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Abstract: Reclaimed asphalt pavement (RAP) reduces energy consumption and enhances economic
benefits by recycling road materials, making it an effective approach for the sustainable use of solid
waste resources. The performance of reclaimed asphalt pavement is significantly affected not only by
the degradation of asphalt binders due to aging but also by the dosage of the rejuvenator used. The
master curve of the complex shear modulus is widely recognized as a valuable tool for characterizing
the rheological properties of asphalt binders. First, a virgin asphalt binder with a grade of SK70 was
subjected to varying degrees of aging, followed by the rejuvenation of the aged asphalt using different
dosages of the rejuvenator. Second, frequency sweeps were conducted on the aged and rejuvenated
asphalt binders at various temperatures. Complex modulus master curves were constructed, and
the CAM model was applied to fit these curves. The viscoelastic properties of asphalt at different
aging levels and rejuvenator dosages were then analyzed based on the CAM parameters. Next, by
applying a curve-shifting technique based on the least squares method to a reference state, both
the time–temperature–aging (TTA) and time–temperature–regenerator (TTR) master curves of the
complex modulus were constructed. The relationships between aging shift factors and aging times,
as well as between regenerator shift factors and dosages, were established to predict the complex
moduli of both aged and rejuvenated asphalt. Finally, the shear stress–strain relationships and
material integrity of aged and rejuvenated asphalt were evaluated to assess their fatigue performance.
The results indicated that aging significantly increases the complex modulus of asphalt, with TFOT
(Thin Film Oven Test) aging having a more pronounced impact than PAV (Pressurized Aging Vessel)
aging, resulting in reduced viscous deformation and an increased risk of cracking. Rejuvenator
dosage reduces the complex modulus, with a 6% dosage effectively restoring mechanical properties
and enhancing low-temperature performance. The TTA master curve demonstrates a strong linear
correlation between aging shift factors and time, allowing for accurate predictions of the complex
modulus of aged asphalt. Similarly, the TTR master curve reveals a linear relationship between
regenerator dosage and shift factor, offering high predictive accuracy for optimizing regenerator
dosages in engineering applications. The study further explores how varying levels of aging and
rejuvenator dosage affect fatigue life under different strain conditions, uncovering complex behaviors
influenced by these aging and regeneration processes.

Keywords: reclaimed asphalt pavement (RAP); aged asphalt; rejuvenated asphalt; complex modulus;
time–temperature–aging (TTA); time–temperature–regenerator (TTR); fatigue

1. Introduction

Asphalt pavement is commonly used on highways due to its superior performance.
However, it is prone to wear and aging under high temperatures and ultraviolet radiation,
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leading to performance deterioration and a shortened service life [1,2]. This results in
increased repair and maintenance of asphalt pavement, generating a significant amount of
solid waste [3]. According to the Environmental Protection Agency (EPA), nearly 600 mil-
lion tons of reclaimed asphalt pavement (RAP) are generated annually [4]. RAP consists
of aged asphalt and aggregates of varying particle sizes, and its utilization helps reduce
environmental pollution and costs and conserves natural resources. However, compared to
original asphalt, RAP becomes more rigid and brittle when used in regenerated asphalt
pavements. Additionally, according to the migration theory of components, oxidation
occurs during the mixing, transportation, paving, and maintenance of asphalt pavements.
This oxidation results in the loss of light components and an increase in heavy components,
leading to low-temperature cracking and reduced fatigue life [5]. As a result, researchers are
increasingly using regenerators to restore the performance of aged asphalt pavements [6,7].

A rejuvenator has a chemical composition similar to the lighter components of asphalt;
it consists of engineered products made from various organic compounds and exhibits a
specific polarity and molecular structure [8,9]. The addition of a rejuvenator can restore
the performance of asphalt. Studies have shown that rejuvenators can reduce the complex
modulus of aged asphalt and increase its phase angle [10]. Sharma et al. evaluated the
potential use of RAP as a replacement material for asphalt binders and found that binders
incorporating 40% RAP exhibited superior rheological properties [11].

Asphalt pavement aging is influenced by traffic loads and natural factors, with aging
being proportional to time, temperature, and load. Since aging occurs over an extended
period, real-time measurement of asphalt performance is challenging. Therefore, indoor
accelerated aging tests are commonly employed to better predict the performance of aged
asphalt. Anjali et al. proposed a time–temperature superposition approach to predict the
complex modulus of asphalt under various dosage conditions [12]. This approach employs
a consistent dose rate to construct a CA model for predicting the complex modulus of
asphalt binders. Liu et al. developed a method based on a time–aging superposition
approach to construct an aging master curve for the complex modulus and phase angle [13].
Rad et al. utilized the NCHRP09-54 and GAS models to predict asphalt binder properties
under thermal–oxidative aging, using the viscosity index as a key metric. They found
that the NCHRP09-54 model demonstrates high accuracy in predicting aging performance.
Additionally, Saleh et al. used the complex modulus to predict the aging process of asphalt
binders by decoupling the time–temperature and time–aging superposition effects [14].
Chen et al. employed frequency sweeps and the time–temperature superposition principle
(TTSP) to construct complex modulus master curves and a black diagram, evaluating the
effect of modifiers on the aging sensitivity and rheological behavior of asphalt during the
aging process [15].

