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Abstract: This work reports a kind of thermal and stress dual-induced nano-SiC-modified microcap-
sule that is applied to asphalt pavement to improve its self-healing performance. For this purpose,
the microcapsules needed to contain a regenerator and be stable in an asphalt mixture. In addition,
the microcapsules needed to have good wave-absorbing and temperature-raising properties to realize
the dual-mechanism-induced release of microcapsules. In the first step in this study, heat-stressed
double microcapsules were prepared. Then, the properties of the microcapsules—including basic
properties, stability, mechanical properties, and wave-absorbing and temperature-raising properties—
were tested. Finally, the self-healing mechanism of the microcapsules was observed. The results
show that the nano-SiC-modified microcapsules have a high core content (87.6%), suitable particle
size (average particle size of 53.50 µm), high thermal stability (mass loss of 2.92% at 150~170 ◦C),
high construction stability (survival rate of more than 80%), high storage stability (loss rate of 2.35%
at 49 d), and high mechanical properties (Young’s modulus and nano-hardness of 3.15 Gpa and
0.54 Gpa, respectively). Compared with microcapsules without nano-SiC, the thermal conductivity of
the 10% nano-SiC-modified microcapsules increased by 21.6%, their specific heat capacity decreased
by 10.45%, and their thermal diffusion coefficient increased by 36.96% after microwave heating for
6 min.

Keywords: microcapsules; nano-SiC; microstructure; chemical constitution; mechanical strength; stability

1. Introduction

Cracks are a significant deterioration phenomenon affecting asphalt pavement and
undergo a series of processes, including emergence, expansion, and penetration. Initially,
microcracks emerge and then evolve into penetration joints under the combined influence
of temperature and load cycles. The timely elimination of microcracks can inhibit or delay
the formation of penetration joints [1].

Microcapsules represent a novel self-healing material for pavement microcracks [2,3].
Adsorption encapsulation and sharp pore coagulation bath methods are simpler and have
low raw material costs but have a low content of vesicle cores (≤40%) [4–7]. Moreover, the
larger particle size of microcapsules (micron level) has a greater effect on the mechanical
strength and stability of asphalt mixtures [8–10]. Microcapsules prepared by interfacial
polymerization have a suitable particle size but are prone to agglomeration during the
preparation process, and the shell thickness is difficult to precisely control [8–10]. Further-
more, the mechanical properties of microcapsules are poor (Young’s modulus and hardness
are 276.94 Mpa–408.90 Mpa and 43.38–71.08, respectively) [11,12]. In addition, microcap-
sules prepared by interfacial polymerization have poor thermal stability (the mass loss is
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10%–15% at 160–180 ◦C) [12]. Compared with the previous three methods, microcapsules
prepared by in situ polymerization have a higher capsule core content (64.08%–79.33%) and
higher mechanical strength (Young’s modulus (MPa) and hardness (MPa) are 1000–2700
and 37.66–140, respectively) [13–15]. Moreover, the shell thickness and core content can be
adjusted during the preparation process. The microcapsules prepared by this method are
thermally stable (the mass loss is 3.72%–20% at 140–180 ◦C), which ensures the survival of
the microcapsules during the construction process [16]. Therefore, this method is the most
widely used preparation method for application in the self-healing of pavements [17].

Conventional microcapsules are stress-triggered by the tip of a microcrack to release
their core material. This passive and uncontrollable stress-induced mode does not en-
sure that the vesicle core material is released promptly and in an amount that matches
the microcrack at the appropriate time [18,19]. Therefore, the development of stimulus-
responsive controlled-release microcapsules is essential. Controlled-release microcapsules
are particles with stimuli-responsive properties that are introduced into the capsule shell.
In response to internal triggers (such as pH, temperature, or enzymes) or external stimuli
(such as microwaves, light, ultrasound, and electric and magnetic fields), the capsule re-
leases its encapsulated core material [18,20]. Nano-SiC exhibits excellent wave-absorbing
and temperature-raising properties. Microcapsules prepared with a nano-SiC modifier
doped into the capsule shell material can achieve a microwave-induced release of capsule
core material and thermodynamic dual-induced release triggered by the stress at the tips
of the microcracks. This represents a desirable and innovative approach for significantly
enhancing the self-healing effect of microcracks in asphalt pavement [21,22].

Therefore, this study proposes a thermal and stress dual-induced nano-SiC microcap-
sule for asphalt pavement applications. Nano-SiC can endow microcapsules with good
basic, stable, and mechanical properties to stabilize their presence in asphalt mixtures.
In addition, nano-SiC-modified microcapsules have wave-absorbing and temperature-
raising properties that enable them to achieve the dual-mechanism-induced release of
rejuvenating agents.

