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Abstract: With the emergence of 3D stacked semiconductor products, such as high-bandwidth mem-
ory, bonding-interface reliability cannot be overemphasized. The condition of the surface interface
before bonding is important and can substantially affect product reliability. Plasma technology can
be used to control the state of a bonding interface, but various factors of interest, such as surface
roughness, chemical bonding state, and surface cleanliness, may depend on the type of gaseous
plasma. These factors may increase voids at the interface, which can jeopardize the product reliability.
In this study, NH3 plasma surface treatment is investigated and compared with the conventionally
preferred surface treatment under Ar plasma. Under the latter method, specific anomalies occurred
and led to void formation at the interface during bonding. By contrast, NH3 plasma treatment
maintained higher uniformity, higher overall surface conditions, and a smooth reduction process.
Furthermore, the formation of a nitride passivation layer effectively inhibited the oxidation of the
metal surface, and the flat surface resulted in the decrease in voids compared with the Ar plasma
treatment after the copper–copper bonding. From the experimental analysis, we achieved a 12%
reduction in resistance in the samples treated with NH3 plasma treatment due to the suppression of
surface oxidation. However, it is unfortunate that the shear strength in the experimental samples
treated with NH3 plasma treatment needs to be further improved.

Keywords: 3D stack; Cu–Cu bonding; plasma; surface treatment; reliability

1. Introduction

The needs for excellent device density, high signal communication bandwidth, su-
perior performance, and low manufacturing costs persist with the expansion of the role
of 3D packaging in the field of semiconductors [1,2]. An example of early 3D packag-
ing technology is stacked chip-scale packaging with copper wires, but an increase in the
number of copper wires in a package leads to a power consumption problem, signal loss,
and the increased package footprint [3]. Through-silicon vias (TSVs) have been devised
to alleviate concerns of multiple wire bonding, but the high cost of TSV fabrication on
wafers has hindered the emergence of the application in commercial products [4]. Likewise,
direct Cu–Cu bonding with TSV interconnection is a promising interconnection method
in 3D packaging [5]. Cu–Cu bonding involves connecting two copper bumps or pads
back-to-back in a TSV to interconnect another semiconductor chip, and it can also be used
for hybrid bonding along with SiO2–SiO2 bonding [6]. It plays a crucial role in advanced
packaging, a stacked high-bandwidth memory (a type of dynamic random-access memory),
and backside power delivery networks [7,8].

Cu–Cu bonding technology is currently being investigated in various research direc-
tions. Cu–Cu bonding is normally conducted at temperatures exceeding 400 ◦C. Its thermal
impact on nearby components can be reduced by decreasing the bonding temperature.
This can be achieved via surface-activated bonding using plasma surface treatment [9].
Additionally, various issues related to the bonding interface are being studied, including
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oxidation and diffusion problems [10,11]. Papers on oxidation problems focus on inhibiting
oxidation itself and removing oxide layers through plasma and wet chemical surface treat-
ments. As for diffusion problems, researchers are investigating the application of coatings
to the copper surface to promote diffusion during bonding [12–16]. Plasma technology
should be used effectively to address these challenges. Ar plasma–based surface treatment
has been adopted in many studies; this process is driven by Ar ion sputtering, which
physically removes the bond between copper and oxygen. Although this process performs
well in surface activation and oxide film removal, it requires appropriate control because it
may increase the surface roughness [17].

For successful Cu–Cu bonding, surface conditions should be controlled strictly. The
key factors affecting surface conditions include surface roughness, surface chemical state,
and surface cleanliness [18]. The surface roughness should be minimized, and any surface
oxide layer must be removed. The presence of particles on the surface can disrupt proper
bonding and reduce bonding reliability [19]. Plasma processes enable the control of these
parameters. Surface roughness reduction decreases the probability of void formation
during bonding and increases the contact area between different Cu surfaces, thereby
improving the shear strength and electrical properties of devices [20]. The effective control
of oxide layers can enhance electrical characteristics and copper atom diffusion. The
roughness of a copper surface is improved by adding H2 to Ar plasma during plasma
surface treatment [17]. Furthermore, the use of N2 plasma for copper surface treatment
effectively suppresses oxidation by forming a passivation layer on the surface [21]. In
this study, the copper surface treatment was performed using NH3 plasma to obtain the
passivation layer expected from N2 plasma and the improved surface roughness expected
from H2 plasma. In the following section, we explain how the samples were prepared,
bonded, and tested, including the plasma surface treatment procedure. In Section 3, we
present our experimental results and discuss our observations regarding the bonding
strength. Finally, the conclusion is presented in Section 4.