Over the past decades, research has verified that asphalt materials within the linear
viscoelastic (LVE) domain are thermos-rheological simple, allowing their behavior in this
undamaged state to be characterized using the TTSP. Building upon this theory, Chen
et al. established a master curve for asphalt aging time and thoroughly examined the
long-term aging performance of various modified asphalts [16]. Qin et al. explored changes
in asphalt pavement performance under real aging conditions using rheological indicators,
proposing a relationship between asphalt structure and these indicators to predict the
rheological properties of aging asphalt binders [17]. Using the time–aging superposition
principle, Wang et al. established an aging time master curve to accurately predict asphalt’s
dynamic modulus index under various aging conditions [18]. Wen et al. performed a series
of monotonic constant shear strain-rate tests on asphalt binders at various temperatures
and loading rates, subsequently constructing master curves for failure stress and failure
energy [19]. Based on the above studies, adopting models to predict the performance
of aging and regenerated asphalt binders is crucial for optimizing the use of reclaimed
asphalt pavement (RAP) in modern infrastructure projects. As asphalt binders age, they
undergo chemical and physical changes that affect their rheological properties, including
increased stiffness and a higher susceptibility to cracking. Regeneration of these aged
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binders with rejuvenators helps restore their flexibility and resistance to deformation.
However, predicting the performance of both aged and regenerated binders requires a
robust modeling approach to ensure pavement durability and longevity.

Aging not only alters the dynamic mechanical properties of asphalt but also reduces
its fatigue life. Since the addition of a regenerating agent also affects the fatigue life of aged
asphalt, it is essential to examine the fatigue performance of both aged and regenerated
asphalt. Numerous studies have shown that the fatigue characteristics of asphalt binders de-
cline with age [20–22]. Yang et al. evaluated the fatigue characteristics of asphalt at different
aging times using the Simplified Viscoelastic Continuum Damage (S-VECD) model, finding
that as aging time increased, fatigue resistance declined [23]. Researchers have also tested
the fatigue characteristics of aged asphalt binders using regenerators. Jacobs et al. used
the linear amplitude sweep (LAS) test to measure the fatigue characteristics of reclaimed
asphalt pavement and found that the rejuvenator improved the fatigue life of regenerated
asphalt binders without compromising their high-temperature performance [24]. Cao et al.
studied the effects of bio-oil regenerants on the fatigue performance of asphalt binders
aged for different durations and found that longer aging resulted in lower fatigue life [25].
Understanding the fatigue behavior of both aged and regenerated asphalt is crucial for
ensuring the long-term durability and sustainability of pavement structures. Since aging
diminishes the binder’s resistance to fatigue cracking, proper evaluation helps in optimiz-
ing the dosage of rejuvenators, ensuring that the mechanical properties are restored while
maintaining structural integrity. This is essential for enhancing pavement life, especially
with the growing focus on recycling asphalt and reducing environmental impacts.

Existing research has investigated the aging and regeneration processes of asphalt
pavements, particularly focusing on the effectiveness of rejuvenators in restoring the
performance of aged asphalt. Various models and methods, such as the time–temperature
superposition principle (TTSP), by shifting the complex modulus curves at different aging
times, can be used to construct a time–temperature–aging (TTA) equivalent master curve
for predicting asphalt performance. The previously discussed research methods, while
valuable, have certain limitations that need to be addressed for a more comprehensive
understanding of asphalt behavior. Specifically, these methods fail to clearly delineate the
relationships between different modes of asphalt aging, the duration of aging, and the
corresponding shift factor that is often used to predict material behavior under varying
conditions. This gap in the methodology creates uncertainty in accurately modeling how
asphalt will perform over time as it ages. Moreover, when considering the rejuvenation of
aged asphalt, the connection between the shift factor and the quantity of rejuvenator used
is not well defined. This lack of clarity impedes our ability to establish a reliable framework
for predicting the dynamic mechanical properties of rejuvenated asphalt. Without a better
understanding of these relationships, it becomes challenging to forecast how both aged
and rejuvenated asphalt will behave under different loading and environmental conditions,
which is critical for the effective design and maintenance of asphalt pavements. Therefore,
further research is needed to elucidate these relationships and enhance the predictive
accuracy of asphalt performance models. This study predicted the dynamic mechanical
properties and fatigue life of aged–rejuvenated asphalt using complex modulus aging and
rejuvenation master curves, along with the S-VECD model, under various aging conditions
and rejuvenator admixtures. The aim of this study is to predict the dynamic properties
of aged and rejuvenated asphalt binders, focusing on the effects of aging and rejuvenator
dosage on the material’s rheological and fatigue performance. By subjecting virgin asphalt
to varying degrees of aging and rejuvenating the aged binder with different rejuvenator
dosages, this research seeks to elucidate how these factors influence the complex modulus
of asphalt. The study employs the master curve of the complex shear modulus, using the
CAM model and curve-shifting techniques, to construct time–temperature–aging (TTA)
and time–temperature–regenerator (TTR) master curves for accurate predictions of the
asphalt’s performance. Additionally, the research evaluates the fatigue performance and
material integrity of both aged and rejuvenated asphalt under different strain conditions,
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aiming to provide valuable insights for optimizing the use of reclaimed asphalt pavement
(RAP) in sustainable road construction.