2. Materials and Methods
2.1. Materials

Thermal dual-induced microcapsules are composed of modified capsule shell material
and a regeneration agent. The modified capsule shell materials are composed of a highly
methylated melamine formaldehyde resin (H3M) prepolymer and nano-SiC composite.
The main components of the regeneration agent are aromatic and saturated phenols. In
addition, a curing agent consisting of sodium chloride, resorcinol, and ammonium chloride
is added to prepare the microcapsules. The modified microcapsules were prepared by in
situ polymerization with the following main steps.

(1) The SDS emulsifier was added to deionized water at a mass ratio of 100/1.71 for
mixing and stirring. The resulting mixture was then placed in a constant-temperature
water bath at 30 ◦C for one hour. Then, a regenerator was added to achieve a mass ratio of
emulsifier to regenerant of 1/4.97. The mixture was stirred at the shear rate of 3500 r/min
to obtain a regenerated emulsion.

(2) H3M at a mass ratio of regenerant/H3M of 1.57/1 and nano-SiC at a ratio of
SiC/H3M of 3/40 were added to the beaker. After stirring to achieve a uniform mixture, a
small amount of deionized water was added to form a gray prepolymer solution. Then, the
prepolymer solution was dispersed for 30 min by an ultrasonic disperser.

(3) The prepolymer solution of the composite capsule shell was dropped into the
emulsion regenerant solution and mechanically stirred at a speed of 600 r/min at 30 ◦C
for 30 min. In this process, sodium chloride, resorcinol, and ammonium chloride were
gradually added, and the mass ratios to H3M were set at 0.99/1, 1/20.2, and 1/20.2,
respectively.

(4) A 10% acetic acid solution was added dropwise to the mixed solution of the
prepolymer and regenerator at a controlled rate of 2 mL/min. The pH of the solution
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was adjusted to 4.5. The temperature of the mixed solution was then gradually increased
to 70 ◦C at a rate of 2.5 ◦C/min, followed by stirring at 950 rpm for 3 h to obtain the
microcapsule suspension.

(5) The resulting microcapsule suspension was vacuum filtered using a Brinell funnel
and washed with deionized water and petroleum ether three times to remove the uncoated
regenerate. Then, the cleaned microcapsules were filtered and placed in an oven at 60 ◦C
for 1 h to obtain the yellow-brown microcapsules.

2.2. Testing Methods
2.2.1. Basic Properties
Particle Size Distribution

The particle size of the microcapsules was determined using fluorescence microscopy
(FM, Phenix, Shangrao, China). First, the microcapsule samples were added to a test
tube containing a small amount of anhydrous ethanol and dispersed using an ultrasonic
disperser for 1 min until a homogeneous microcapsule–ethanol suspension was formed.
Next, a small volume of the suspension was drawn onto a slide using a dropper and covered
with a coverslip. The particle size was then observed and recorded using FM. Finally, the
particle size distribution was quantified and statistically analyzed using Image-Pro Plus 6.0
(Media Cybernetics, Rockville Maryland, MD, USA), as shown in Figure 1.
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Figure 1. Particle size distribution measurement method.

Microscopic Morphology and Capsule Shell Thickness

Scanning electron microscopy (SEM, Carl Zeiss AG, Oberkoche, Germany) was used
to examine the microscopic morphology of the microcapsules and measure the thickness of
the capsule shell. First, the microcapsule powder was dispersed in anhydrous ethanol and
uniformly applied to the sample stage. The surface of the microcapsules was then clean
by air-jetting with high-pressure gas. Finally, the microcapsules were observed, and the
thickness of the capsule shell was quantified using SEM at magnification ranging from
200 to 60,000, as shown in Figure 2.
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Figure 2. Scanning electron microscope and specimen. (a) scanning electron microscope and
(b) specimen.

Chemical Structure

The chemical structure of the microcapsules was analyzed by Fourier transform
infrared spectroscopy (FTIR, Thermo Nicolet, Waltham MA, USA). The FTIR spectra of the
nano-SiC composite capsule shell, microcapsule, regenerant, and nano-SiC were obtained
using the potassium bromide (KBr) pellet method. The solid samples were tested in the
wave numbers of 4000~400 cm−1, while the liquid samples were tested in the range of
4000~600 cm−1. The changes in the characteristic peaks of each absorption spectrum were
analyzed to determine whether the capsule shell fully encapsulated the core materials,
thereby confirming the successful preparation of microcapsule.