2. Experiment
2.1. Surface Activation

A total of 50 nm of Ti barrier layer and 1 µm of Cu film were deposited on a 4-inch Si
wafer via physical vapor deposition. Plasma surface treatment was performed using the
plasma-enhanced chemical vapor deposition (PECVD) equipment, as shown in Figure 1.
The process recipes for the sample fabrication are presented in Table 1. Ar plasma primarily
facilitated a physical process. Ar gas is considered an unreactive gas, as it does not readily
react with other elements. This characteristic makes Ar suitable for processes involving
sputtering, where physical effects dominate. In this physical bombardment process, we
achieved a reduced oxidized surface, shown in Figure 2a. Unlike Ar plasma, NH3 plasma
was selected not for a physical effect but for its chemical effect, which minimized physical
damage to the copper surface presented in Figure 2b [22,23]. Hydrogen and nitrogen
radicals formed within the NH3 plasma. When the hydrogen radicals reacted with the
surface oxygen the copper oxide layer was removed from the surface. Then the removal
proceeds to the interface of Cu/Cu2O, then slowly moves from the surface region and, at
last, the entire whole metallic layer is reduced [24]. After the reduction process, nitrogen-
free radicals generated by N2 plasma reacted chemically with pure copper atoms, devoid
of oxygen, resulting in the formation of copper nitride. This copper nitride acted as a
passivation layer, preventing copper oxidation before Cu–Cu bonding, thus protecting the
copper surface [25].



Coatings 2024, 14, 1449 3 of 13Coatings 2024, 14, x FOR PEER REVIEW 3 of 13 
 

 
Figure 1. A schematic diagram of the 13.56 MHz CCP-type PECVD used in the experiment. 

 
Figure 2. Schematics of Ar plasma and NH3 plasma effect on copper oxide: (a) physical effect of Ar 
plasma; (b) chemical effect of NH3 plasma. 

Table 1. Plasma surface treatment feasibility test. 

Sample 
Number 

Gas Power 
(W) 

Flow Rate 
(sccm) 

Pressure 
(Torr) 

Time 
(s) 

1 Ar 300 50 1 30 
2 NH3 (50%)/Ar 300 NH3 25/Ar 25 1 30 
3 NH3 (90%)/Ar 300 NH3 45/Ar 5 1 30 

2.2. Bonding Process 
Cu–Cu bonding was conducted via thermal compression bonding (TCB), which in-

volves the application of heat and pressure. The bonding process was carried out as shown 
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typically comprises three stages. The initial stage (plastic deformation) occurs at the peaks 
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Table 1. Plasma surface treatment feasibility test.

Sample
Number Gas Power

(W)
Flow Rate

(sccm)
Pressure

(Torr)
Time

(s)

1 Ar 300 50 1 30

2 NH3 (50%)/Ar 300 NH3 25/Ar 25 1 30

3 NH3 (90%)/Ar 300 NH3 45/Ar 5 1 30
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2.2. Bonding Process

Cu–Cu bonding was conducted via thermal compression bonding (TCB), which in-
volves the application of heat and pressure. The bonding process was carried out as shown
in Figure 3.This bonding process was conducted at 420 ◦C for 1 h, followed by an additional
annealing process at 400 ◦C for 30 min. Cu–Cu bonding using heat and pressure typically
comprises three stages. The initial stage (plastic deformation) occurs at the peaks of a wavy
surface, followed by diffusion within the voids between the bonded surfaces. This diffusion
leads to the formation of grain boundaries. Finally, the voids at the bonding interface ripen,
thus completing the bonding process [26]. The additional annealing process was conducted
for stronger bonding [27].
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3. Results and Discussion
3.1. Atomic Force Microscopy (AFM) Analysis of Cu Surface