2. Materials
2.1. Asphalt Binders

The virgin asphalt used in this study is SK70 matrix asphalt. Its essential performance
properties were tested according to the (JTG E20-2011) [26], and test results are presented
in Table 1.

Table 1. Physical properties of matrix asphalt.

Property SK70 Test Method

Penetration (25 ◦C, 100 g, 5 s) (0.1 mm) 57.3 T0604
Ductility (5 cm/min, 10 ◦C) 77.3 T0605

Softening point (◦) 46.9 T0606
Viscosity (135◦, Pa·s) 0.37 T0625

2.2. Rejuvenator

A generic rejuvenator was adopted in this study, and its properties are presented in
Table 2.

Table 2. Essential properties of rejuvenator.

Property Test Result Technical Specifications Test Method

Viscosity (60 ◦C, mm2/s) 55 ≥50 T0619
Flash point (◦C) 234 ≥220 T0611

RTFOT Viscosity ratio 1.02 ≤3 T0619
RTFOT Mass Change (%) −0.32 ≤±4 T0609

Saturation content (%) 11.31 ≤30 TLC-FID
Aromatic content (%) 78.8 - TLC-FID

2.3. Specimen Preparation

As the actual aging station could be simulated in a laboratory aging process based
on Kim and Saleh et al.’s study [14], this study prepared asphalt binders at three aging
stages: original SK70 asphalt, short-term-aged asphalt binders at different aging times,
and long-term-aged asphalt binders at different aging times. The short-term-aged asphalt
binders were prepared using the Thin Film Oven Test (TFOT) at a temperature of 163 ◦C,
with five aging durations: 5, 10, 20, 30, and 40 h, to simulate thermal–oxidative aging. The
long-term-aged asphalt binders were prepared using the Pressurized Aging Vessel (PAV) at
100 ◦C and 2.1 MPa, with two aging durations: 20 and 40 h on TFOT-aged asphalt binders
(5 h). The rejuvenation procedure was as follows: the aged asphalt (PAV: 20 h) was heated
to 135 ◦C, and the rejuvenator was added. The mixture was then blended for 20 min at
3000 rpm in a mixer.

3. Experimental Methods
3.1. Design of Experiments

An AR2000 dynamic shear rheometer (DSR) by TA Instruments (New Castle, DE,
USA) was employed to measure the rheological performance of asphalt binders. The
temperature–frequency and LAS tests were conducted using plates with diameters of 8 mm
and 25 mm, following AASHTO T315 standards [27]. Temperature–frequency sweep tests
were performed at six temperatures: 20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C, across
frequencies ranging from 0.1 to 15.9 Hz. To ensure the test results were within the linear
viscoelastic (LVE) range of the asphalt binder, a linear amplitude sweep (LAS) was applied
with a strain amplitude of 1% across all test frequencies and temperatures. The LAS tests
included a frequency sweep within the LVE range and an oscillatory strain amplitude
sweep, following AASHTO TP 101 [28].
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3.2. Christensen–Anderson–Marasteanu (CAM) Model

Based upon the time–temperature superposition principle, the master curve of the
asphalt binder’s dynamic shear modulus was established by multiple temperature and
frequency sweep test results, and the CAM model was applied to fitting the complex
modulus master curve [29,30]. Yusoff et al. demonstrated that the CAM model provides a
better fit for the complex modulus master curve compared to the CA model [31]. Therefore,
this study employs the CAM model to fit the complex modulus master curve of asphalt
binders under different aging and regenerating conditions. The fitting of the CAM model
is shown in Figure 1, and the shape parameter can be described in Equation (1).

|G∗| =
G∗

g[
1+ fc/( f )k

]m/k (1)
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Figure 1. Fitting the complex modulus master curve for the CAM model.

Here, G∗
g is the glassy complex modulus, f is actual loading frequency, fc is the cross

frequency, and m and k are the master curve fitting parameters. The shape parameter, m,
represents the slope of the third asymptote of the complex modulus’s primary curve. A
smaller slope of the asymptotic line indicates that the asphalt is less sensitive to frequency,
suggesting better viscoelastic performance at both high and low temperatures. The param-
eter k determines how rapidly the complex modulus master curve converges with the two
asymptotes as the frequency approaches zero or infinity.

