [10]. Researchers use the rolling thin-film oven test (RTFOT) to
simulate short-term aging and the pressure aging vessel (PAV) test to simulate long-term
aging in order to study the molecular weight changes of SBS-modified asphalt before
and after aging [11]. However, due to the absence of ultraviolet radiation and the effects
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of water, these test conditions cannot fully replicate the actual pavement environment,
which is relatively complex. For example, water acts as a medium that accelerates asphalt
aging under the combined effects of time, heat, oxygen, and sunlight. Traxler [12] listed
15 factors contributing to asphalt aging and found that water accelerates asphalt aging
under the combined effects of time and sunlight. Moreover, the water that comes into
contact with asphalt pavement in the natural environment is not pure water. Salts are
often used to melt snow and ice on pavements, and the resulting salt solutions can damage
the asphalt pavement. The intrusion of moisture accelerates the deterioration of asphalt
material performance, making it a significant factor affecting asphalt properties [13,14].
However, research in this area is relatively lacking, creating a situation where it has a
substantial impact but remains underexplored. Roads and sidewalks in coastal areas are
generally paved with asphalt materials, and the air, rain, and sea fog in these areas contain
sea salt components, which can severely affect the performance and lifespan of asphalt
pavements [15–17]. Behnam and others conducted experimental research on the impact of
dynamic saltwater erosion on asphalt performance under freeze–thaw cycle conditions and
found that salt is a significant factor contributing to asphalt deterioration [18]. Therefore, it
is necessary to consider the effects of salt environments on asphalt aging. Wang believes
that ultraviolet radiation is also a major cause of asphalt aging, leading to decreased fatigue
resistance, increased creep stiffness, and reduced failure strain [19]. Therefore, the issue of
photo-oxidative aging has garnered significant attention from many researchers. Studies
have confirmed that light strongly accelerates the process of oxidative degradation [20].
Ultraviolet radiation is an essential factor in studying asphalt durability, and combining
photo-oxidative aging with thermo-oxidative aging provides a better simulation of the
aging phenomena occurring in asphalt during service [21]. Additionally, Bian introduced
water molecules into the PAV test to study asphalt degradation [22]. The main forms of
asphalt aging include oxidation, volatilization, natural hardening, and seepage hardening.
The primary factors affecting aging are temperature, oxygen, light, dissolution, and damage
fatigue over time, with aging often resulting from the combined effects of these factors [23].
Previous studies have mostly considered the impact of a single aging factor on asphalt
without taking into account the coupled effects of multiple factors. This study, however,
couples pressure aging, ultraviolet aging, and salt solution aging to explore the performance
changes of dry-process SBS-modified asphalt under complex environmental conditions.

The primary objective of this study is to investigate the effects of pressure–ultraviolet-
coupled aging and pressure–ultraviolet–salt solution three-factor coupled aging on the high-
and low-temperature performance of dry-process SBS-modified asphalt. Based on short-
term aging, this study employs a pressure aging vessel and an indoor accelerated ultraviolet
aging test chamber to age dry-process SBS-modified asphalt. The performance changes
of the dry-process SBS-modified asphalt under complex environmental conditions are
revealed through dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests.

2. Materials and Methods

Figure 1 is a flowchart.
This is the specific test technology roadmap of this article.

2.1. Materials

The base asphalt used in this experiment was supplied by Beijing Guolu Hi-Tech
Engineering Technology Research Institute Co., Ltd. (Beijing, China). The main indicators
were tested according to the “Standard Test Methods of Bitumen and Bituminous Mixtures
for Highway Engineering” (JTG E20-2011 [24]), with specific test results shown in Table 1.
The SBS-T polymer modifier (referred to as SBS-T in this paper) used to prepare polymer-
modified asphalt was also provided by the Beijing Guolu Hi-Tech Engineering Technology
Research Institute Co., Ltd., and its physical appearance is shown in Figure 2, with the
technical indicators listed in Table 2.
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Table 2. Technical indexes of the SBS-T.