Core Content

The content of the microcapsule core was determined by solvent extraction. First, the
microcapsules at a certain mass (m0) were weighed and crushed to destroy the capsule shell
structure, allowing the regenerator to be completely released. The remaining microcapsules
were then washed, cleaned, and dried to obtain the residue of the capsule shell, which
represents the mass (ms) of the composite capsule shell. The mass of the capsule core in
the tested microcapsule sample is the difference between the microcapsule sample and the
mass of the composite capsule shell. Therefore, the core content of the microcapsule (Rc)
can be calculated by Equation (1) [23].

Rc =
mc

m0
× 100% =

m0 − ms

m0
× 100% (1)

2.2.2. Stability
Thermal Stability

A thermogravimetric analyzer was used to assess the thermal stability of the microcap-
sules. The thermal stability of the capsule shell material, core material, and microcapsules
was tested in the temperature range of 30~400 ◦C, with a heating rate of 10 K/min. High-
purity nitrogen was used as the test gas, with a flow rate of 40 mL/min.

Storage Stability

The residual mass method was used to test the storage stability of the microcapsules.
First, 420 g of dried microcapsules was equally divided into six sealed glass bottles, which
were then placed in a cool, dry location and stored for a period protected from light. The
residual mass of the microcapsules was measured at weeks 1, 2, 3, 4, 5, 6, and 7. The rate of
mass loss was calculated using Equation (2) [24].

Rmi =
m0 − mi

m0
(2)
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Rmi—Rate of mass loss of microcapsules at week I, %;
m0—Mass of microcapsules before washing, g;
mi—Mass of microcapsules after washing, g;
i—Number of weeks of storage, which were taken as 1, 2, 3, 4, 5, 6, and 7.

Construction Stability

The structural stability of microcapsules was tested by observation and statistics. First,
an asphalt mixture containing 6% microcapsules was prepared. Once the mixture had
cooled sufficiently, the asphalt and aggregate were separated using trichloroethylene (TCE)
to produce the asphalt-containing microcapsules. Next, the morphology of the microcap-
sules in the extract was observed using FM. Finally, the survival rate of microcapsules
was calculated. To quantitatively evaluate the survival rate of the microcapsules in the
asphalt mixture, n1 samples of the TCE extract from the microcapsule asphalt mixture were
prepared, and n2 monitoring points were randomly selected for FM observation. The total
number of microcapsules was recorded as Rt, and the number of damaged microcapsules
was recorded as Rl. The microcapsule survival rate was then calculated using Equation (3),
and the microcapsule damage rates at all monitoring sites were averaged using Equation (4).
The mean value from all observation points was then calculated to characterize the survival
rate of microcapsules in the mixing process.

R =

(
1 − Rl

Rt

)
× 100% (3)

R =

n1·n2
∑

i=1
Ri

n1·n2
(4)

R—Overall survival of microcapsules, %;
Ri—Survival of microcapsules at observation point i, %;
n1—Number of samples of trichloroethylene extract;
n2—Number of observation points.

2.2.3. Micromechanical Strength

The Young’s modulus and nano-hardness of microcapsules were tested by a nanoin-
dentation instrument. The load range of the nanoindentation is 0 ~ 500 mN, with a load
accuracy is up to 0.05 nN and a displacement resolution of 0.01 nm. The procedure for
preparing the microcapsule specimen for the nanoindentation test is as follows: 1⃝ cut
the slides into squares; 2⃝ apply the pre-configured crystal adhesive to a square area of
1 cm × 1 cm and use a homogenizer to correct the thickness and flatness of the cemented
layer; 3⃝ spread the microcapsule samples on the surface of the unconsolidated crystal
adhesive; 4⃝ fix the samples for the loading stage of the nanoindentation test for subse-
quent experiments. The nano-hardness and Young’s modulus of the microcapsules were
calculated using the classic Oliver–Pharr analysis [25].

2.2.4. Thermodynamic Property
Microwave Heating Performance

The microwave heating performance of the microcapsules was tested using an infrared
thermal imager and a microwave oven. First, 10 g of microcapsules was washed repeatedly
with petroleum ether and then dispersed in anhydrous ethanol to remove any surface
material that was not encapsulated by regenerated or unreacted H3M molecules. The
cleaned microcapsules were then placed in an oven at 60 ◦C for 2 h to volatilize the
residual water.

