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Abstract: The solidification of alloys is a key physical phenomenon in advanced material-processing
techniques including, but not limited to, casting and welding. Mastering and controlling the so-
lidification process and the way in which microstructure evolution occurs constitute the key to
obtaining excellent material properties. The microstructure of a solidified liquid metal is dominated
by dendrites. The growth process of these dendrites is extremely sensitive to temperature changes,
and even a small change in temperature can significantly affect the growth rate of the dendrite tip.
Dendrite remelting is inevitable when the temperature exceeds the critical threshold. In this study, a
temperature-induced-dendrite remelting model was established, which was implemented through
the coupling of the phase field method (PFM) and finite difference method (FDM). The transient
evolution law of dendrite remelting was revealed by simulating dendritic growth and remelting
processes. The phase field model showed that the lateral dendrites melt first, the main dendrites
melt later, and the main dendrites only shrink but do not melt when the lateral dendrites have not
completely melted or the root is not broken. The long lateral branches break into fragments, while
the short lateral branches shrink back into the main dendrites. The main dendrites fracture and melt
in multiple stages due to inhomogeneity.

Keywords: dendrite growth; phase field method; finite difference method; remelting

1. Introduction

Solidification is a ubiquitous physical phenomenon observed in nature. During the
processing of metallic materials—encompassing techniques such as casting, additive manu-
facturing, and welding—multiple solidification events typically occur, and it is common
for a material to undergo one or more solidification processes [1–3]. Solidified molten
metal liquid will form dendritic crystals [4]. The growth processes of these dendrites are
exceedingly sensitive to temperature changes; even minor changes in temperature affect
the growth rate of the tip of the dendrite significantly. A slight increase in temperature
results in a deceleration of dendrite tip growth, whereas a slight decrease in temperature
accelerates the tip growth rate. When the temperature rises beyond a critical threshold, the
phenomenon of dendrite remelting becomes inevitable [5]. The dendrite remelting process
is usually accompanied by the dynamic evolution of dendrite morphology, including the
morphological reconstruction of the lateral and main dendrite arms, volume contraction,
and local melting nonuniformity. This phenomenon exemplifies the intricate interplay of
thermodynamic and kinetic behaviors during crystal growth and phase transformation
processes. While dendrite remelting exerts a significant influence on alloy solidification
structures, the majority of studies to date remain concentrated on macroscopic simula-
tions and experimental microstructural characterization, with numerical modeling of this
phenomenon being relatively underexplored.

Dendrite remelting is predominantly governed by two principal driving factors: solute-
induced and temperature-induced mechanisms. Neng Ren et al. [6] successfully simulated
dendritic growth and remelting under solute-induced conditions by employing a coupled
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Cellular Automaton (CA) and Finite Volume Method (FVM). Their model takes into ac-
count critical conditions for mechanical fragmentation, alongside dendrite melting and
fragmentation induced by convective flow and solute segregation. Peng Xialin et al. [7]
employed a coupled phase field method (PFM) and finite difference method (FDM) to
simulate and analyze dendritic growth and remelting under solute-induced conditions.
Furthermore, this model accounted for the influence of lateral convection and linear flow ve-
locity on the dendrite-remelting process. Previous research predominantly concentrated on
solute-induced mechanisms as the primary driving factor, whereas numerical simulations
exploring temperature-induced mechanisms remain relatively limited.

The phase field method (PFM) represents a computational method for accurately
capturing phase transition interface dynamics throughout the solidification process [8]. At
the macroscopic scale, phase transition problems such as solid-state phase transition and
droplet phase fusion can be described by using a partial differential equation introduced
into the interface [9]. At the microscopic scale, the physical state of the system phase in
time and space over the growth domain Ω is described through the ordering parameter
ψ(r,t). In dendritic phase field models, the solid phase is typically assigned a φ = 1, the
liquid phase is assigned a φ = 0, and the interfacial region is represented by 0 < φ <
1 [10]. The PFM is based on the Ginzburg–Landau theory and describes the combined
effects of ordering, interfacial diffusion, and thermodynamic driving through differential
equations [11,12]. The PFM is also known as a direct simulation method that can track
the solid–liquid interface and directly simulate the internal structure of dendrite growth,
dendrite morphology, and other microstructures. The phase field method can perfectly
solve the complex solid–liquid interface tracking problem, and it can also be coupled
with the temperature field and solute field to enable quantitative studies on the growth
and evolution of microstructures during metal solidification [13–15]. The finite difference
method (FDM) is a commonly used numerical analysis method [16]. The core principle of
the FDM involves discretizing the definition domain of a problem into a computational grid
and subsequently applying suitable numerical differentiation formulas at the grid nodes to
approximate the differential terms, thereby converting the continuous differential equations
into the difference equations in discrete form. This process establishes a difference scheme,
which is subsequently solved to derive the numerical solution of the original problem.