3.3. Simplified Viscoelastic Continuum Damage Model

The viscoelastic continuum damage (VECD) model is based on Schapery’s mechanical
theory. It was applied to predict the fatigue life of asphalt materials of different scales. In
the library, the relation of modulus and strain obtained from the LAS test was selected
to calculate the fatigue life of asphalt according to the VEDC model [16]. However, the
calculation process is quite complex. To reduce the calculation process, Underwood et al.
simplified the VECD model to make it more effective and predict the fatigue life of asphalt
successfully. In the S-VECD model, the peak pseudostrain in any loading cycle is defined
as shown in Equation (2):

γR
P =

1
GR

(γP|G∗|LVE) (2)
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In which γP is the peak pseudostrain in the loading cycle, |G∗|LVE is the complex
modulus of the material in the linear viscoelastic range, and GR is the reference modulus,
which was set to 1.

At the beginning of the amplitude sweep process, the material exhibits linear vis-
coelasticity, while the pseudostrain value decreases as the material’s damage level increases.
Therefore, the pseudostrain value can be calculated to analyze the damage evolution char-
acteristics of the material, referred to as the material integrity coefficient, C∗(S), and the
DMR is the dynamic modulus ratio, shown in Equations (3) and (4).

C∗(S) =
τP

γR
P × DMR

(3)

DMR =
|G∗|Fingerprint

|G∗|LVE
(4)

In which τP is effective peak shear stress, and |G∗|Fingerprint is the initial complex
modulus measured.

To calculate the nonlinear viscoelastic properties of the material during loading, the
nonlinear viscoelastic complex modulus, |G∗|NLVE, is substituted for the linear viscoelastic
complex modulus, |G∗|LVE, during the strain sweep, and the internal damage evolution
variable S(t) is shown in Equations (5)–(7).

γR
P NLVE =

1
GR

(γP|G∗|NLVE) (5)

S(t) =
n

∑
i=1

[
DMR

2
(γ R

P,i

)2
(C ∗

i−1 − C∗
i

)] α

α + 1
(tRi − tRi−1)

1
α + 1 (6)

tR =
ti
αT

(7)

In which tR is the reduced time, i is the cycle number, α is a non-damaged material
constant, m is the fitting slope parameter of the linear viscoelastic dynamic shear modulus
master curve, and n is the maximum load time. When the damage characteristic curve,
S(t), is independent of loading duration and temperature, the test results can predict the
damage evolution in a material subjected to a given loading duration.

As fatigue damage accumulates within the asphalt material, fatigue breakdown occurs
when a critical damage state is reached, which destroys material cohesion, and reduces the
asphalt mixture’s fatigue life. This paper evaluates the fatigue life of aged and regenerated
asphalt using the pseudostrain energy release rate, GR, and fatigue life, N f , to predict
fatigue performance more scientifically. The pseudostrain energy released, WR

r , represents
the difference between the total pseudostrain energy and the stored pseudostrain energy,
and the mean pseudostrain energy release rate, GR, is shown in Equations (8) and (9).

WR
r =

1
2
(1 − C∗)(γR

p )
2

(8)

GR =
WR

r
N f

=
TRPSE

N f
2 (9)

In which TRPSE is the area of the curve before the point of damage and WR
r is the

mean virtual strain energy released. The relation between the mean virtual strain energy
release rate, GR, and the fatigue life constitutes the damage criterion of the material, and
the relation formula is shown in Equation (10).

GR = aN f
b (10)
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The relation between the material’s final fatigue life, N f , and the strain, γp, is shown
in Equation (11).

N f = (
A
a

γ2+2αC2/K
p )

1
b+1−C2/K

(11)

In which C1 and C2 are optimized fitting parameters that are also the change rate
parameters of the strength damage evolution associated with C∗(S), A and K are calculated
parameters, and a and b are material failure criterion parameters.

4. Results and Discussion
4.1. Impact of Aging on the Complex Modulus and Viscoelastic Behavior of Asphalt Binders

The complex modulus master curves of asphalt binders under different aging con-
ditions were constructed using the least squares method, with Tref taken at 40 ◦C. The
CAM model was then applied to fit the master curve of the complex modulus, as shown in
Figure 2. Compared to the original asphalt, the complex shear modulus of aged asphalt
significantly increases with the extension of aging time. Comparing the effects of TFOT
and PAV aging on asphalt over the same duration (Figure 2a,b) revealed that the TFOT
aging has a more pronounced effect on the complex modulus of asphalt than that of PAV
aging. Meanwhile, Figure 2 indicates that the differences in the complex modulus of
asphalt with various aging times are more pronounced at a low frequency than that at
a high frequency. According to free volume theory of polymers, asphalt binders exhibit
the same time–temperature dependence as polymer materials. That means an increase
in temperature causes the volume within the asphalt binders to expand, the free space
between molecules to increase, and the restriction on molecular movement to decrease,
resulting in a decrease in the complex modulus at high temperatures and low frequencies.
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Table 3 presents the CAM fitting parameters for both original and aged asphalt binders.
The values of the fitted correlation coefficients, R2, indicate that the CAM model can
effectively fit the complex modulus master curve of the asphalt binders with varying
degrees of aging. Therefore, the model parameters can be applied to analyze the impact of
aging on the performance of bitumen.
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Table 3. CAM model parameters for unaged and aged asphalt binders.