Next, the microcapsules were evenly distributed over an area of 1 cm2 on the slide
and covered with a coverslip to prevent them from scattering and ensure that each group
received the same area of microwave radiation in the microwave oven. The slides were
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then placed in a microwave heating cabinet for microwave heating. Finally, the infrared
thermal images of the microcapsules were obtained using infrared thermography after the
microwave heating, as shown in Figure 3.
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Thermal Conductance

A thermal constant analyzer (Hot Disk, Gothenburg, Sweden) (shown in Figure 4)
was used for thermal conductivity testing based on the Gustafsson transient plate heat
source method [21] to accurately and rapidly evaluate the thermal conductivity of the
microcapsules, including the heating coefficient, thermal conductivity, thermal diffusion
coefficient, and specific heat capacity.
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3. Results and Discussion
3.1. Basic Performance
3.1.1. Particle Size Distribution

The results of the particle size distribution of the microcapsules are shown in Figure 5.
As seen in Figure 5a, the microcapsules exhibited good dispersibility, with no obvious
agglomeration. From Figure 5b, it can be observed that the particle size of the microcapsules
followed a normal distribution, with a maximum particle size of 98.79 µm and a minimum
particle size of 12.37 µm. The particle size of most microcapsules (86.13%) ranges from
42 to 76 µm, with an average particle size of 53.5 µm.
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Particle size has a significant influence on the properties and viability of microcap-
sules [26]. The particle size of microcapsules prepared by the adsorption encapsulation
and sharp pore coagulation bath methods is in the millimeter range [27]. Excessive particle
size exposes the microcapsules to damage during mixing and compaction, affecting the
adhesion and mechanical strength of the asphalt to the aggregate. Microcapsules produced
by the interfacial polymerization method have a small particle size (5–35 µm) and are prone
to an electrostatic adsorption effect, resulting in obvious agglomeration [12]. Additionally,
the thickness of the microcapsule shell is difficult to control, the core content is low, and the
cost is high. Asphalt mastic film thickness is usually around 50 µm [13], and the particle
size of the microcapsules prepared in this study is mainly concentrated in the range of
42–76 µm, so the microcapsules have little effect on the adhesion between the asphalt mastic
and the aggregate. This also greatly reduces the likelihood of the aggregate experiencing
mutual extrusion and early rupture during mixing and compaction, thus improving the
survival rate of the microcapsules [28].

3.1.2. Microscopic Morphology and Shell Thickness

Figure 6 shows the SEM images of microcapsules under the optimal preparation
process. It can be seen that both types of microcapsules are relatively regular in shape,
though there are significant differences in their microscopic morphology. The surface
of ordinary microcapsules is smooth and flat, with only a small number of resin blocks
protruding. In contrast, the surface of the nano-SiC-modified microcapsules features a
large number of rough and dense resin blocks, which increase the contact area between
the microcapsules and the asphalt, thereby improving the adhesion performance between
the two [29,30]. Additionally, the resin blocks contain nano-SiC particles, which enhance
the strength of the microcapsules and improve their resistance to breakage during mixing
and compaction. The shell of the microcapsules after rupture is shown in Figure 7. The
thickness of the nano-SiC-modified microcapsule shell ranged from 1.5 µm to 2 µm, with
an average thickness of 1.565 µm, accounting for only 3.9% of the average particle size of
the microcapsule, and the shell thickness is relatively uniform.
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3.1.3. Chemical Structure

The changes in the characteristic peaks of each absorption curve in the infrared spec-
trum can be used to determine whether the microcapsules are successfully synthesized [31].
Figure 8 illustrates the infrared spectrograms of the nano-SiC-HMMM microcapsule shell,
nano-SiC, microcapsules, and regenerant. The absorption peak at 843 cm−1 corresponds to
the characteristic Si-C bond, and this peak is also observed in the microcapsule and micro-
capsule shell spectra. Furthermore, no new characteristic absorption peaks were detected
in the microcapsules and microcapsule shell spectra, indicating that nano-SiC does not
participate in the chemical reaction during the formation of the microcapsule shell. Instead,
nano-SiC is likely adsorbed onto the surface of the H3M molecules through electrostatic
interactions, thus remaining present in the microcapsules. Characteristic absorption peaks
for the –CH3 and –CH2 stretching vibrations of the regenerant were observed at 1456 cm−1

and 2924 cm−1, respectively [32].
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The absorption peak at 1554 cm−1 corresponds to the characteristic bending defor-
mation of the –N=C=N– in melamine molecules, which is present in both microcapsules
and microcapsule shell materials, confirming that the shell of microcapsules is formed
by the dehydration and polymerization of H3M molecules under acidic conditions. As
shown in Figure 8, the microcapsules exhibit all the characteristic peaks corresponding
to the nano-SiC-HMMM microcapsule shell, nano-SiC, microcapsules, and regenerant,
indicating that the thermal and stress dual-induced nano-SiC-modified microcapsules have
been successfully prepared.