This study presents a novel temperature-induced dendrite-remelting model. The
model was implemented by coupling the phase field method (PFM) with the finite differ-
ence method (FDM). The dendritic evolution process, encompassing both dendrite growth
and remelting, was simulated, and the transient evolution law of dendrite remelting was
revealed. These findings are of great significance for controlling the microstructure and
mechanical properties of processed materials.

In summary, a temperature-induced-dendrite-remelting model is established in this
paper. The model was implemented via the coupling of the phase field method (PF) and
the finite difference method (FDM). The dendrite evolution process, including dendrite
growth and dendrite remelting, was successfully simulated, and the transient evolution
law of dendrite remelting is revealed herein, constituting findings of great significance for
controlling the microstructure and mechanical properties of machined materials.

2. Phase Field Model
2.1. Establishment of Remelting Phase Field Model

Dendrite remelting is a phenomenon in which a dendrite originally in a stable growth
state under the condition of an elevated ambient temperature undergoes a phase transition
due to a change of temperature field. This results in the migration of its solid–liquid
interface toward increasing the volume of the liquid phase, which triggers the localized or
overall melting of the crystal [17]. To effectively describe the remelting process of dendrites,
this study employs the non-isothermal phase field model, as derived by Kobayashi [18],
Boettinger [19], and Zaeem [20]. In order to ensure the accuracy and stability of the
numerical simulation, the following assumptions were made during the simulation of the



Coatings 2024, 14, 1364 3 of 11

regrowth of remelted dendrites: (1) the driving force of temperature undercooling during
the regrowth of remelted dendrites remained unchanged; (2) the regrowth of adjacent
dendrites was restricted by the boundaries on both sides; and (3) the latent heat during
dendrite regrowth remained constant. The governing equations for the phase field and
temperature field in this model are presented as follows:
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where τc and
∼
ε m are the interfacial parameters of the phase field, and ε(θ) is the anisotropy

of each of the solid–liquid interfaces (ε(θ) is a function of θ, as given by Equation (3) [21].
M(T̃) is the interface driving term in the phase field equation, where M > 0 for the solidi-
fied state and M < 0 for the melted state, and Tap is the equilibrium temperature during
solidification. αT is the thermal diffusion coefficient of the metal, Cp is the constant pres-
sure heat capacity, Lm is the latent heat, and T̃ is the dimensionless temperature, wher
e T̃ = (T − TS)/(TL − TS) [22]:

ε(θ) = εη(θ) = ε(1 + δ cos(kε(θ − θ0))) (3)
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In the actual solidification process, the solid–liquid interface can be randomly undu-
lated due to solute diffusion, heat flow, and other reasons [23,24]. In order to simulate
such random interfacial fluctuations and make the dendrite growth more realistic, random
perturbations were added to the phase field equations:

∂ψ

∂t
→ ∂ψ

∂t
+ 16g′(ψ)a#r∗ (7)

where g′(ψ) is the derivative of g(ψ)= ψ2(1 − ψ)2, α# is the perturbation intensity factor
(which is time-dependent), and r* is a random number between −1 and +1. To ensure that
the perturbation occurs at the interface, the effect of the noise term exists only in the range
where 0 ≤ ψ ≤ 0.5.

