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Abstract: The effect of over-aging on the precipitation behavior and mechanical properties of an
ultra-high-strength Al-Zn-Mg-Cu alloy was investigated using various over-aging treatment regimes.
To reveal the influence of over-aging on matrix precipitation, nucleation and coarsening mechanisms
were analyzed based on thermodynamic models and calculated precipitation data. Precipitation
kinetics at different over-aging degrees were determined through differential scanning calorimetry
analysis and the Johnson–Mehl–Avrami–Kolmogorov equations, revealing the activation energy
required to precipitate the η’ phase precipitates ranging from 166.08 to 343.28 kJ/mol, and the
activation energy required to precipitate the η phase precipitates ranging from 802.03 to 288.42 kJ/mol
from the T6 to T73 conditions. In conjunction with a quantitative microstructure analysis, a highly
accurate model was developed by systematically calculating the strengthening components of the
ultra-high-strength Al-Zn-Mg-Cu alloy under various aging conditions.

Keywords: ultra-high-strength Al-Zn-Mg-Cu alloy; over-aging treatment; precipitation thermodynamic;
precipitation kinetics; strengthening model

1. Introduction

Al-Zn-Mg-Cu alloys are widely used in the aerospace and modern transportation
industries for their outstanding mechanical properties, high specific strength, and superior
fracture toughness compared to other categories of aged aluminum alloys [1–3]. For Al-Zn-
Mg-Cu alloys with constant compositions and manufacturing processes, their performance
is highly dependent on the heat treatment regime including the solid solution and aging
treatments [4,5]. Among them, aging treatments have received wide attention for their
ability to modify the microstructures by altering the type, size, and distribution of the
intracrystalline/granular boundary aging precipitates, ultimately affecting the performance
of the alloys [4,5].

The precipitation sequence in Al-Zn-Mg-Cu alloys can be summarized as follows:
supersaturated solid solution (SSS) → vacancy solute clusters (VRC) → GP zones →
metastable η′ phase precipitates→ stable η phase precipitates [4,6–8]. These homogeneously
distributed nanoscale precipitates in the matrix are the main factors affecting the mechanical
properties of Al-Zn-Mg-Cu alloys. The addition of Zn and Mg to the these alloys results in
a higher potential difference between the Zn- and Mg-rich aging precipitation phase and
the aluminum matrix, resulting in the higher corrosion sensitivity of the alloys, making
the alloys susceptible to intergranular and stress corrosion [9]. Conventional T6 treatments
achieve excellent static strength performance, but their high corrosion sensitivity limits
their suitability for highly corrosion-resistant applications [9,10]. Therefore, researchers are
focusing on developing suitable aging processes that can improve the corrosion resistance
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of Al-Zn-Mg-Cu alloys for broader applications. The conventional single-step over-aging
by extending aging time at the peak aging temperature can improve the corrosion resistance.
Su et al. reported the effect of single-step aging treatments on the stress corrosion of Spray-
Formed 7075 Alloy, and found that extending the aging time at the T6 aging temperature
up to 84 h reduces the stress corrosion sensitivity index by about 61% compared with T6
(aging time 24 h) [11]. However, its drawback lies in the excessive aging time required to
achieve better corrosion resistance. Subsequently, the two-step aging process improves on
the above shortcomings by adding a second aging stage above the peak aging temperature.
Cheng et al. reported that the T6 and T7X over-aging processes were adopted for Al-
5.8Zn-2.6Mg-1.7Cu, and the T7X over-aging process could reduce the stress corrosion
sensitivity index by at least 47% compared with T6 [12]. Murat et al. reported that the
selection of an appropriate retrogression time and temperature in the RRA aging process
can improve the hardness of 7075-T6 aluminum alloy sheet by about 20% relative to
T6, and the anti-SCC property can be improved by 85% relative to T6 in terms of pit
concentration [13]. However, Yang et al. reported that when taking the T74 and RRA aging
processes for Al-6.0Zn-2.3Mg-1.8Cu-0.1Zr, although RRA improved the static strength
by 13% compared to T74, the intergranular corrosion depth increased by 56% compared
with T74 [14]. Therefore, due to the characteristics of the above aging processes and the
requirement to balance the performance needs and output ratio, the T7X over-aging process
is the most commonly used aging treatment process in the industry for corrosion-prone
environments [12]. However, most of the studies have focused on the evolution of the
precipitation behavior and mechanical properties of the T7X aging process for conventional
medium-strength Al-Zn-Mg-Cu alloys with a Zn content of 5.0–8.0 wt.% [12,14–19]. For the
ultra-high-strength Al-Zn-Mg-Cu alloys with zinc contents greater than 8.0 wt.%, the higher
additions of the main alloying elements undergo solid solution treatment for a larger degree
of solid solubility in the matrix after quenching compared to the conventional medium-
strength Al-Zn-Mg-Cu alloys. This leads to the differences in the precipitation behavior and
the evolution of the mechanical properties of the high Zn content Al-Zn-Mg-Cu alloys as
compared to the conventional medium strength Al-Zn-Mg-Cu alloys. However, studies on
the evolution of the precipitation behavior, precipitation kinetics, and quantitative analysis
of the strengthening mechanism of the ultra-high-strength Al-Zn-Mg-Cu alloys under
progressively deepening of over-aging by applying the T7X over-aging process are very
limited and need to be further investigated.