3.1.4. Core Content

The core contents of four groups of microcapsules were randomly detected, as shown
in Table 1. The average core content of the dual-induced microcapsules was 87.6%,
which increased the core content of the thermal dual-induced microcapsules by about
2–16 times compared to the existing calcium alginate microcapsules and porous sand mi-
crocapsules [6,7,33]. This is because calcium alginate microcapsules have multi-chamber
structures, porous sand microcapsules have multi-core structures, and these complex shell
structures significantly reduce the core content. However, thermal stress induced the
inner shell of the microcapsules to become smooth, with the microcapsule shell containing
only the regenerant. The core content of the double-induced microcapsules increased by
8.29%~23.54% compared to the in situ polymerization microcapsules and by 15.34%~17.22%
compared to the interfacial polymerization microcapsules [5,14,34]. This is because the
microcapsule shell prepared in this paper is 2~3 µm thick, which provides more space for
storing the regenerant. The reason is due to the combination of modified materials and resin
molecules, which improves the mechanical properties of the microcapsule shell materials,
thereby increasing the core content. A higher core content indicates better self-healing
performance [27,35,36].

Table 1. The core content of microcapsules.

Specimens 1 2 3 4 Average

Core content /% 84.01 89.76 88.52 88.19 87.62

3.2. Stability
3.2.1. Thermal Stability

Figure 9 shows the TGA curves of the microcapsules, shell material, and core material.
As the temperature increases, the mass loss of microcapsules gradually increases. The
mass loss process can be divided into three main stages. The first stage occurs between
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30 and 200 ◦C, where the mass loss of the microcapsule is small, accounting for only
5.642% of the total microcapsule. During this stage, the mass loss is primarily due to
the evaporation of water within the microcapsules, as well as the degradation of small
molecules from the polymer that are not fully cross-linked or cured [37]. The second
stage occurs between 200 and 420 ◦C, where the mass of the microcapsules decreases
rapidly. The DTG curves of the shell material show that the surface layer of the shell
undergoes violent decomposition, leading to a gradual thinning of the capsule shell, and
eventually, the microcapsules rupture. At this point, the core material is directly exposed to
the high-temperature environment, experiencing extremely rapid thermal decomposition,
which significantly damages the quality of the microcapsules [38]. From the curve in
this stage, it can be seen that the thermal stability of the microcapsules is significantly
higher than that of the shell material, indicating that the addition of nano-SiC effectively
improves the thermal stability of the microcapsules. In the third stage (>700 ◦C), the
residual mass of the microcapsules is significantly higher than that of both the shell and
core material. This is due to the excellent thermal stability of nano-SiC, which hardly
decomposes at 700 ◦C. Compared with the existing microcapsules, the thermal stress dual-
induced nano-SiC microcapsules prepared in this study exhibit better thermal stability,
with a mass loss rate of only 2.919% in the temperature range used for construction mixing
(150–170 ◦C), which is much smaller than that of interfacial polymerization microcapsules,
calcium alginate microcapsules, and porous sand microcapsules. Meanwhile, the addition
of suitable modifiers of the capsule shell materials (such as nano-SiC, nano-SiO2 carbide,
etc.) can significantly improve the high-temperature resistance of microcapsules [2]. This is
because the addition of inorganic modified materials makes the shell of the microcapsules
denser and improves their resistance to high-temperature deformation, while the rough
shell surface also provides more space for high-temperature deformation. Compared with
other microcapsules, the mass loss of the nano-SiC-modified microcapsules is reduced by
5%~15% at the same temperature [24].
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3.2.2. Storage Stability

Figure 10 demonstrates the variation in the mass loss of microcapsules over different
storage periods (7 d, 14 d, 21 d, 28 d, 35 d, 42 d, and 49 d). The fastest mass loss of micro-
capsules was observed during the first 7 days, due to the small amount of uncondensed
H3M molecules and water on the surface of the microcapsules, which volatilized rapidly
into the air [39]. The mass loss of the microcapsules gradually increased with the extension
of the storage time. This may be due to the prolonged storage resulting in exposure of the
shell material to air oxidation [24]. In addition, the regenerant may also be exposed to air
infiltration through weak portions of the shell and slowly volatilize, further contributing to
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the mass loss of the microcapsules. As the storage time continued to increase, the mass loss
rate of the microcapsules decreased and gradually stabilized (with a 2.25% mass loss after
49 d), indicating that the microcapsules have good storage stability [40].
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3.2.3. Construction Stability