After surface treatment using plasma, atomic force microscopy (AFM) was used to
evaluate the state of the Cu surface. The AFM results were analyzed in terms of different
characteristics: line roughness, surface roughness, and AFM peaks. Line roughness and
surface roughness are expressed by the parameters Ra and Rq. Ra represents the arithmetic
mean of the deviation in height from the measured data’s average height, while Rq is the
root mean square of the variation in height across the surface profile. Both values are used to
characterize surface roughness. For line roughness analysis, measurements were obtained
at various positions. However, the measured results do not consistently exhibit a specific
trend. Some measured line roughness values are high at certain positions, whereas others
are low. This inconsistency shows that line roughness analysis is unsuitable for this study.
The next roughness parameter considered was surface roughness, which represented the
roughness value throughout the measurement area. Roughness is expected to increase after
Ar plasma treatment; by contrast, in this study, surface roughness does not significantly
differ between the samples treated using Ar plasma and NH3 plasma, as observed in
Figure 4a,b. However, other parameters exhibit significant differences. Figure 4c,d depict
the data for the height of the highest peak from the reference plane throughout the measured
total area (Rp), and the sum of the highest peak and the deepest valley across the measured
total area (Ry), respectively. As shown in the graphs in Figure 4c,d, as the NH3 content
increases, Rp and Ry decrease. This phenomenon is also evident in the 3D AFM image in
Figure 5. This finding is attributed to a partial, irregular phenomenon indicating the high
peaks forming on the reference plane resulting from the argon sputtering effect, and implies
that the likelihood of this phenomenon decreases with the influence of Ar during plasma
treatment. Furthermore, this partial, irregular phenomenon may increase the probability of
void formation between the bonded surfaces during bonding.
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3.2. X-Ray Photoelectron Spectroscopy (XPS) Analysis of Cu Surface

We investigate the chemical bonding state of the surface based on the type of plasma
used through XPS analysis. In Figure 6, the Cu 2p3/2 peaks for the processes involving
different types of plasma are evident. The peak at 932.2 eV corresponds to pure Cu,
indicating the absence of oxidation or nitridation. The peak at 933.8 eV is associated with
CuO [28,29]. As for the process using NH3 plasma, the surface consists of nitride caused by
the chemical reactions of the nitride radicals generated in the NH3 plasma, resulting in the
formation of Cu3N [30]. The Cu3N peak is observed at 933.2 eV in Figure 6b,c [31]. For the
O1s peak, as shown in Figure 7, dominant wavelengths are observed between 529 eV and
531 eV. At 529.9 eV and 530.8 eV, Cu2O and CuO are identified, respectively [32,33]. The
significant reduction observed with NH3 plasma treatment confirms visible improvement
in overall oxide levels. Hence, recipes 1 and 3 from Table 1 were selected for the process,
considering the substantial improvement in oxide levels achieved through NH3 plasma
treatment, as confirmed visually. In Figure 8, the N1s spectra, not observed in the Ar
plasma process, are seen, and they increase with the NH3 ratio. This confirms the presence
of nitride components on the surface and can be inferred to be a passivation layer that
prevents oxidation.
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3.3. Scanning Acoustic Microscopy (SAM) Analysis

Following the TCB process, void inspection was conducted using scanning acoustic
microscopy (SAM). In the SAM images in Figure 9, the dark regions represent well-bonded
areas, whereas the bright regions indicate poor bonding. Differences in the bright areas,
which represent voids, are observed between Figure 9a,b. As for the shades of the dark
regions, the image in Figure 9b, which involves the formation of the nitride passivation
layer, is brighter than that in Figure 9a. This difference is likely due to the possibility of
the improper decomposition of copper nitrides during bonding. A single SAM image
is insufficient for comparison, so additional electrical and physical experiments, such as
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current–voltage (I–V) and shear tests, were conducted to assess the reliability of the bonded
copper effectively.
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3.4. I–V Test

I–V tests were conducted to investigate the electrical characteristics of the bonded
copper. I–V test samples were prepared as shown in Figure 10. To conduct the I–V test,
after dicing the bonded copper samples, we applied silver paste to each end of the samples
to establish an electrical connection between the copper and the measuring equipment.
These tests were performed to utilize the deposited Cu layer as a metal layer and examine
the electrical properties of the wiring. The I–V test results are in Figure 11. Resistance was
calculated by dividing the applied voltage by the measured current. A comparison of the
resistances obtained using this method shows that the samples treated using NH3 plasma
have lower resistance compared with those treated using Ar plasma. However, this result
cannot be solely attributed to the difference between the pure Cu and the Cu surface with
a passivation layer, as oxidation occurred during sample preparation. Relative to the Ar
plasma process, the NH3 plasma process is more effective in inhibiting oxidation, resulting
in lower resistance in the oxidized Cu.
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Simulations were conducted to validate the I–V test method. The sample shown in
Figure 10 is represented as an equivalent circuit in Figure 12. We represent the resistances
of the materials. For example, the resistance of wafer is represented as Rwa f er and Ti is RTi.
The resistance of copper (RCu) was calculated and used in the simulation by regarding the
previously obtained resistance as Rtotal and applying it to the parallel resistor formula. The
simulation results are shown in Figure 13.
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3.5. Shear Test