Therefore, T6, T79, T74, T74, and T73 aging treatments are adopted in the present
study to obtain the progressively evolving aging precipitation and mechanical properties,
investigate the effect of the over-aging degree on the precipitation behavior, and mechanical
properties of a new kind of high Zn-containing Al-Zn-Mg-Cu alloy. The effect of over-aging
on the kinetics of matrix precipitation is then analyzed using thermodynamic models, dif-
ferential scanning calorimetry (DSC) analysis and the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) kinetics equations. Ultimately, a suitability strengthening model for the alloy
is developed through quantitative analysis of the microstructures of the aged samples.
This experiment is dedicated to finding a suitable over-aging process, the appropriate
microstructure, and mechanical property prediction for the new kind of high Zn-containing
Al-Zn-Mg-Cu alloy.

2. Materials and Methods

The alloy utilized in this research originated from a 152 mm diameter ingot, hor-
izontally cast using the continuous casting method in the laboratory’s foundry. After
homogenization in a pit-type cyclone furnace, the ingot was subjected to reverse extrusion
to obtain the deformed alloy used in this experiment. The reverse extrusion was performed
at 340 ◦C with a speed of 0.4 mm/s, producing a final extruded bar of 16 mm in diameter.
Furthermore, to ensure consistency and eliminate any influence from production variations,
all aging samples were derived from the same batch of extruded bars. The chemical com-
positions of the alloy are shown in Table 1. The elaborate heat treatment processes utilized
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in the present study are summarized in Table 2. The microstructures of the aged samples
were characterized by employing the TECNAI G2 20 Transmission Electron Microscopy
(TEM) (Thermo Fisher Scientific Inc., Waltham, MA, USA) with an operating voltage of
200 kV and JEM-ARM200F High Resolution Transmission Electron Microscopy (HRTEM)
(Jeol Inc., Akishima, Tokyo, Japan) with an operating voltage of 200 kV. The samples for
TEM characterization were milled to a thickness of less than 100 µm and punched into
3 mm diameter sheets. Subsequently, the characterization samples were prepared using the
TenuPol-5 Electrolytic Dual Sprayer (Struers Inc, Ballerup, Denmark) with an operating
voltage of 17.5 V under −25 ◦C. The electrolyte compositions were 70% methanol and
30% nitric acid. Tensile samples were designed following ASTM-E8M with a working
end diameter of 9 mm. The room aging temperature tensile tests were carried out on the
SANSCMT−5000 experimental machine (SANS Shenzhen Experimental Equipment Co.,
Shenzhen, China) Two parallel tensile specimens are used for each aging sample, and the
strain rate of tensile is about 2.5 %/min, and the axial loading speed of 2 mm/min. The
DSC test uses DSC-Q100 (TA Instruments Inc.). Nitrogen was used as the shielding gas,
and the samples were heated in aluminum crucibles with a diameter of 6 mm. The sample
weight was kept below 25 mg, and the heat temperature range of the DSC test is 25 ◦C to
375 ◦C with a ramp rate of 10 ◦C/min. All samples are prepared without secondary heating
of the sample to ensure that the preparation process does not interfere with microstructural
observations and tensile results.