Aging Methods fc/Hz k me R2

SK70 4.02 × 103 0.955 0.976 0.9999
SK70 + TFOT5h 1.69 × 102 2.012 1.204 0.9990
SK70 + TFOT10h 2.46 × 101 2.365 1.278 0.9986
SK70 + TFOT20h 2.70 × 10−1 2.943 1.598 0.9991
SK70 + TFOT30h 3.35 × 10−8 3.556 3.182 0.9990
SK70 + TFOT40h 3.98 × 10−17 4.451 8.848 0.9993
SK70 + PAV20h 4.90 × 101 1.924 1.162 0.9990
SK70 + PAV40h 6.55 1.987 1.353 0.9994

According to the changes observed in the frequency division parameter fc, it is evident
that as the aging time increases, the fc value gradually decreases. This phenomenon
indicates that, during the aging process of asphalt, the viscous deformation region of the
material gradually diminishes, while the elastic deformation region relatively increases.
This implies that aging induces more elastic behavior in the asphalt material, reducing its
capacity for viscous deformation. This change may be attributed to the evaporation of light
components in the asphalt, oxidative reactions, and other chemical changes during the
aging process, which result in a more rigid internal structure of the asphalt. Consequently,
its viscous properties decrease, and its elastic properties are enhanced. Such changes in
characteristics have implications for the long-term performance of asphalt pavements,
as an increase in elastic deformation may lead to a greater likelihood of cracks or other
forms of damage under external loading conditions. me is defined as the slope of the
third asymptote of the complex modulus master curve, a parameter that quantifies the
material’s sensitivity to variations in temperature and frequency. This parameter is crucial
in characterizing the viscoelastic behavior of asphalt binders, under different thermal
and loading conditions. A higher me value indicates that the material exhibits greater
sensitivity to changes in temperature and frequency, implying that its mechanical properties,
including stiffness and deformation characteristics, are more susceptible to alterations
under varying environmental conditions. Table 3 shows that the me value tends to increase
with prolonged aging of asphalt materials. This trend suggests that the aging process,
which may involve oxidative hardening, loss of volatile components, and other chemical
or physical changes, enhances the material’s sensitivity to temperature and frequency
fluctuations. As a result, aged asphalt becomes more prone to performance issues such as
cracking at low temperatures, indicating a degradation in its low-temperature flexibility.

4.2. Impact of Rejuvenator on the Complex Modulus and Viscoelastic Properties of Aged Asphalt
Binders

The complex modulus master curves of asphalt binders under different rejuvenator
dosages were constructed using the least squares method at 40 ◦C, followed by the applica-
tion of the CAM model to fit the master curves, as shown in Figure 3. With the increasing
dosage of the rejuvenator, the complex modulus of the aged asphalt binder progressively
diminishes. Notably, when the rejuvenator dosage reaches 6%, the complex modulus of
the regenerated asphalt becomes comparable to that of the original asphalt. This indicates
that the addition of 6% rejuvenator is sufficient to restore the mechanical properties of the
aged asphalt to a level similar to that of the original material. The fitting parameters of the
CAM model for the complex modulus master curve of the regenerated asphalt binder are
presented in Table 4. The CAM model’s fitting correlation coefficients (R2) for the complex
modulus master curves of the regenerated asphalt binders are all above 0.998, demon-
strating that the CAM model is highly effective in fitting the complex modulus master
curves of regenerated asphalt binders. As the rejuvenator dosage increased, the fc value
of the regenerated asphalt increased gradually, while the me value decreased gradually,
indicating that rejuvenator can improve the low-temperature performance and temperature
sensitivity of aged asphalt binders. Composed primarily of low-molecular-weight aromatic
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oils, the rejuvenator exhibits a viscous flow state within the test temperature range of 20 to
70 ◦C, along with excellent low-temperature ductility and temperature sensitivity. These
characteristics enable the rejuvenator to restore the flexibility and resilience of aged asphalt,
thereby enhancing its resistance to low-temperature cracking and reducing its sensitivity
to temperature fluctuations. Consequently, the addition of a rejuvenator significantly im-
proves the low-temperature crack resistance and temperature stability of the regenerated
asphalt binder, making it more durable under varying environmental conditions.
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Figure 3. Temperature master curves at different regenerator dosages.

Table 4. CAM model parameters for regenerated asphalt binders.