To investigate the construction stability of the microcapsules, FM was used to observe
their morphology in asphalt mixture extracts. Asphalt mixtures were prepared at 130 ◦C
and 160 ◦C with 6% microcapsules. The results are shown in Figure 11. It was found
that most of the microcapsules maintained an intact structure with no leakage of the
core material after mixing and compression at 130 ◦C and 160 ◦C. In addition, a few
microcapsules retained their intact circular morphology, although the internal core material
was prone to leakage, causing the fluorescence of the microcapsules to be significantly
reduced under FM.
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Based on the survival state of microcapsules observed under FM, mathematical and
statistical methods were used to roughly estimate their survival rate after construction
mixing [41]. The results are shown in Figure 12. The microcapsules remained highly viable
under high-temperature mixing, with survival rates of 82.66% at 130 ◦C and 79.12% at
160 ◦C. As the temperature increased, the survival rate of microcapsules produced a certain
decrease. This was because the higher temperature softened the resin components in the
microcapsule shell, reducing its strength, while the thermal expansion of the core material
caused the microcapsule shell to expand, further increasing the likelihood of damage to the
microcapsule shell. During the statistical process, it was found that microcapsules with a
particle size larger than 60 µm were more likely to rupture. This is because microcapsules
with larger particle sizes cannot be protected by the asphalt film on the aggregate surface
and are more likely to be crushed directly by the aggregate [27].
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3.3. Mechanical Strength

Figure 13 shows the nanoindentation force–displacement curves of the modified
microcapsules with different nano-SiC contents. The testing results of Young’s modulus
and nano-hardness are shown in Table 2. The mechanical strength of the microcapsules
increased gradually with the increase in nano-SiC content. When the nano-SiC content
increased from 0% to 10%, the nano-hardness increased from 0.26 Gpa to 0.54 Gpa, and
the Young’s modulus increased from 2.45 Gpa to 3.15 Gpa. This is because the nano-SiC
combines with resin molecules to form a three-dimensional structure with alternating rigid
parts (nano-SiC) and flexible parts (H3M), which improves the mechanical strength of
the shell material. This ensures the survival of the microcapsules during the construction
of asphalt mixtures. Compared with the existing microcapsules, the Young’s modulus
and nano-hardness of the dual-induced nano-SiC-modified microcapsules prepared in this
paper were increased by about 20%–290% and 63.6%– 760%, respectively. This indicates
that the hardness and content of the modified materials have an important effect on
the mechanical strength of the microcapsule shell, proving that the modification of the
microcapsule shell with high-strength nanomaterials is an effective way to improve the
mechanical strength of the microcapsules. Compared with other microcapsules, the Young’s
modulus and nano-hardness of the nano-SiC-modified microcapsules increased by 1.5 times
and 3.0 times, respectively [6,7,12,14–16].

Table 2. Results of Young’s modulus and nano-hardness test of microcapsules.

Mechanical Parameter
Nano-SiC Doping (%)

0 2.5 5 7.5 10

Nano-hardness (Gpa) 0.26 0.31 0.39 0.50 0.54
Young’s modulus (Gpa) 2.45 2.62 2.91 3.07 3.15
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Figure 13. Nanoindentation force–displacement curve.

Table 2. Results of Young’s modulus and nano-hardness test of microcapsules.

Mechanical Parameter
Nano-SiC Doping (%)