Table 1. Chemical compositions of the present study’s material.

Elements Zn Mg Cu Zr Fe Si Al

Content (wt.%) 8.7 2.8 2.0 0.13 0.05 0.02 Balance

Table 2. Heat treatment regimes were adopted in the present study.

Solid Solution Treatment Regimes Aging Treatment Regimes

T6

475 ◦C × 2 h

120 ◦C × 24 h
T79 120 ◦C × 24 h + 165 ◦C × 3 h
T76 120 ◦C × 24 h + 165 ◦C × 6 h
T76 120 ◦C × 24 h + 165 ◦C × 10 h
T73 120 ◦C × 24 h + 165 ◦C × 16 h

3. Results
3.1. Aging Precipitation Behavior

To reveal the impact of the over-aging degree on precipitation behavior, matrix pre-
cipitates in samples under various aging conditions were characterized using TEM and
HRTEM. Figure 1a–e presents the bright-field TEM images illustrating the matrix precip-
itates in the various aged samples. Figure 2 shows the high-resolution images of matrix
precipitates of the aged samples in the HRTEM mode along the [110]Al zone axis and the
diffraction patterns obtained by Fourier transform, respectively. In the T6 aged sample, as
shown in Figure 2b, diffraction spots of precipitates are observed at approximately 1/3
and 2/3 of the

{
111

}
plane along the [110]Al zone axis, which are attributed to η′ phase

precipitates [20–22]. The T79 aged sample shows the diffraction spots of precipitates at
approximately 1/3 and 2/3 of the

{
111

}
plane along the [110]Al zone axis, which are also

attributed to η′ phase precipitates, as shown in Figure 2d [20–22]. Furthermore, the T79
aged sample also shows the diffraction spots of precipitates at approximately 1/2 of the{

111
}

plane along the [110]Al zone axis, as illustrated in Figure 2f, which are identified as η
phase precipitates [23,24]. The diffraction spots associated with both η′ and η phase precip-
itates are similarly observed in the T76 to T73 aged samples, as shown in Figure 2j,i,n,p,r,t.
Thus, the above analysis suggests that the main matrix precipitates in the T6 aged sample
are η′ phase precipitates, whereas the main matrix precipitates in the aged samples shift to
include both η′ and η phase precipitates following over-aging treatments.
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the Fourier transform: (a,b) T6, (c–f) T79, (g–l) T76, (m–p) T74, (q–t) T73.

To precisely assess the influence of various aging treatments on the evolution of the
matrix precipitation, precipitation size distribution statistics and the average diameter of
the matrix precipitation in the aged samples were carried out using the ImageJ image pro-
cessing software (https://imagej.net). For each aging sample, at least 300 precipitates were
measured within the same field of view under TEM. The results show that the precipitation
length, thickness, and diameter of all aged samples show Gaussian distributions, respec-
tively, as shown in Figure 3. Furthermore, the length, thickness, and diameter of matrix
precipitates increase as the over-aging progresses, suggesting that matrix precipitation
progressively becomes coarser with a greater degree of over-aging.

In addition, the volume fractions of the matrix precipitates are calculated using the
following method [25]:

fplatelet = fsphere + 2 fplatelet − fcor (1)

fsphere = fplatelet = Nplatelet · tplateletDplatelet
2π/4 (2)

fcor = (4π/3)R3
mean · Nplatelet (3)

where fsphere represents the volume fraction of the observed round precipitates; fplatelet
represents the volume fraction of the observed platelet-shaped precipitates; fcor represents
the volume fraction of the observed round precipitates which are platelets; tplatelet rep-
resents the thickness of the observed platelet-shaped precipitates; Dplatelet represents the
diameter of the observed platelet-shaped precipitates; and Nplatelet is the density of edge-on
platelet-shaped precipitates. From the T6 to T73 aged samples, the volume fractions of
matrix precipitation are 2.75%, 2.91%, 3.07%, 3.25%, and 3.32%, respectively.