Indexes Results

Appearance (Green particles) -
Mass of a single particle (g) 0.25

Ash (%) 0.42
Dispersion of dry mixing No particle residue

2.2. Preparation of Fast-Melting SBS-Modified Asphalt

Ordinary 70# road petroleum asphalt was modified by adding SBS-T rapid-dissolution
type modifier. When the dosage exceeds 4%, the asphalt can meet the technical speci-
fications for modified asphalt required in construction standards [25], and in practical
applications, a 4% dosage is typically used. Therefore, this study employed a 4% SBS-T
dosage. The base asphalt was heated to 180 ◦C and stirred, while the predetermined
amount of SBS-T was added gradually at a rate of 800 r/min, ensuring that all SBS-T was
added within 2 min. The SBS-T was introduced in small, multiple increments to ensure
even mixing and avoid clumping. After fully incorporating the SBS-T, the temperature was
maintained between 180–190 ◦C, and the shearing machine was set to a speed of 5000 r/min
for 40 min to produce SBS-T-modified asphalt. We conducted penetration, softening point,
and ductility tests on SBS-T-modified asphalt according to the specifications. This article
tests the ductility of asphalt at 5 ◦C, with a tensile speed of 1 cm/min. The three major
indicators of the three types of asphalt obtained are shown in Table 3.

Table 3. Basic properties of SBS-T-modified asphalt.

Items Results Test Methods

Penetration (25 ◦C, 0.1 mm) 79 T0604-2011
Softening point (◦C) 66 T0606-2011
Ductility (5 ◦C, cm) 36.2 T0625-2011

2.3. Preparation of Salt Solutions

Sodium chloride (NaCl) was used as the compound to simulate the salt environment.
Salt solutions with concentrations of 6%, 8%, and 10% were prepared using sodium chloride
crystals. The technical specifications for the sodium chloride reagent conform to Chinese
standards (GB/T 1266-2006 and GB/T 9853-2008). These different concentrations of salt
solutions were used to simulate the effects of varying amounts of deicing salt on the
performance of SBS-T-modified asphalt.

2.4. Experimental Methods
2.4.1. Aging Process Simulation

Before studying the coupled aging of asphalt, the short-term aging of the asphalt
during mixing, transportation, and paving was first simulated using the rolling thin-film
oven test (RTFOT). After short-term aging, the SBS-T-modified asphalt samples were placed
in a pressure aging vessel (PAV) to simulate long-term aging. Subsequently, the long-term
aged samples were subjected to ultraviolet aging in a UV aging test chamber, simulating
the combined effects of thermo-oxidative and UV aging. As shown in Figure 3, the UV
aging test chamber is equipped with a high-pressure mercury lamp, rated at 1 kW, with a
UV wavelength of 350 nm. The sample was placed 50 cm away from the light source, and
the UV radiation intensity, measured using a UV photometer, was 150 w/m2. The internal
temperature of the UV aging chamber was set to 45 ◦C. Most scholars, both domestically
and internationally, use an aging period of less than 15 days for UV aging [26–28]. Based
on the relevant literature, this study selected a UV exposure time of 7 days. Additionally,
to introduce the effects of a salt environment, a predetermined amount of prepared salt
solution was sprayed onto the asphalt surface daily during UV aging.
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2.4.2. Dynamic Shear Rheometer Test

To evaluate the rheological properties of asphalt under specific temperatures and
external force conditions, the American Superpave asphalt binder specification employs
the dynamic shear rheometer (DSR) test. This study used the DSR to conduct temperature
sweep tests and multiple stress creep recovery (MSCR) tests to investigate the effects of dif-
ferent temperatures and aging conditions on the high-temperature rheological performance
of SBS-T-modified asphalt.

The temperature sweep was performed under a strain-controlled mode, with a strain
setting of 8%, a frequency of 10 rad/s, and a temperature range from 52 ◦C to 82 ◦C, with a
temperature gradient of 6 ◦C.