2.2. The Establishment of Geometric Model and the Determination of Boundary Conditions

The finite element computing platform was used to solve the numerical model in this
study. According to the characteristics of the dendrite growth, taking into account the
cost of the calculation, this section establishes a rectangular model, as shown in Figure 1.
Figure 1a depicts the geometrical modeling of the competitive dendrite growth process,
and overall mesh delineation was performed by using free triangles. The model contains
9040 cells and 260 boundary cells, with a minimum cell mass is 0.6885.
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Figure 1. Modeling of dendrite remelting. (a) Dendrite-remelting model meshing. (b) Nucleation
positions and boundary conditions for dendrite-remelting setups.

To ensure adequate spacing between crystal nuclei in the initial distribution, providing
sufficient room for the growth of secondary dendrite arms, crystal nucleus positions were
predefined at the base of the simulation domain. In solving the control equations of the
phase field model, it was assumed that the crystal nucleus positions were influenced solely
by growth kinetics, free from external interference. Consequently, zero-flux boundary
conditions were imposed at the boundaries of the simulation domain, ensuring that both
mass and energy transport were zero and preventing external factors from influencing the
crystal growth process. This ensured that the simulation results more faithfully represent
the actual dendritic growth mechanisms during the remelting process. The predefined
crystal nucleus positions and boundary conditions are shown in Figure 1b.

3. Analysis of Dendrite-Remelting Simulation Results
3.1. Dendrite Remelting Process

Figure 2 shows the stable growth states of the dendrites prior to the rise in environ-
mental temperature. As shown in Figure 2a, under the influence of the interface anisotropy,
the crystal nucleus shows obvious main dendrite growth in both horizontal and vertical
directions, showing the typical preferred orientation characteristics in the dendrite growth
process. As shown in Figure 2b, due to the small distance between crystal nuclei in the
simulation domain, the main dendrites of adjacent dendrites in the horizontal direction
are limited by the competitive behavior of adjacent crystals, resulting in their growth
inhibition. However, in the vertical direction, the main dendrites can fully grow along this
direction due to the small influence of space limitation, thus exhibiting an obvious growth
morphology extending along the vertical direction.
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Figure 2. The normal growth process of dendrites within 3000∆t: (a) dendrite morphology at 1000∆t;
(b) dendrite morphology at 3000∆t.

After the evolution process reaches 3000∆t, the ambient temperature around the
dendrites increases, which causes the dendrites to melt, as shown in Figure 3. As shown in
Figure 3a, it can be seen that at the 3005∆t time step, parts of the lateral dendrites begin to
melt, while the main dendrites show an obvious contraction trend. As shown in Figure 3b,
with the continuation of the melting process, the overall growth of the dendrites stops,
with some of the smaller lateral dendrites having completely melted, while the large lateral
dendrites significantly decrease in width and length. As shown in Figure 3c, fracturing
occurs at the root position of the lateral dendrites that have not been completely melted at
3030∆t, and it can be seen that the main dendrite arm shows a significant contraction trend.
As shown in Figure 3d, most of the lateral dendrites are completely melted at 3040∆t, and
the main dendrite arms also show clear signs of melting. As shown in Figure 3, during the
remelting process, the main dendrite arms tend to shrink, and the stem width decreases.
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Figure 3. The process of the melting of grown dendrites after 3000∆t: (a) dendrite morphology
at 3005∆t; (b) dendrite morphology at 3020∆t; (c) dendrite morphology at 3030∆t; (d) dendrite
morphology at 3040∆t.

3.2. Dendrite Remelting Mode in Lateral Dendrite Melting

As shown in Figure 3, during the remelting process, the main dendrite arms exhibit a
shrinking trend, and the stem width decreases. The melting behavior of lateral dendrites
can be categorized into two typical situations, as shown in Figures 4 and 5. The remelting
effect caused by temperature rise and the capillary extrusion effect caused by interface
curvature jointly act on the melting process of lateral dendrites. On the one hand, lateral
dendrites tend to melt as a whole to maintain the thermodynamic equilibrium at the liquid–
solid interface (L/S interface) [25]. On the other hand, the local interface energy difference
caused by the negative curvature effect leads to significant capillary extrusion at the root
of the lateral dendrites [26], which causes the lateral dendrites to break from the root. In
the dendrite remelting process, these two effects compete with each other, resulting in two
different melting behaviors of the lateral dendrites.
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As shown in Figure 4a–d, with the increase in ambient temperature, the stem morphol-
ogy of the lateral dendrites becomes obviously “squeezed”. The lateral dendrites melted
before the root fracture until they contracted back into the main dendrites, without forming
independent dendrite fragments. The second melting behavior is shown in Figure 5a–d.
When the lateral dendrites melt to a certain extent, their roots fracture before completely
shrinking back into the main dendrites and then form independent dendrite fragments.
At the same time, it can be observed that after the lateral dendrite root fractures, due to
the large surface free energy of the dendrite fragments during the melting process, their
morphology gradually tends to transition toward a state of minimizing the surface energy.
They finally present a nearly spherical melting morphology until completely melting. By
observing the whole process of dendrite melting, it can be seen that the longer lateral
dendrites show a more significant root fracture tendency, as shown in Figure 3a–d.