Regeneration fc/Hz k me R2

SK70 4.02 × 103 0.955 0.976 0.9999
SK70 + PAV20h 4.90 × 101 1.924 1.162 0.9990

PAV + 4%R 4.54 × 103 1.895 0.905 0.9989
PAV + 6%R 4.95 × 104 1.803 0.849 0.9994
PAV + 8%R 2.58 × 106 1.252 0.816 0.9990

PAV + 10%R 1.62 × 107 0.061 0.737 0.9980
PAV + 12%R 1.33 × 108 0.002 0.674 0.9982

4.3. Construction and Prediction of Asphalt Complex Modulus Master Curve Based on
Time–Temperature–Aging (TTA) Superposition Principle

The observation of master curves of the asphalt complex modulus at different aging
times reveals that the master curves are essentially parallel. This pattern is similar to
the curves obtained from frequency sweeps at different temperatures. The influence of
aging time on the complex modulus of asphalt can be addressed by referencing the time–
temperature superposition principle. The time–temperature superposition principle is an
important method in the study of asphalt material behavior, demonstrating that within a
certain range, the effects of temperature and time on the material’s mechanical properties
are equivalent. Therefore, the material response at different temperatures can be normalized
into a single master curve through time shifting. Similarly, for the effect of aging time on
the asphalt complex modulus, if the master curves at different aging times are found to be
essentially parallel, the time–temperature superposition principle can be analogized. By
shifting the complex modulus curves at different aging times, a time–temperature–aging
(TTA) equivalent master curve can be constructed. Specifically, the steps to construct such
an equivalent master curve may include the following:

(1) Determine a reference state: first, select a reference aging time and temperature as the
baseline for constructing the master curve.
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(2) Curve shifting: by appropriately shifting the curves (along the time or frequency
axis), align the complex modulus curves at other aging times or temperatures with
the master curve at the reference state.

(3) Construct the equivalent curve: after completing the curve shifts, integrate all the
data points to form the time–temperature–aging equivalent complex modulus master
curve.

This method treats aging as a factor similar to temperature, and by applying ap-
propriate shifts, achieves equivalence between aging, time, and temperature. The TTA
superposition principle provides an effective tool for studying the mechanical properties of
asphalt materials under different aging times and temperature conditions, aiding in a better
understanding of the long-term performance of asphalt [32]. In this study, the original
asphalt (0 h) was applied as the reference state and the least squares method was employed
to shift the complex modulus master curves at different aging times to the reference state,
thereby constructing the time–temperature–aging master curve (Figure 4). During this
process, the shift factors corresponding to the master curves at each aging level were also
obtained. By analyzing the relationship between the shift factors and aging time, it is
possible to accurately predict the complex modulus of asphalt at different aging times. The
aging shift factors obtained at different aging times using the time–temperature–aging
superposition method are shown in Figure 5. Aging shift factors for different aging meth-
ods (TFOT and PAV) significantly increase with aging time. A strong linear correlation
is observed between the aging shift factors and aging time, with correlation coefficients
greater than 0.975. Therefore, it can be concluded that the relationship between aging shift
factors and aging time can be used to accurately predict the complex modulus of asphalt
under different aging methods and times.
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4.4. Prediction Regenerated Asphalt Complex Modulus Master Curve Based on
Time–Temperature–Regenerator (TTR) Superposition Principle

Based on the parallel relationship observed between the complex modulus master
curves of regenerated asphalt at different regenerator dosages and the original asphalt
complex modulus master curve, this study further employs the least squares method to
construct the TTR complex modulus master curve of regenerated asphalt. In this process,
the complex modulus master curve of asphalt aged for 20 h was used as the reference
state, and the complex modulus master curves of regenerated asphalt with varying re-
generator dosages were shifted to the left to construct the time–temperature–regenerator
complex modulus master curve (Figure 6). Simultaneously, shift factors associated with
the regenerator dosage were extracted. Figure 7 illustrates the regenerator dosage shift
factors determined using this method. The results indicate that as the regenerator dosage
increases, the shift factor exhibits a decreasing trend. This phenomenon suggests a signifi-
cant linear relationship between the regenerator dosage and the shift factor. Furthermore,
by comparing the calculated regenerator shift factor curve with the predicted curve, it is
evident that the error between the two is minimal, indicating that this method possesses
a high degree of predictive accuracy. Consequently, the regenerator dosage shift factor
can serve as an effective tool for predicting the complex modulus of regenerated asphalt
under various regenerator dosage conditions. This method not only provides a theoretical
foundation for predicting the performance of regenerated asphalt but also offers practical
guidance for optimizing regenerator dosages in engineering applications.
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4.5. Material Integrity Analysis of Aged and Regenerated Asphalt Fatigue Performance