The MSCR test, developed to evaluate the elastic recovery capacity of asphalt binder,
addresses the shortcomings of the original evaluation system. According to AASHTO
MP19-10, the MSCR test was conducted on aged asphalt at 58 ◦C and 64 ◦C. The MSCR
test provides data on the non-recoverable creep compliance (Jnr), the percent recovery (R),
and the stress sensitivity index under different stress levels. The specific formulas for these
calculations are provided in Equations (1)–(3):

Jnr =
γp

τ
(1)

R =
γp − γnr

γp − γ0
× 100% (2)

Jnrdi f f =
Jnr3.2 − Jnr0.1

Jnr0.1
× 100% (3)

where γp is the peak strain, γnr is the residual strain, γ0 is the initial strain, and τ is the
stress. The average values of R and Jnr over 10 cycles at stress levels of 0.1 kPa and 3.2 kPa
were calculated.

2.4.3. Bending Beam Rheometer Test

The low-temperature performance of aged SBS-T-modified asphalt was measured
using the bending beam rheometer (BBR) according to ASTM D6648 and AASHTO T313
standards. The beam specimen dimensions were 127 mm × 6.35 mm × 12.7 mm, and
a load of 0.980 N was applied for 240 s. The creep stiffness (S) and creep rate (m) were
measured at −6 ◦C, −12 ◦C, and −18 ◦C to evaluate the low-temperature performance of
SBS-T. Typically, the 60 s stiffness modulus (S) and creep rate (m) are used for evaluation in
practical applications. The ∆Tc value was calculated using Equation (4) to analyze the low-
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temperature cracking resistance of the asphalt. Additionally, the low-temperature creep
compliance curve was fitted using the Burgers model, and a low-temperature viscoelastic
evaluation index for asphalt was established. Through mathematical derivation, such as
Laplace transformation, the Burgers model creep equation can be obtained as shown in
Equation (5). Dividing both sides of Equation (5) by stress σ yields the Burgers model creep
compliance Equation (6), where creep compliance is the inverse of creep stiffness.

∆Tc = Tc,s − Tc,m (4)

where Tc,s is the critical temperature (s = 300 MPa) and Tc,m is the critical temperature
(m = 0.3).

ε(t) = σ[
1

E1
+

1
η1

t +
1

E2
(1 − e−

E2
η2

t
)] (5)

J(t) =
1

S(t)
=

ε(t)
σ

=
1

E1
+

1
η1

t +
1

E2
(1 − e−

E2
η2

t
) (6)

where ε(t) is the strain at time t; σ is the creep stress in MPa; t is the loading time in seconds;
E1 and E2 are the instantaneous elastic modulus of the Maxwell model and the delayed
elastic modulus of the Kelvin model, respectively, in MPa; η1 and η2 are the instantaneous
damping coefficient of the Maxwell model and the delayed damping coefficient of the
Kelvin model, respectively, in MPa·s; J(t) is the creep compliance at time t in MPa−1; and
S(t) is the creep stiffness at time t in MPa.

3. Results and Discussion
3.1. High-Temperature Characteristics
3.1.1. Temperature Sweep Test

The complex shear modulus G*, also known as the complex modulus, is an indicator
of the high-temperature rheological properties of asphalt. The higher the value, the stronger
the asphalt’s resistance to deformation. The phase angle δ represents the lag in strain under
external stress; a larger phase angle indicates an increase in viscous components, which
can lead to greater irreversible deformation in the asphalt [29,30]. Temperature sweep tests
were conducted on aged asphalt samples, and the variations in complex modulus G* and
phase angle δ with temperature for different asphalt samples are shown in Figures 4 and 5.
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As the temperature increases, the complex modulus of all asphalt samples gradually
decreases, while the phase angle increases. This indicates that as the asphalt softens
with heating, its rheological behavior transitions from elastic to viscous. Under the same
temperature and aging conditions, the complex modulus of SBS-T-modified asphalt is
consistently higher than that of 70# base asphalt, while the phase angle is consistently
lower, indicating that the dry-process SBS modifier improves the asphalt’s resistance to
deformation. The complex modulus of SBS-T-modified asphalt after pressure and UV-
coupled aging is higher than that after single-factor (PAV) aging, with the opposite trend
observed for the phase angle, indicating that these two factors combined accelerate asphalt
aging. As the temperature increases, the asphalt exhibits typical two-point plastic flow,
making it more prone to high-temperature rutting. After the addition of the salt solution
factor, the complex modulus increases, and the phase angle decreases under the combined
effects of pressure, UV, and salt solution, indicating that for salt-eroded asphalt samples,
the viscous components decrease, while the elastic components increase, thereby enhancing
the elastic.