The difference between the two kinds of melting behavior reflects the complex compe-
tition between the local thermodynamic equilibrium and the capillary effect in the remelting
process. In the first case, the thermodynamic equilibrium at the liquid–solid interface (L/S
interface) is mainly maintained, and the lateral dendrites shrink from the root back into the
main dendrite arm. The second case mainly reflects the influence of capillary compression
at the root of the lateral dendrites caused by local interface energy differences caused by
the negative curvature effect on lateral dendrite fracture behavior.

3.3. Dendrite Remelting—The Main Dendrite Melting Mode

As the melting process continued, the main dendrites entered the melting stage after
the lateral dendrites fractured, as shown in Figure 6. It can be seen in Figure 6a that at
3050∆t, the main dendrites begin to melt rapidly, and their width and length decrease
significantly. As shown in Figure 6b, by the time the melting time step reaches 3070∆t,
the remaining collateral fragments have all melted into a liquid state. However, due to
the heterogeneity in the local dendritic structure and the variability in the melting and
fracturing behaviors of the lateral dendrites, the main dendrite fractures along the axial
direction and finally splits into several smaller dendrite fragments. As shown in Figure 6c,d,
the main dendrite undergoes complete melting between 3070∆t and 3100∆t. At this stage,
the entire dendritic structure has reverted to its initial crystal nucleus state, signifying the
completion of the dendrite remelting process.

The dendrite melting process was comprehensively analyzed. As shown in Figures 4
and 6, the overall melting behavior of dendrites is manifested as the gradual melting and
fracturing of lateral dendrites, followed by the main dendrites entering the melting stage.
The main form of dendrite melting is distinguished by multi-segmented fracturing and
melting. This multi-stage fracture behavior may be due to the microstructural characteristics
of the main dendrites and the differences in the fracture processes of the lateral dendrites
during melting. The complex melting behavior and structure evolution of dendrites during
temperature rise has thus been revealed. Theoretical basis and data support have been
provided to foster further understanding of the melting mechanism of dendrites under
high-temperature conditions.

The above melting process is highly consistent with the experimental observation
results obtained by Virkeshwar Kumar [27], indicating that that the numerical simula-
tion presented in this paper can accurately reflect the morphological evolution and mi-
crostructure changes of dendrites during the remelting process. Thus, the reliability of the
model-derived results has been verified.
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4. Conclusions

1. Based on the phase field method, a dendrite growth model was established and solved
using the finite difference method (FDM), which provided the initial conditions for the
solution of the dendrite remelting model. The results show that under the influence of
interfacial anisotropy, the crystal nuclei exhibit obvious main dendrite growth in both
horizontal and vertical directions, showing the characteristic of a preferred orientation
in the process of dendrite growth.

2. Based on the solution data derived from the phase field method and dendrite growth
model, a temperature-induced dendrite remelting model was established and solved.
The results show that the dendrite remelting process follows a certain sequence,
wherein the lateral branches melt the main dendrite first and then melt. When the
lateral branches are not completely melted or the root is not broken, the main dendrite
stem will shrink to a certain extent but not melt. The melting process of lateral
branches consists of the contraction of lateral branches back into the main dendrites
and the fracturing of the lateral branches of the main dendrites. The melting process
of main dendrites takes the form of multi-stage melting due to the inhomogeneity
of the crystal structure and the difference in the melting-induced fracturing of the
lateral branches.
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