https://imagej.net
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3.2. Tensile Properties

Figure 4 illustrates the ultimate tensile strength (UTS), yield strength (YS), and elonga-
tion (El) of various aged samples. The T6 aged sample exhibits the highest UTS and YS.
As the degree of over-aging increases, the UTS and YS of the aged samples decrease. Con-
versely, the El progressively increases as the static strength of the aged samples decreases,
aligning with the conventional inverse relationship between static strength and plasticity.
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4. Discussion
4.1. Effect of the Over-Aging Degree on the Precipitation Evolution of Matrix Precipitation

Based on the above results, it is evident that the size, number density, and volume
fraction of matrix precipitation precipitates significantly affect the degree of over-aging.
As depicted in Figure 1, the precipitation behavior in all aged samples exhibit uniform
precipitation behavior. Generally, the evolution of matrix precipitation in aluminum alloys
can be divided into the following three discrete, yet continuous steps: (1) the nucleation of
the new phase precipitates; (2) the growth of the nucleated phase precipitates; and (3) the
coarsening of the phase precipitates [26]. The driving force for precipitation (∆g) during
the ageing process is described by the following equation [27,28]:

△g = −
k · T · ln

(
Cm/Ceq

)
vat

(4)
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where vat is the atomic volume, treated as a constant for a given alloy composition; k
is the Boltzmann constant; T is the current aging temperature; Ceq and Cm refer to the
equilibrium and matrix solute concentrations, respectively. From Equation (4), it is clear
that the nucleation driving force is influenced by the aging temperature when the matrix
solute concentration is constant. The higher the aging temperature, the stronger the
nucleation drive. Meanwhile, the evolution of the precipitation not only depends on ∆g,
but the critical nucleation radius also plays a crucial role in the precipitation/dissolution
of new precipitates. The critical nucleation radius (R∗) can be defined by the following
equation [28]:

R∗ =
2γ · vat

k · T · ln(Cm/Ceq)
= − 2γ

∆g
(5)

where γ represents the surface energy between the precipitate and matrix. Based on
Equation (5), higher temperatures reduce the critical nucleation radius while increasing
the nucleation drive. Precipitate growth is a dynamic process where new precipitates
form continuously around the existing ones. According to the Gibbs–Thomson effect, the
smaller-size precipitates have larger surface-to-volume ratios, causing a solute concentra-
tion gradient between large and small precipitates. Solute elements tend to diffuse from
smaller precipitates to larger ones, leading to the dissolution of smaller precipitates and the
coarsening of larger ones. This process is known as the Ostawald ripening process. The
kinetics of this coarsening process can be expressed as [29]:

(r)3 − r0
3 = (DγCe)t (6)

where r is the average precipitate radius; r0 is the initial radius at the aging time t = 0; D is
the diffusion coefficient; Ce is the solid concentrations for larger precipitates. According
to Equation (6), it can be inferred that as aging progresses at a constant temperature, the
average precipitate radius increases. Furthermore, D and Ce increase exponentially as the
aging temperature rises. Therefore, the coarsening rate of precipitates increases with higher
aging temperatures.

Under the T6 peak-aging condition, a lower aging temperature results in a relatively
smaller precipitation nucleation drive, larger critical nucleation radius, and slower coarsen-
ing rate compared to the T7X condition. Consequently, matrix precipitates nucleate and
grow more slowly, resulting in a denser and finer precipitate distribution, as shown in
Figure 1a. However, in the T7X two-stage aging process, pre-aging ensures that a certain
amount of matrix precipitates already exist. During the second aging stage, the higher
temperature generates a stronger nucleation drive, leading to smaller critical nucleation
radii and the formation of matrix precipitates early in the stage. However, a large size gap
would be created between newly formed and pre-existing precipitates. According to the
Gibbs–Thomson effect, the smaller nascent precipitates dissolve quickly, while the larger
ones continue to grow [29]. As the second stage of aging treatment continues, smaller
precipitates dissolve, and larger ones persistently coarsen. Meanwhile, it can be concluded
from Equation (6) that a higher aging temperature results in a faster coarsening rate. There-
fore, Equation (6) shows that a higher aging temperature accelerates the coarsening rate,
leading to larger precipitates, lower number density, and higher volume fraction for the
T79 condition compared to the T6 condition. Additionally, as the degree of over-aging
progresses, the average precipitation size increases due to the higher coarsening rate. Con-
sequently, small precipitates continue to dissolve during coarsening, resulting in larger
precipitates, lower number density, and a gradually increasing precipitate volume fraction
from T79 to T73 conditions.