The rutting factor (G*/sinδ) is an indicator used to characterize the deformation
resistance of asphalt at high temperatures. A higher rutting factor indicates less flow
deformation and stronger deformation resistance. The test results for the rutting factor of
different asphalt samples are shown in Figure 6. From Figure 6, it can be observed that
as the temperature increases, the rutting factor of the asphalt tends to decrease. Higher
temperatures cause the asphalt to soften, leading to increased viscosity and thus, reduced
deformation resistance.

For SBS-T-modified asphalt samples, the rutting factor after combined pressure and
UV aging is significantly lower than that after pressure aging alone, indicating that the
combination of these two aging factors reduces the asphalt’s high-temperature deformation
resistance. This reduction occurs because pressure aging causes a significant increase in the
elastic components of the asphalt and a corresponding decrease in its viscous components.
UV aging further exacerbates this by reducing the light fractions in the asphalt and increas-
ing the heavy fractions, leading to asphalt hardening. Additionally, after UV aging, SBS
molecules tend to interact with oxygen molecules to form hydroperoxides. These hydroper-
oxides, upon absorbing UV light, can induce further photo-oxidative reactions, leading to
the photodegradation of asphalt components and polymers [31,32]. The combined effects
of these two aging factors accelerate the aging of SBS-T-modified asphalt, reducing its
high-temperature performance.
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However, when the salt solution aging factor is added to this combination, the rutting
factor of the modified asphalt after three-factor coupled aging becomes larger than that after
pressure and UV aging alone. This suggests that the presence of the salt solution enhances
the rutting resistance of the asphalt and improves its high-temperature performance.

3.1.2. Multiple Stress Creep and Recovery (MSCR) Test

The MSCR parameters R and Jnr are critical indicators of the asphalt’s rutting resis-
tance [33]. A lower Jnr and a higher R indicate stronger rutting resistance in the asphalt.
The calculated Jnr and R values for different asphalt samples are shown in Figures 7 and 8.
From these figures, it is evident that as the temperature increases, the non-recoverable creep
compliance (Jnr) of the six asphalt samples increases significantly, while the recovery rate
(R) decreases. This indicates that higher temperatures lead to greater residual deformation
and reduced rutting resistance in the asphalt. Under the same temperature and aging
conditions, the R values of the SBS-T-modified asphalt are significantly higher than those
of the 70# base asphalt, and the Jnr values are lower, indicating that the addition of the
SBS-T modifier substantially increases the elastic component of the asphalt. As a result, the
SBS-T-modified asphalt exhibits less permanent plastic deformation under external forces,
allowing it to better withstand traffic loads.
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Compared to pressure aging alone, the Jnr of SBS-T-modified asphalt increases sig-
nificantly after combined pressure and UV aging, while the recovery rate (R) decreases.
This suggests that the combined aging factors rapidly reduce the asphalt’s elastic recovery
capacity, rendering the elastic recovery effect of aging ineffective. However, when salt
solution aging is added to the mix, the R of the SBS-T-modified asphalt increases while Jnr
decreases, indicating that salt solution aging improves the high-temperature performance
of SBS-T-modified asphalt. Under the same aging factors, as the concentration of the salt
solution increases, Jnr increases and R decreases, indicating that the asphalt’s elastic defor-
mation capacity deteriorates, and rutting resistance declines. This suggests that while the
salt solution can enhance the high-temperature performance of the SBS-T-modified asphalt,
this improvement is limited to a certain concentration range; beyond that, performance
may deteriorate.