LAS test shear stress–strain curves for various levels of aged and regenerated asphalt
are illustrated in Figure 8. These curves are employed to determine the breakdown strain
of asphalt and to analyze the strain dependence of the material’s properties. The width
of the curve at its peak is indicative of the material’s strain dependence. The analysis
presented in Figure 8 demonstrates that aging narrows the peak width of the asphalt
binder’s LAS stress–strain curve, signifying an increased dependence on stress and strain
as the aging level rises. Conversely, the inclusion of the regenerant causes the peak width of
the stress–strain curve for the regenerated asphalt to broaden, indicating that the regenerant
mitigates the stress dependence of the asphalt binder. Aging leads to an increase in the
rigidity and brittleness of the asphalt binder. As the binder undergoes aging, like under
TFOT and PAV conditions, its molecular structure becomes more cross-linked, and the
material loses its original flexibility. This narrowing of the peak width reflects an increased
strain dependence, meaning that the material becomes more sensitive to changes in stress
and strain. The asphalt binder’s ability to deform elastically is reduced, leading to a
more pronounced stress–strain response in a narrower range of strains. The addition of a
regenerant (rejuvenator), on the other hand, restores some of the flexibility and viscoelastic
properties of the aged asphalt binder. Regenerants work by reintroducing light oils or
maltenes that help to soften the asphalt, reducing the cross-linking that occurs during
aging and improving its ability to deform under stress. The broadened peak width seen in
the stress–strain curve of the regenerated asphalt indicates a reduced strain dependence,
meaning that the material becomes more resilient and less sensitive to changes in stress
and strain over a wider range. The regenerant helps to mitigate the material’s brittleness,
improving the ductility and fatigue resistance of the asphalt by increasing its ability to
deform more uniformly under stress.
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the fatigue performance of the aged asphalt. The fitting parameters α  and β were de-
rived from the nonlinear fitting of the S-VECD model data, with the corresponding curve 
fitting parameters and slopes detailed in Table 5. α  is a damage parameter used to char-
acterize and model the extent of damage within the material. In this study, α  was uti-
lized to fit the energy storage modulus for various levels of aging and regeneration. As 
the aging time increased, α  decreased due to a reduction in the material’s maximum 
relaxation rate, which corresponds with higher levels of aging. Conversely, when different 
dosages of regenerant were introduced to the aged asphalt, α  also decreased. This re-
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Table 5. Slope and damage parameters of aged and regenerated asphalt. 

Asphalt α  1C  2C  R2 
SK70 2.054156 0.000167 0.329662 0.9979 

SK70 + TFOT5h 2.271325 0.000189 0.306717 0.9951 

Figure 8. The LAS test strain–stress curves for aged (a) and regenerated asphalt binders (b).

Figure 9 illustrates the relationship between the material integrity factor C∗(S) and
the strength damage parameter S(t) for various levels of aged and regenerated asphalt.
As the aging time increased, the material integrity values at failure indicated a gradual
decrease in the material’s resistance to damage, ultimately impacting the asphalt’s fatigue
life. However, the addition of the regenerant resulted in a lower integrity value factor at
failure, which enhanced the material’s resistance to damage and subsequently improved
the fatigue performance of the aged asphalt. The fitting parameters α and β were derived
from the nonlinear fitting of the S-VECD model data, with the corresponding curve fitting
parameters and slopes detailed in Table 5. α is a damage parameter used to characterize
and model the extent of damage within the material. In this study, α was utilized to fit the
energy storage modulus for various levels of aging and regeneration. As the aging time
increased, α decreased due to a reduction in the material’s maximum relaxation rate, which
corresponds with higher levels of aging. Conversely, when different dosages of regenerant
were introduced to the aged asphalt, α also decreased. This reduction occurred because the
regenerant enhanced the material’s maximum relaxation rate and increased the viscosity of
the regenerated asphalt.
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Table 5. Slope and damage parameters of aged and regenerated asphalt.

Asphalt α C1 C2 R2

SK70 2.054156 0.000167 0.329662 0.9979
SK70 + TFOT5h 2.271325 0.000189 0.306717 0.9951
SK70 + TFOT10h 2.369731 0.000253 0.292416 0.9946
SK70 + TFOT20h 2.470602 0.007556 0.242607 0.9935
SK70 + TFOT30h 2.650436 0.001405 0.168638 0.991
SK70 + TFOT40h 2.892544 7.63 × 10−5 0.223471 0.9985
SK70 + PAV20h 2.38692 0.001642 0.273924 0.9943
SK70 + PAV40h 2.584196 0.000152 0.223331 0.9967

SK70 + PAV20h + 4%R 2.283139 3.96 × 10−5 0.286903 0.9973
SK70 + PAV20h + 6%R 2.222211 0.000431 0.349668 0.9924
SK70 + PAV20h + 8%R 2.187286 0.000143 0.350461 0.9914
SK70 + PAV20h + 10%R 2.142417 0.00021 0.390778 0.9928
SK70 + PAV20h + 12%R 2.127048 0.00015 0.441002 0.9911