0 2.5 5 7.5 10
Nano-hardness (Gpa) 0.26 0.31 0.39 0.50 0.54

Young’s modulus (Gpa) 2.45 2.62 2.91 3.07 3.15

3.4. Thermodynamic Property
3.4.1. Microwave Heating Performance

To investigate the effect of nano-SiC content on the microwave heating performance 
of microcapsules, infrared thermography was used to monitor the temperature changes 
of microcapsules with different nano-SiC contents (0%, 2.5%, 5%, 7.5%, and 10%) in real 
time at different heating times (1.5 min, 3 min, 4.5 min, and 6 min). The results are shown 
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48.73% higher than that of the microcapsules without nano-SiC after the same heating 
time (6 min). When the nano-SiC content was 0%, the temperature difference between the 
microcapsules after heating for 1.5 min and 6 min was only 3.2 °C. This is due to heat 
accumulation caused by prolonged heating. When the nano-SiC content was 10%, the tem-
perature of the microcapsules reached 58.6 °C after 6 min of heating, and the heating effect 
was significant. It was enhanced by 48.73% compared to heating for 1.5 min. However, 
for the same heating time (6 min), the temperature of the microcapsules with 7.5% nano-
SiC increased by only 4.2% compared with that of the microcapsules with 5% nano-SiC, 
indicating that the enhancement of the microwave heating characteristics of the microcap-
sules was gradually weakened by a nano-SiC content higher than 5%. In addition, the 
heating rate of the microcapsules increased with the prolongation of microwave heating 
time. When the microwave heating time was 3 min, the warming rate was 2 °C/min, and 
when the microwave heating time was 6 min, the warming rate was 4.07 °C/min. This is 
because the coupling of nanosized SiC with microwave radiation has a more significant 
warming effect on enhancing absorption after arriving at a certain temperature [42]. Com-
bining the economic factors, the extended microwave heating time required to increase 
the temperature of the microcapsules is preferred.
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3.4. Thermodynamic Property
3.4.1. Microwave Heating Performance

To investigate the effect of nano-SiC content on the microwave heating performance
of microcapsules, infrared thermography was used to monitor the temperature changes of
microcapsules with different nano-SiC contents (0%, 2.5%, 5%, 7.5%, and 10%) in real time
at different heating times (1.5 min, 3 min, 4.5 min, and 6 min). The results are shown in
Table 3.

Table 3. Results of microwave heating characteristics of different kinds of microcapsules (◦C).

Nano-SiC Doping (%)
Microwave Heating Time (min)

1.5 3.0 4.5 6.0

0 36.2 37.1 38.7 39.4
2.5 38.1 40.7 45.6 48.6
5.0 44 44.8 48.2 54.7
7.5 45.5 47.9 50.9 57.0
10 46.1 49.1 52.5 58.6

The microwave heating effect of the microcapsules gradually increased with the
increase in nano-SiC content. The temperature of the microcapsules with 10% nano-SiC
was 48.73% higher than that of the microcapsules without nano-SiC after the same heating
time (6 min). When the nano-SiC content was 0%, the temperature difference between
the microcapsules after heating for 1.5 min and 6 min was only 3.2 ◦C. This is due to
heat accumulation caused by prolonged heating. When the nano-SiC content was 10%,
the temperature of the microcapsules reached 58.6 ◦C after 6 min of heating, and the
heating effect was significant. It was enhanced by 48.73% compared to heating for 1.5 min.
However, for the same heating time (6 min), the temperature of the microcapsules with
7.5% nano-SiC increased by only 4.2% compared with that of the microcapsules with
5% nano-SiC, indicating that the enhancement of the microwave heating characteristics
of the microcapsules was gradually weakened by a nano-SiC content higher than 5%.
In addition, the heating rate of the microcapsules increased with the prolongation of
microwave heating time. When the microwave heating time was 3 min, the warming rate
was 2 ◦C/min, and when the microwave heating time was 6 min, the warming rate was
4.07 ◦C/min. This is because the coupling of nanosized SiC with microwave radiation
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has a more significant warming effect on enhancing absorption after arriving at a certain
temperature [42]. Combining the economic factors, the extended microwave heating time
required to increase the temperature of the microcapsules is preferred.

3.4.2. Thermal Conductivity

To investigate the effect of different nano-SiC contents on the thermal conductivity
of microcapsules, microcapsules with different nano-SiC contents (0%, 2.5%, 5%, 7.5%,
and 10%) were tested using a hot plate thermal constant meter. The results are shown in
Figure 14.
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The thermal conductivity of the microcapsules increased gradually with the increase
in nano-SiC content. When the nano-SiC content was 10%, the thermal conductivity of the
microcapsules increased by 21.6% compared to that of the microcapsules without nano-
SiC. In addition, the specific heat capacity of the microcapsules decreased significantly,
indicating that the microcapsules warmed up faster after thermal radiation. The accelerated
warming rate of the microcapsules would reduce the time required for the core material to
fill the microcracks, thus improving the self-healing efficiency of microcapsules. It can be
observed that the thermal diffusion coefficient of the microcapsules gradually increases
with the increase in nano-SiC content. This property helps transfer heat, which contributes
to the rapid warming of the asphalt material around the microcapsules, and thus positively
promotes the diffusion and penetration of the repair agent as well as the diffusion of asphalt
molecules [43].