The stress sensitivity index reflects the sensitivity of the asphalt binder to changes
in stress (from 0.1 kPa to 3.2 kPa) and can assess the non-linear mechanical response
of the asphalt binder. Higher stress sensitivity indicates more pronounced non-linear
characteristics as the stress level transitions from low to high [34]. The results calculated
according to the formula are shown in Figure 9. It is observed that the value of SBS-T-
modified asphalt after pressure aging is larger compared to 70# base asphalt, indicating that
the modified asphalt is more sensitive to stress changes. Similarly, the value is higher for
asphalt aged by pressure and UV combined, indicating that UV aging reduces the asphalt’s
sensitivity. However, after combined aging with pressure, UV, and salt solution, the value
increases compared to pressure and UV combined aging, indicating that salt makes the
asphalt more sensitive to stress changes.

3.2. Low-Temperature Characteristics
3.2.1. Creep Stiffness and Creep Rate

The creep rate (m) reflects the stress relaxation capacity of asphalt under low tempera-
tures; the higher the creep rate, the stronger the stress relaxation capacity, and the better the
low-temperature performance of the asphalt. The creep stiffness (S) reflects the deformation
resistance of asphalt at low temperatures; the higher the creep stiffness, the greater the
stress required to produce the same strain, indicating that the asphalt is harder and has
poorer low-temperature crack resistance. Figures 10 and 11 show the S and m values of
asphalt under different temperatures and aging conditions.
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The results indicate that after aging, the S values increase while the m values de-
crease for different asphalt samples, indicating that aging deteriorates the asphalt’s low-
temperature flexibility and stress relaxation performance. Among them, under the same
aging conditions, SBS-T-modified asphalt has lower S values and higher m values compared
to base asphalt, indicating that the SBS-T modifier improves the asphalt’s temperature
sensitivity, thereby enhancing its low-temperature performance. Comparing different
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aged SBS-T-modified asphalts, the lowest S values and highest m values were observed in
asphalt samples aged solely by PAV. This is because the thermal-oxidative environment
introduced causes the volatile components of the binder to evaporate, and UV aging further
deteriorates the creep performance of asphalt, increasing stiffness at low temperatures
and worsening low-temperature performance. After salt solution aging, the S values of
SBS-T-modified asphalt increase, and the m values decrease, indicating that the salt solu-
tion factor accelerates the aging of SBS-modified asphalt. This may be due to moisture
damaging the molecular structure of the modifier, as salt can penetrate cracks and adhere to
the asphalt surface, reducing its bonding strength [35], leading to poorer low-temperature
crack resistance. As the salt solution concentration increases, the S values increase, and the
m values decrease, indicating that higher concentrations of salt accelerate aging in asphalt,
generating more free radicals, and the presence of water accelerates the movement of these
free radicals [36]. This suggests that higher salt concentrations lead to more severe aging in
asphalt, further deteriorating stress relaxation and low-temperature performance.