The failure criterion, based on damage characterization within the S-VECD model,
is employed to evaluate and predict the fatigue performance of asphalt materials. This
criterion demonstrates a stronger correlation within the relationship model developed by
Sabouri and Kim [33]. Figure 10 illustrates the relationship between the fatigue failure
criterion and various levels of aging and regenerated asphalt, which can be utilized to
estimate fatigue life under different loading conditions. The figure shows that aging caused
the GR − Nf fitting curve to shift upward, with the most pronounced shift occurring after a
TFOT of 5 h aging, indicating that short-term aging has a significant impact on fatigue life.
Conversely, the addition of the regenerator caused the GR − Nf curve to shift downward,
suggesting that the regenerator reduced the rate of damage accumulation during fatigue
testing and significantly enhanced the fatigue life of the regenerated asphalt. Figure 11
presents the fatigue life under varying strain conditions for different levels of regeneration
and aging. The figure illustrates that the fatigue equation, which relates Nf to strain,
provides a strong fit, with the slope of the equation indicating the material’s sensitivity
to Nf under strain. At lower strain levels, the fatigue life of aged asphalt increased with
longer aging times, and it was observed that TFOT aging had a more pronounced effect on
fatigue life than PAV aging for the same duration. Conversely, under high strain conditions,
the traditional view holds true: the longer the aging period, the shorter the fatigue life of
the asphalt. The relationship between the fatigue life and strain of regenerated asphalt
exhibited a markedly different trend compared to that of aged asphalt when varying
dosages of rejuvenator were added. Under low strain conditions, the fatigue performance
of regenerated asphalt gradually approached that of the original asphalt as the dosage of
rejuvenator increased. In contrast, under high strain conditions, the higher the dosage of
rejuvenator, the greater the fatigue life of the regenerated asphalt. The underlying reasons
for this behavior remain unclear and may be linked to the complex mechanisms involved
in the aging and regeneration processes, as suggested by some studies [16,20,34].
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5. Conclusions

In this study, aging and regeneration master curves of the complex modulus for vari-
ous asphalt binders were developed based on the time–temperature–aging–regeneration
superposition principle. First, frequency sweep tests were conducted on aged and rejuve-
nated asphalt binders at various temperatures. Second, complex modulus master curves
were constructed, and the CAM model was applied to fit these curves. The viscoelastic
properties of asphalt at different aging levels and rejuvenator dosages were then analyzed
based on the CAM parameters. Next, by applying a curve-shifting technique based on
the least squares method to the reference state, both the time–temperature–aging (TTA)
and time–temperature–regenerator (TTR) master curves of the complex modulus were
constructed. Finally, the relationships between aging shift factors and aging times, as well
as between regenerator shift factors and dosages, were established to predict the complex
modulus of both aged and rejuvenated asphalt. The following conclusions can be drawn:

(1) Aging significantly increases the complex modulus, especially under TFOT aging
compared to PAV aging. The CAM parameters can effectively explain the impact of
aging on asphalt, revealing that aging reduces the viscous deformation and increases
elastic behavior, making asphalt more prone to cracking under low-temperature
conditions. Additionally, aging enhances the material’s sensitivity to temperature and
frequency changes.

(2) Increasing rejuvenator dosage reduces the complex modulus of aged asphalt, with
6% rejuvenator restoring its mechanical properties to near-original levels. As the
rejuvenator dosage increases, the low-temperature performance and temperature sen-
sitivity of the asphalt improve. Rejuvenators enhance flexibility, reduce temperature
sensitivity, and improve resistance to low-temperature cracking, thereby enhancing
the durability of regenerated asphalt under varying conditions.

(3) The master curves of the asphalt complex modulus with different aging times are
essentially parallel, similar to the results observed in frequency sweeps at varying
temperatures. With the original asphalt serving as the reference state and by curves
shifting based on the least squares method, a time–temperature–aging equivalent
master curve of the complex modulus was constructed, and aging shift factors were
obtained. A strong linear correlation (R2 > 0.975) between aging shift factors and aging
time was observed, enabling accurate prediction of the asphalt complex modulus
under different aging conditions.

(4) The time–temperature–regenerator complex modulus master curve of regenerated
asphalt was constructed using the least squares method. By shifting the complex
modulus master curves of regenerated asphalt with different regenerator dosages
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to the reference state, shift factors were determined. Results show a significant
linear relationship between regenerator dosage and shift factor, with the shift factor
decreasing as dosage increases. The minimal error between calculated and predicted
curves demonstrates high predictive accuracy, making this method a valuable tool for
predicting the complex modulus and optimizing regenerator dosages in engineering
applications.

(5) Aging narrows the stress–strain curve’s peak, indicating increased stress dependence,
while adding a regenerant broadens it, enhancing fatigue life. The study also ex-
plores how different levels of aging and regenerant dosage affect fatigue life under
varying strain conditions, revealing complex behaviors influenced by the aging and
regeneration processes.

The findings of this study provide practical guidance for improving the performance
of both aged and rejuvenated asphalt in highway applications. By accurately predicting
the effects of aging and rejuvenation on asphalt’s dynamic properties, engineers can better
design pavements that are both durable and sustainable, optimizing the use of recycled
materials and enhancing the overall performance of road networks.
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