4.2. Effect of the Over-Aging Degree on the Precipitation Kinetics of Matrix Precipitation

In this study, the selected diffraction patterns from HRTEM results reveal that the
primary matrix precipitates in the T6 condition are η′ phase precipitates, while both η′ and η

phase precipitates appear in the T7X aged samples, as shown in Figure 2. This suggests that
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the over-aging degree significantly affects the type of matrix precipitation of the samples.
Since the aging treatment regimes constantly affect the precipitation kinetics, which in turn
leads to alterations in the matrix precipitation behavior. The precipitation and dissolution
of phase precipitates during the heating of aged samples represent endothermic and
exothermic reactions, respectively, and can be characterized by DSC thermograms [30–32].
Therefore, to gain insight into the effect of the over-aging degree on the precipitation
behavior of the alloy, the precipitation kinetics of each aged sample need to be analyzed by
using DSC thermograms.

According to previous studies, the overheating temperature for Al-Zn-Mg-Cu alloys is
typically above 485 ◦C [33]. Since none of the samples were heated beyond this temperature
range, no oxidation was observed during the heating process. Therefore, the experimental
results were not affected by the presence of oxides. As a reference, the solid solution
treatment sample was first analyzed via DSC, as shown in Figure 5. In the DSC thermogram
of the solid solution sample, the first endothermic peak (peak A) appears at about 112 ◦C
and is considered to be related to the dissolution of the GP zone’s phase precipitates [34,35].
Subsequently, the first exothermic peak (peak B) appears at about 160 ◦C, corresponding to
the formation of η’ phase precipitates [34,35]. As the aging temperature increases, the η′

phase precipitates dissolve, resulting in the endothermic peak (peak C) at approximately
194 ◦C [34,35]. Then, two consecutive exothermic peaks (peaks D and E) are detected at
about 222 ◦C and 240 ◦C, respectively, which are associated with the occurrence of the
transformation of the residual η’ phase precipitates as precursors to the η phase precipitates
(η2) and the formation of the η phase precipitates (η1), respectively [34,35]. Finally, the
endothermic peak (peak F) present at about 298 ◦C corresponds to the dissolution of the
stabilized equilibrium phase precipitates [34,35].
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The JMAK equations can be implemented in combination with the DSC thermograms
of the aged samples to estimate the precipitation activation energies of the η′ and η phase
precipitates for each aged sample [36,37]. The JMAK model is expressed as [38,39]:

Y = 1 − exp(−kntn) (7)

k = k0 exp(− Q
RT

) (8)

where Y is the precipitate volume fraction; k is the nucleation type constant; n is the
growth mode constant; Q is the activation energy; T is the absolute temperature; and
R is the gas constant (8.314 J/mol × K) [39]. Equation (7) can be used to describe non-
isothermal transformations. According to Equations (7) and (8), the transformation rate
can be obtained. Thus, the equation of the rate of transformation can be written as:
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dY
dt

= k(T) f (Y) (9)

where f (Y) is the implicit function of Y from Equation (7). Generally, the reaction func-
tion f (Y) is unspecified at the beginning of the analysis. A series of standard functions
representing a particular ideal reaction model are proposed [39,40]. The function f (Y) is
determined by assuming a suitable form and verifying it with experimental data [39,40]. A
general relationship for given sigmoidal behavior is [39,40]:

f (Y) = Yr(1 − Y)m (10)

where exponents r and m are constant. Equation (10) can be incorporated with JMAK
kinetics equations, and the sigmoidal behavior is also expressed as:

f (Y) = n(1 − Y)[− ln(1 − Y)]
n−1

n (11)

where the exponent n is the growth parameter and is a constant that depends on the growth
modes of precipitates. For Al-Zn-Mg-Cu alloys, the growth parameter n can be represented
as 1, 3/2, 2, and 3 [39,41]. From the DSC thermograms, the mole fraction Y which is the
amount of phase precipitates or dissolved within the specified aging temperature range
can be expressed as [41]:

Y =
A(T)

A f
(12)

where A(T) is the area under a certain endothermic or exothermic peak from the initial
aging temperature Ti and a given aging temperature T; A f is the overall area of the peak of
the thermograph. Thus, the transformation rate can be also written as [39,41]:

dY
dt

=

(
dY
dT

)(
dT
dt

)
= u

(
dY
dT

)
(13)

where u is the heating rate. In the current study, the heating rate is 10 ◦C/min. Combining
Equations (5), (6) and (10), the final equation can be written as:

ln
[(

dY
dT

)
u

f (Y)

]
= ln k0 −

(
Q
R

)(
1
T

)
(14)

through the linear fitting of the curve of ln[(dY/dT)(u/ f (Y))] vs. 1/T, the slope of the
fitted line can be obtained, and the activation energy Q of the corresponding thermal
reaction peak can be calculated [39,41].

The Y vs. T curves, dY/dT vs. T curves, and ln[(dY/dT)(u/ f (Y))] vs. 1/T curves
representing the exothermic peaks B and E of η′ and η phase precipitates in the DSC curves
of various aged samples are calculated using Equations (12)–(14), as shown in Figure 6. It
should be noted that all ln[(dY/dT)(u/ f (Y))] vs. 1/T curves are fitted with the highest
accuracy when the growth parameter n = 1. Therefore, the activation energies of η′

and η phase precipitates are calculated for various aged samples as shown in Figure 7.
Combining Figures 6c and 7a, it is observed that the T6 aged sample has the largest slope of
ln[(dY/dT)(u/ f (Y))] vs. 1/T about η′ phase precipitates, and the lowest activation energy
required to precipitate the η′ phase precipitates. This suggests that the η′ phase precipitates
most easily precipitate in the matrix under the T6 aging treatment. However, the slopes
of ln[(dY/dT)(u/ f (Y))] vs. 1/T concerning η′ phase precipitates decrease progressively
with the increasing over-aging degree, leading to a gradual growth of the activation energy
required to precipitate η′ phase precipitates under the T7X aging treatments, as shown in
Figures 6c and 7a. However, the presence of η’ phase precipitates is still found in the T7X
samples, as shown in Figure 2. It can still be assumed that as over-aging proceeds, the
precipitates of the η′ phase precipitates will become increasingly resistant to precipitation
in the matrix.
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In contrast, the calculations for the exothermic peak E show the opposite trend con-
cerning peak B. From Figures 6f and 7b, it can be observed that the T6 aged sample has
the smallest slope of ln[(dY/dT)(u/ f (Y))] vs. 1/T for η phase precipitates. According to
Figure 7b, the activation energy required for η phase precipitation in the T6 sample is about
twice that of the T79 sample. This suggests that η phase precipitates are difficult to form in
the T6 sample, which is why they are rarely found in T6 samples. For the T7X aged samples,
the slopes of ln[(dY/dT)(u/ f (Y))] vs. 1/T for η phase precipitates gradually increase with
the deepening of over-aging, and the activation energy required to precipitate the η phase
precipitates progressively decreases, as shown in Figures 6f and 7b. It can be assumed that
the precipitation of η phase precipitates is eases with the deepening of over-aging.

4.3. Strengthening Model

It has been shown that the over-aging degree has a significant impact on the static
strength of the aged samples according to the above research results. This phenomenon is
caused by the differences in microstructures among the various aged samples. In general,
the enhancement in strength of ultra-high strength aluminum alloys is achieved through
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the synergistic interaction of multiple mechanisms, mainly including grain boundary
strengthening, solid solution strengthening, dislocation strengthening, and precipitation
strengthening.