3.2.2. ∆Tc Value

The ∆Tc value is used to further analyze the performance of asphalt at low temper-
atures and can be used to evaluate the thermal sensitivity of asphalt. A lower ∆Tc value
indicates weaker recovery ability in the initial stages, as shown in Figure 12. It can be ob-
served that ∆Tc exhibits a certain regularity; under the same aging conditions, the addition
of the SBS-T modifier increases the ∆Tc value, indicating that this modifier reduces the
thermal sensitivity of asphalt and enhances its low-temperature crack resistance. As the
aging factors increase, the ∆Tc values of the asphalt samples decrease. After combined UV
and pressure aging, the ∆Tc value decreases by 34% compared to pressure aging alone,
indicating that the combined factors make the asphalt more susceptible to thermally in-
duced stress. The introduction of different concentrations of salt solution further decreases
the ∆Tc value significantly; as the concentration of salt solution increases, the ∆Tc values
drop by about six times. This suggests that salt solution as an aging factor has a significant
impact on the thermal sensitivity of asphalt, and when pressure, UV, and salt solution are
combined, the asphalt’s low-temperature crack resistance significantly deteriorates. When
the salt solution concentration reaches 10%, the ∆Tc value becomes negative, indicating that
aged SBS-T-modified asphalt is primarily controlled by m(t). Li et al. [37] suggests limiting
∆Tc to −5 ◦C to prevent non-load-related cracking due to a poor relaxation performance of
the asphalt binder. The ∆Tc values of all asphalt samples are greater than −5 ◦C, regardless
of the aging conditions, implying that the asphalt samples are not at risk of cracking. This
is likely due to the significant improvement in stress relaxation provided by the addition
of SBS-T.
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3.2.3. Low-Temperature Performance Evaluation Based on the Burgers Model

1. Burgers Model Parameters

The test data for creep stiffness versus loading time were converted into creep com-
pliance versus loading time data according to Equation (6) and inputted into Origin2021
software. Utilizing the non-linear curve fitting function in conjunction with the characteris-
tics of the Burgers model, the fitting results are shown in Figure 13.
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As shown in Figure 13, with decreasing temperature, all four parameters of the Burgers
model—the instantaneous elastic modulus E1 of the Maxwell model, the delayed elastic
modulus E2 of the Kelvin model, the instantaneous damping coefficient η1 of the Maxwell
model, and the delayed damping coefficient η2 of the Kelvin model—increase, indicating
that the stress relaxation capacity of the aged asphalt weakens at low temperatures. Fur-
thermore, the increase in the four viscoelastic parameters for SBS-T-modified asphalt is less
pronounced compared to base asphalt, indicating a better low-temperature performance af-
ter modification. From the perspective of the proportion of viscoelastic parameters, η1 and
η2 are much larger than E1 and E2, with the former being one or two orders of magnitude
higher than the latter. This indicates that, whether for base or modified asphalt, the param-
eters reflecting the viscous characteristics in the Burgers model, composed of the Maxwell
and Kelvin models, are larger than those reflecting the elastic characteristics. Additionally,
the more complex the aging factors and the higher the salt solution concentration, the larger
the four parameters of the SBS-T asphalt.
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2. Relaxation Time

The relaxation time λ is an important measure reflecting the gradual dissipation of
internal stress in asphalt over time. The shorter the relaxation time, the better the stress
dissipation ability, and the less likely it is to accumulate internal stress, improving the
asphalt’s low-temperature viscoelastic properties [38]. Based on the Burgers model fitting
parameters, the relaxation time λ and retardation time τ of asphalt can be calculated using
Equations (7) and (8).

λ =
η1
E1

(7)

τ =
η2
E2

(8)

where λ is the relaxation time in seconds and τ is the retardation time in seconds.
It can be seen from Figures 14 and 15 that the relaxation time of the six asphalts grad-

ually increase with a decrease in temperature, indicating that a reduction in temperature
can increase the friction resistance of the movement of the asphalt molecular chain and
reduce the ability of asphalt to quickly dissipate stress, so that the asphalt can be cracked
and damaged at low temperatures. Compared with matrix asphalt, the relaxation time
of modified asphalt after single-factor pressure aging is obviously shorter, because the
modifier can significantly improve the viscoelasticity of the asphalt, reduce the energy
consumption rate of asphalt, and make the asphalt not easy to crack at low temperatures.
SBS-T-modified asphalt after pressure, ultraviolet, and salt solution coupling aging has a
longer relaxation time than SBS-T-modified asphalt after pressure and ultraviolet coupling
aging, and with the increase in the concentration of salt solution, the relaxation time be-
comes longer, indicating that the addition of salt damages the low-temperature cracking
resistance of asphalt.