3.5. Self-Healing Mechanism

To investigate the self-healing behavior of the stress dual-induced nano-SiC-modified
microcapsules, fluorescence microscopy was used to observe the state of microcracks in as-
phalt with a 6% microcapsule content. Under the fluorescence microscope, the asphalt and
regenerant agents emit deep orange and yellow-green fluorescence, respectively, allowing
observation of the distribution of the regenerant agents around the cracks.

As seen from Figure 15, a certain amount of the microcapsules in the asphalt show
yellow fluorescence. As the microcrack passes over the location of the microcapsule, the
microcapsule is punctured and releases a yellow-green regenerant. It can be observed that
the microcapsules darkened, and the fluorescence significantly decreased. The regenerant
flowed and diffused around the microcracks by capillary action. Under the action of



Coatings 2024, 14, 1573 15 of 18

microwave heating, the temperature of the microcapsules gradually increased, and this
flow–diffusion phenomenon was accelerated, further promoting the healing of microcracks.
At this time, both sides of the microcrack emitted yellow-green fluorescence, and the width
of the microcrack was reduced, indicating that the regenerant had successfully repaired
the microcrack.
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3.6. Comparison of the Prepared Nano-Sic-Modified Microcapsules with Other Microcapsules

The results of the comparative analysis of the technical performance of the nano-SiC-
modified microcapsules and other microcapsules are shown in Table 4. The results show
that the average particle size of the nano-SiC-modified microcapsules was 53.50 µm, and
the core content reached 87.6%, which was an increase of 2~23% compared to other road mi-
crocapsules. Meanwhile, through process optimization and improvement, the mass loss of
microcapsules in the temperature range of 150–170 ◦C was only 2.92%, which was 5%~15%
lower than that of other microcapsules. The Young’s modulus and nano-hardness of the
10% SiC-modified microcapsules reached 3.15 Gpa and 0.54 Gpa, respectively. Compared
to other microcapsules, the Young’s modulus and nano-hardness of the nano-SiC-modified
microcapsules are increased by 1.5 times and 3.0 times, respectively [6,7,12,14–16]. After
microwave heating for 6 min, the thermal conductivity of the 10% nano-SiC-modified
microcapsules increased by 21.6%, the specific heat capacity decreased by 10.45%, and the
heat diffusion coefficient increased by 36.96%, compared to that of microcapsules without
nano-SiC.
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Table 4. Comparison of the prepared nano-SiC-modified microcapsules with other microcapsules.

Microcapsule Type Particle Size/µm Core Content/% Mechanical Strength
Thermal Stability

(Temperature ◦C/Mass
Loss Ratio %)

Adsorption encapsulation
[6] 1–10 mm 20

Ultimate resistance
(N)/deformation (µm)

17.61/106.92
180/3

Piercing solidification method
[7,33] 1–6.8 mm 40 Uniaxial compression

130 ◦C/12N 200/4

Interfacial polymerization
[12,34] 5–35 70.40–72.28

Young’s Modulus
(MPa)/

hardness (MPa)
276.94–408.90

43.38–71.08

160–180/10–15

In situ polymerization
[14–16,35] 2–230 64.08–79.33

Young’s Modulus
(MPa)/

hardness (MPa)
1000–2700
37.66–140

140–180/3.72–20

Nano-SiC-modified
microcapsules 40–100 87.62

Young’s Modulus
(MPa)/

hardness (MPa)
2620–3150

310–540

140–200/4.257

4. Conclusions

The study of thermal and stress dual-induced nano-SiC microcapsules is highly sig-
nificant to the field of microcapsule self-repair. In this paper, the core content, stability,
and mechanical properties of the microcapsules were significantly improved by doping
nano-SiC into the microcapsule shell. In addition, doping nano-SiC simultaneously signifi-
cantly improved both the microwave warming performance and thermal conductivity of
the microcapsules. Compared to other microcapsules, the core content of these microcap-
sules was increased by 8.29–23.54%, the thermal mass loss was reduced by 5%–15% at the
same temperature, and the mechanical strength was enhanced by 1.5 times and 3.0 times.
Additionally, compared to microcapsules without nano-SiC, the thermal conductivity and
microwave heating performance of the microcapsules with 10% nano-SiC increased by
21.6% and 48.73%, respectively, enabling the thermal induction and core release in the
modified microcapsules. Further research is needed to explore the trade-offs between
the performance and benefits of microcapsules in practical engineering. Despite these
challenges, this study provides valuable insights into the in-depth exploration of micro-
capsules in the field of asphalt self-repair and suggests directions for the study of novel
microcapsules. The authors anticipate future research that builds upon, scrutinizes, and
refines the findings of this study, further contributing to this critical area of study.
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