For the bonding strength measurement, experiments where force is applied horizon-
tally, such as shear tests, are more appropriate than experiments where force is applied
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vertically to the bonding interface, such as four-point bending tests. Samples sized 2 × 2
mm2 were prepared for our shear tests. Equation (1) was used for the precise measurement
of bonding strength [34].

τ =
Ffailrue

A
(1)

In the above equation, τ represents the shear strength, Ffailure corresponds to the force
at which the bond is broken, and A denotes the area of the shear test specimen. Shear tests
were conducted following the method shown in Figures 14 and 15. The results in Figure 16
show that Cu–Cu bonding using Ar plasma exhibits a higher shear strength compared with
Cu bonding using NH3 plasma. The passivation layer formed when using NH3 plasma
should decompose at temperatures exceeding 350 ◦C [35]. However, during the bonding
process in this study, the copper nitride passivation layer was insufficiently decomposed,
leading to bonding in the form of copper nitride. Consequently, the bonding strength
under the use of NH3 plasma is lower than under the use of Ar plasma. This issue has also
been observed in other experiments. Therefore, additional research may be necessary for
the effective removal or decomposition of the passivation layer when conducting Cu–Cu
bonding with such layers.
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3.6. Transmission Electron Microscopy (TEM) Analysis

A TEM analysis of Cu–Cu bonding was conducted for surface treatment using Ar
plasma and surface treatment using NH3 plasma, which is presented in Figure 17. For
treatment using Ar plasma, voids are discernible at the bonding interface. In contrast,
for treatment using NH3 plasma, the bonding interface is hardly distinguishable, and the
defects readily identified as voids in Figure 17a are not easily visible in Figure 17b. The
image in Figure 18 schematically represents the shape of Figure 17a, clearly showing the
presence of voids. This observation can be related to the AFM findings. According to the
roughness findings in Figures 4 and 5 and the 3D AFM image, during surface treatment
using Ar plasma, nonideal peaks and valleys formed, unlike during treatment using NH3
plasma. The initiation of bonding in this state may lead to the formation of significant gaps
at the bonding interface, thus increasing the probability of void formation. This explains
why more voids emerged during treatment using Ar plasma.
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4. Conclusions

In this study, we investigated the effects of using Ar plasma and NH3 plasma for
Cu surface treatment during Cu–Cu bonding via TCB. We found that these treatments
influenced the inhibition of oxidation and the suppression of void formation. The pas-
sivation layer formed during NH3 plasma surface treatment played a significant role in
inhibiting oxidation. Moreover, the plasma surface treatment mechanism had a substantial
impact on the suppression of void formation. We compared the physical effects dominant
in Ar plasma surface treatment, where physical processes prevailed, with the chemical
reactions predominant in NH3 plasma surface treatment. Notably, we observed significant
differences in the surface roughness parameters Rp and Ry, with NH3 plasma surface
treatment, which exhibited smaller values of Rp and Ry, resulting in fewer voids. However,
Ar plasma surface treatment led to higher bonding strength. This was attributed to the
insufficient decomposition of the passivation layer formed during NH3 plasma surface
treatment. This incomplete decomposition compromised the bonding strength, resulting in
Cu nitride–Cu nitride bonding rather than Cu–Cu bonding. In semiconductor manufac-
turing, where the production of a single semiconductor product consumes considerable
time, copper oxidation should be inhibited. However, the passivation layer formed during
NH3 plasma surface treatment must eventually be removed to improve the electrical and
physical properties of the product. In this study, the insufficiently decomposed passivation
layer compromised the physical properties of the product. Therefore, in future research,
the impact of this passivation layer should be minimized for improved performance.
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