3. Dissipated Energy Ratio

The dissipated energy in asphalt reflects the material’s ability to store and dissipate
energy. By calculating the dissipated energy and stored energy, the dissipated energy ratio
can be determined. The formulas for calculating stored energy and dissipated energy are
as follows:

Ws(t) =
σ2

0
2
[

1
E1

+
1

2E2
(1 − 2e−

E2
η2

t
+ e−

2E2
η2

t
)] (9)

Wd(t) = σ2
0[

1
η1

+
1

2E2
(1 − e−

2E2
η2

t
)] (10)

σ0 =
3PL
2bh2 (11)

where t is the loading time in the BBR test, s; σ0 is the applied stress at the midpoint of
the BBR test beam, MPa; P is the applied load in the test, mN; L is the span between
the supports, mm; b is the width of the asphalt beam, mm; h is the height of the asphalt
beam, mm.

The dissipated energy ratio Wd/Ws reflects the stress relaxation ability of the asphalt
material; the larger the ratio, the better the low-temperature performance of the asphalt.
The dissipated energy ratio of aged asphalt is shown in Figure 16.

As seen in Figure 16, the dissipated energy ratio decreases as the temperature decreases,
indicating that lower temperatures significantly reduce the dissipation of stored energy
within the asphalt. Comparing the SBS-T-modified asphalt under different aging conditions,
the asphalt aged by pressure alone shows the highest dissipated energy ratio and the
best low-temperature crack resistance, followed by the asphalt aged by pressure and UV
combined, and lastly, the asphalt aged by pressure, UV, and salt solution combined. This
indicates that as UV and salt solution aging factors increase, the relaxation capacity of
SBS-T-modified asphalt deteriorates. As the concentration of the salt solution increases, the
dissipated energy ratio decreases, particularly at −18 ◦C and −24 ◦C. When the salt solution



Coatings 2024, 14, 1241 15 of 20

concentration reaches 10%, the dissipated energy ratio approaches that of the base asphalt,
indicating that at lower temperatures, high concentrations of salt solution exacerbate the
dissipation of stored energy in asphalt, leading to poorer low-temperature performance.
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4. Low-Temperature Evaluation Indices

When analyzing the low-temperature performance of different asphalts, relying solely
on the stiffness modulus (S) or the creep rate (m) can sometimes lead to inconsistent
conclusions. To address this, Liu et al. [39] proposed a new index m(t)/S(t) to evaluate
the low-temperature performance of asphalt. The creep stiffness modulus–time curve was
subjected to regression analysis in a logarithmic coordinate system, yielding functional
relationships for creep stiffness modulus–time and creep stiffness change rate–time, as
shown in Equations (12) and (13). Through integration and applying the Burgers model
creep equation, Equation (14) is derived.

lg[S(t)] = A + B[lg(t)] + C[lg(t)]2 (12)

m(t) =
∣∣∣∣d{lgS(t)}

d{lg(t)}

∣∣∣∣ = |B + 2C|[lg(t)] (13)

m(t)
S(t)

=

(
1
η1

+
1
η2

e−
E2
η2

)
t (14)

where S(t) is the creep stiffness at time t, MPa; m(t) is the relaxation rate at time t.
As seen in Figure 17, the larger the m/S value, the better the low-temperature crack

resistance of the asphalt. The graph shows that as the temperature decreases, the m/S
values of all asphalts decline, with the decrease being more pronounced for the modified
asphalt than for the base asphalt. After pressure and UV combined aging, the m/S values
of SBS-T-modified asphalt are significantly lower than after pressure aging alone, indicating
that UV aging negatively impacts the low-temperature crack resistance of SBS-T-modified
asphalt. When the three factors are combined, the m/S values further decrease, and as the
salt solution concentration increases, the m/S values drop, indicating that salt solution
damages the low-temperature performance of modified asphalt. Additionally, the graph
shows that the more complex the aging environment, the greater the damage to the low-
temperature crack resistance of the asphalt.
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5. Comprehensive Low-Temperature Compliance Parameter

The comprehensive low-temperature compliance parameter uses the viscoelastic defor-
mation ratio in the Burgers model to comprehensively grasp the viscoelastic characteristics
of asphalt and more thoroughly evaluate its low-temperature performance [40]. The calcu-
lation method for the compliance parameter (JC) is given in Equation (15).