Grain boundary strengthening σgb is typically described using the Hall–Petch rela-
tion [42]:

σgb = σ0 + kyd−1/2 (15)

where σ0 represents the frictional stress of pure aluminum (~10 MPa); ky is the Hall–Petch
coefficient, approximately 0.12 MPa·m−1/2 for the Al-Zn-Mg-Cu alloy [43]; and d denotes
the average grain size. As supported by previous studies, the recrystallization temperature
of Al-Zn-Mg-Cu alloy is typically above 300 ◦C [44]. Since the aging treatment temperature
used was significantly lower than the recrystallization temperature, the same solid solution
treatment was used for all aging samples. Therefore, it can be assumed that the grain size
remains essentially constant under different aging conditions. The solid solution state
specimens were coated using the anodic coating technique to facilitate the presentation of
the grains in the extrusion direction and the grain morphology was observed using the
optical microscope as shown in Figure 8a,b. Further, the grain diameter in the extrusion
direction was measured by ImageJ image analysis software and the average grain size was
calculated to be about 27.13 µm, as shown in Figure 8c.
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(a) near the edge; (b) near the center; (c) the statistical histogram of the grain size of the solid
solution sample.

The solid solution contribution to the sample strength σss can be evaluated using the
following equation [45]:

σss = σss0(1 − 0.5
fv

fpeak
)

2/3
(16)

where σss0 represents the initial contribution strength from the solid solution of the samples;
fv is the volume fraction of the current sample; and the fpeak is the volume fraction of
precipitation under the peak strength, which can be chosen from the T6 aged sample in the
present study. The value of σss0 can be determined by the equation below [46]:

σss0 = ΣiKiC
2/3
i (17)

where Ci is the concentration (wt.%) of element i of the sample; Ki is the hardening constant
for element i. The strengthening effect of other trace elements can be disregarded, as the ma-
jor alloying elements of the alloy are Zn, Mg, and Cu. For the Al-Zn-Mg-Cu alloys, the val-
ues of Ki reported by Dixit et al. are KZn =3.085 MPa·wt.%2/3, KMg = 20.481 MPa·wt.%2/3,
and KCu = 12.431 MPa·wt.%2/3 for zinc, magnesium and copper, respectively [47].
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The increase in strength resulting from dislocation work hardening σdis is described
by the following equation [47]:

σdis =
BGmb

Ls
(18)

where B is a constant, set to 0.2 for FCC alloys [47]; Gm is the shear modulus of the alloy
matrix, valued at 26.9 GPa for aluminum alloys [47]; b represents the Burgers vector,
which is 0.286 nm for aluminum alloys [47]; and Ls is the average spacing of precipitation,
determined using Equation (19) [48]:

Ls = R

√
2π

3 fv
(19)

where the R is the average radius of precipitates.
For age-strengthened Al-Zn-Mg-Cu alloys, matrix precipitation is uniformly dis-

tributed in the matrix and acts as a barrier to dislocations, contributing significantly to
the increment of strength. The interaction of the matrix precipitation and dislocations
determines the differences in strength contributions, which can be divided into shear
and bypass mechanisms. The critical shear radius Rc determines the interaction of the
precipitation and dislocations. When the precipitation radius R < Rc, the dislocation
can shear the precipitation. When the precipitation radius R > Rc, the dislocation needs
to bypass the precipitation. Hornbogen et al. calculated the critical shear radius Rc for
precipitation-hardening alloys containing a combination of shearable and non-shearable
precipitates [49]:

Rc =
2πGmb

Gp
(20)

where Gm is the shear modulus of the aluminum matrix (26.9 GPa), b is the Burgers vector,
and Gp is the shear modulus of the non-coherent precipitation. For the Al-Zn-Mg-Cu alloys,
the η phase is the non-coherent precipitation with a shear modulus of 24.3GPa [50]. The
critical shear radius Rc is determined to be 2 nm using Equation (20). The contribution of
the shear mechanism σp/shear to the strength can be given by the following equation [51–53]:

σp/shear =

√
3

4πβ

k3/2
p MTGm√

b
( fvR)1/2 (21)

where Gm is the shear modulus of the aluminum matrix (26.9 GPa); b is the Burgers vector
(0.286 nm); β and kp are coefficients, which are defined as 0.43 and 0.07 for the Al-Zn-Mg-Cu
alloys [53]; MT is the Taylor factor, which is an appropriate value of 2 for the above model
in the Al-Zn-Mg-Cu system [53]. The bypass mechanism’s contribution to the strength
σp/bypass can be provided by the following equation [51–53]:

σp/bypass = 0.6MTGmb
√

fv

R
(22)

Ultimately, the contribution of each strengthening component to the yield strength has
been calculated by using the following equation [28], and the results are shown in Figure 9:

σy = σgb + σss +
√

σdis
2 + σp2 (23)

Moreover, the calculated values are further compared with the experimentally measured
yield strengths of the various over-aging samples, as shown in Figure 9. It is found that
the strength errors are within 3%, suggesting that the above strengthening model can be
suitable for evaluating the yield strength of the present alloy under the over-aging degree.
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Ultimately, the contribution of each strengthening component to the yield strength has 
been calculated by using the following equation [28], and the results are shown in Figure 
9: 
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5. Conclusions

In summary, the effect of the over-aging degree on the precipitation behavior and
mechanical properties of an ultra-high-strength Al-Zn-Mg-Cu alloy was investigated using
T6, T79, T76, T74, and T73 aging treatment regimes, and the microstructure analyses were
carried out by TEM, HRTEM, and DSC. The main findings of this study are the following:

1. Both the average size and volume fraction of matrix precipitates increased with the
deepening of the over-aging;

2. The static strengths of the alloy decreased with the deepening of over-aging, while
elongation improved with increased over-aging;

3. TEM confirms that the matrix precipitates are η′ phase precipitates in the T6 sam-
ple, and η′ and η phase precipitates in the T7X samples. The activation energies
required to precipitate the η′ and η phase precipitates of the various aging samples
were determined using the DSC and JMAK equations. The results indicate that the
precipitation of η′ and η phases in all samples is controlled by the kinetics of the aging
process. After the calculations of the JMAK equations, the activation energy required
to precipitate the η′ phase precipitates ranging from 166.08 to 343.28 kJ/mol, and the
activation energy required to precipitate the η phase precipitates ranging from 802.03
to 288.42 kJ/mol from the T6 to T73 conditions. Compared to the T7X treatments,
the lowest activation energy required to precipitate the η′ phase precipitates, and the
highest for η phase precipitates were calculated under the T6 treatment, suggesting
that η phase precipitates are difficult to precipitate under the T6 treatment. Under
T7X treatments, the activation energy required to precipitate η′ phase precipitation
increased with increasing over-aging, while the opposite trend was observed for η
phase precipitates, indicating that T7X treatments promote η phase precipitation;

4. The strengthening components of the ultra-high strength Al-Zn-Mg-Cu alloy un-
der various over-aging degrees are systematically calculated through quantitative
microstructure analysis. A high-precision model suitable for evaluating the yield
strength of the current alloy under over-aging conditions was established.
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Nomenclature

f the volume fraction of precipitates
N the density of precipitates
t the thickness of precipitates
Dplatelet the diameter of platelet-shaped precipitates
∆g the driving force for precipitation
vat the atomic volume
k the Boltzmann constant for the driving force for precipitation (∆g)
T the current aging temperature
C refer to the solute concentrations
R∗ the critical nucleation radius
γ the surface energy
r the average precipitate radius
r0 the initial radius at the aging time t = 0
D is the diffusion coefficient
Y the precipitate volume fraction for the JMAK equations
k the nucleation type constant for the JMAK equations
n the growth mode constant for the JMAK equations
Q the activation energy
T the absolute temperature for the JMAK equations
R the gas constant for the JMAK equations
u the heating rate
A the area fraction for DSC thermograms
σgb the contribution of grain boundary strengthening
σ0 the frictional stress of pure aluminum
ky the Hall–Petch coefficient
d the average grain size
σss the contribution of solid solution strengthening
σss0 the initial contribution strength from the solid solution of the samples
Ki is the hardening constant for element i
σdis the contribution of dislocation work hardening
Ls the average spacing of precipitation
R the average radius of precipitates
Rc the critical shear radius
σp the contribution of the precipitation strengthening
Gm the shear modulus of the aluminum matrix
b the Burgers vector
β the coefficient
β thecoefficient
MT the Taylor factor
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