JC = 1/JV(1 −
JE + JDe

JE + JDe + JV
) (15)
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where JE = 1
E1

JDe =
1

E2
(1 − e−

E2t
η2 ) JV = t

η1
.

The smaller the JC value, the better the low-temperature performance of the asphalt.
Figure 18 shows that the comprehensive low-temperature compliance parameter increases
as the temperature decreases. After pressure aging, the JC value for SBS-T-modified asphalt
is lower than that of the 70# base asphalt, indicating that the viscous component proportion
in the SBS-T-modified asphalt is relatively large, and its viscous properties can help relax
tensile stress, reducing the likelihood of low-temperature cracking. SBS-T-modified asphalt
shows the smallest JC value after pressure aging alone. When aging conditions become
more complex, such as when pressure and UV are combined, or when pressure, UV, and
salt solution are combined, the JC value increases, indicating that UV and salt solution
reduce the low-temperature crack resistance of asphalt.
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Based on the viscoelastic parameters of asphalt calculated using the Burgers model,
including the relaxation time, energy dissipation ratio, m/S value, and low-temperature
comprehensive flexibility index, a combined analysis of these parameters and evaluation
metrics reveal that the asphalt exhibits the best low-temperature crack resistance after
pressure aging alone. This is followed by UV aging coupled with pressure aging, and then
UV aging coupled with both pressure aging and a salt solution. These results indicate
that the more complex the aging conditions, the greater the negative impact on the low-
temperature crack resistance of SBS-T-modified asphalt. Additionally, as the concentration
of the salt solution increases, the damage to the low-temperature performance of SBS-T-
modified asphalt becomes more severe.

4. Conclusions

This study investigated the effects of thermo-oxidative, UV, and various concentrations
of salt solution aging on the high-temperature and low-temperature rheological properties
of base asphalt and SBS-T-modified asphalt using conventional methods and rheological
tests. The main conclusions are as follows:

1. The coupling effects of thermal oxidation, ultraviolet light, and salt solution better
reflect the actual aging conditions of asphalt roads. As indicated by the results in
Section 3, these coupled factors accelerate the aging of asphalt, affecting both high-
temperature and low-temperature rheological performance. Few researchers in past
studies have examined these factors in combination, highlighting that the influence of
complex environmental factors on asphalt cannot be overlooked.
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2. Compared to unmodified asphalt, SBS-T-modified asphalt shows a significant im-
provement in both high-temperature rheological properties and low-temperature
performance under the same aging conditions. The SBS-T modifier not only addresses
the issue of easy segregation associated with traditional SBS modifiers, but also en-
hances the overall performance of the asphalt. The findings of this study provide
a theoretical foundation for the practical application of SBS-T-modified asphalt in
road construction.

3. The dynamic shear rheometer (DSR) tests indicate that under multiple aging factors,
the rutting factor (G*/sinδ) is the smallest, Jnr is the largest, and R is the smallest
after PAV+UV aging. This combination of factors leads to the greatest reduction
in the high-temperature performance of SBS-T-modified asphalt. However, after
PAV+UV+salt solution aging, the performance of SBS-T-modified asphalt improves,
but the positive impact on high-temperature performance diminishes as the salt
solution concentration increases.

4. The bending beam rheometer (BBR) tests reveal that under multiple aging factors, SBS-
T-modified asphalt exhibits the smallest S value, the largest m value, and the highest
∆Tc value after PAV+UV aging, indicating the least reduction in low-temperature
performance. However, after aging under the combined influence of three factors
including salt solution, the low-temperature performance of SBS-T-modified asphalt
decreases significantly, with a sharp drop in the ∆Tc value. The salt solution has the
most significant negative impact on the low-temperature crack resistance of SBS-T-
modified asphalt, leading to a notable decline in its low-temperature performance.
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