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Abstract: With the development of coal mining and the increase in excavation depth, the stress on
roadway surrounding rock is also increasing. This creates conditions for crack development in the
roadway, so it is urgent to develop rock repair materials with excellent performance. The ability of
thin spray-on liner (TSL) to repair rock and concrete opens up the possibility of reusing abandoned
roadways. The ability of TSL to support the surrounding rock is also important in preventing the
generation of roadway waste. In this paper, styrene–acrylic emulsion (SAE), vinyl acetate–ethylene
copolymer emulsion (VAE), and polyvinyl alcohol powder (PVA) were used to prepare three TSLs.
Rock-like materials were configured using cement mortar according to similar principles. Three types
of TSLs were tested for basic properties such as viscosity and mechanical strength, which provided
data to support the explanation of the repair performance of TSLs. Three TSLs were used to repair
pre-cracked rock-like specimens (PR). The number of brushing times and the angle of PR’s cracks
were regarded as test variables. Changes in the mechanical strength of repaired PRs were tested by
compressive and flexural tests. TSL repair performance was evaluated with the help of mechanical
strength changes. Results show that polyvinyl alcohol powder modified cement-based thin spray-on
liner is most suitable for repairing rock cracks; as the thickness of the brush slurry increases, its repair
performance continues to improve. This paper can provide experience and a theoretical basis for the
research of other rock repair materials, and it is also instructive for repairing shotcrete in the roadway.

Keywords: thin spray-on liners; compressive strength; flexural strength; repair; polymer

1. Introduction

Thin spray-on liner (TSL) is a new rock repair and support technology that is widely
used in coal mining for roadway support and surrounding rock repair engineering. It is
expected that this technology will replace traditional support systems (anchor mesh support
and shotcrete). The performance of TSL is between shotcrete and wire mesh. Compared
with shotcrete, TSL has the advantages of a short maintenance cycle, fast application, high
tensile strength, good bonding performance, prevention of rock mass loosening, significant
ability to penetrate joints, cleanliness, and easy transportation in rock reinforcement [1–9].
Compared with traditional rock support methods, TSL can penetrate into large cracks of the
surrounding rock with its excellent flowability, and gradually fill the capillary cracks of the
surrounding rock. TSL can bond both sides of the cracks and bond the failed rock body into
a complete composite structure, thereby producing a repair effect on the surrounding rock.
When the composite structure receives external loads, TSL, as a bonding intermediate of
the rock mass, can also withstand some of these loads. This puts forward the requirements
for basic mechanical properties of TSL, such as compressive and flexural resistance. [10–12].

Tannant [13] has pointed out that the performance characteristics of TSL are between
shotcrete and anchor network support. TSL is a supplement to these types of support and
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is receiving more and more attention. However, most scholars have focused on the support
properties of TSL, and less research has been done on the rock-repairing ability of TSL.

TSL is defined as a new coating material with excellent mechanical properties. TSL
covers the surrounding rock of the roadway with a very thin (<10 mm) chemical coating,
thus providing support, sealing, and barrier effects. TSL is generally divided into three
main categories, namely, cement-based TSL, polymer-based TSL, and latex-based TSL. TSL
consists of two main components: a liquid–liquid mixture or a liquid–powder mixture,
which need to be mixed immediately prior to application, then mixed well and immediately
sprayed onto the rock surface. TSL penetrates rock cracks with the help of its own fluidity,
fills the cracks, and binds the sides of the cracks, thus repairing the rock.

One of the key parameters affecting the repair ability of TSL is its bonding ability
with the sprayed rock surface. This bonding ability can prevent the loosening of the rock
and stop the further development of cracks. Li et al. [14] investigated and quantified the
effects of rock strength and surface roughness on the bond strength of TSL layers through
experimental tests. They found a bilinear relationship between bond strength and matrix
strength, and they also found that the bond strength of TSL increased significantly with
the increase in surface roughness of the sprayed rock surface. Yilmaz et al. [15] studied
the bond strength of various TSLs with different curing times, and the results showed
that most TSL bond strengths were proportional to the curing time. Ozturk et al. [16]
tested the adhesion strength of TSL on different substrate materials, and they found that
the bond strength of TSL on sandstone, granite, and common surrounding rock was
11.4 MPa, 0.4 MPa, and 3.7 MPa, which is higher than the bond strength of concrete
materials to each substrate material in shotcrete technology. Qiao et al. [17] conducted
uniaxial compression experiments using TSL coated on the surfaces of different types of
rocks (siltstone, sandstone, granite). TSL support was more significant for weaker rocks.
Ozturk et al. [18,19] quantitatively investigated the effect of TSL material thickness on its
adhesion force, and the results showed that the adhesion force was inversely proportional
to the square root of thickness.

The above literature has studied the effects of substrate surface roughness, substrate
strength, substrate material, TSL material curing time, and TSL material thickness on bond
strength. However, there has been limited study on the rock repair ability exhibited by
TSL bonding performance. The mechanism of the effect of polymer addition on TSL repair
performance is not clear. Few tests have directly studied the change in strength of damaged
rock after TSL injection.

Most of the TSLs commonly used in the present are cement-based and polymer-
based, and the input cost of cement-based TSLs is lower compared to polymer-based TSLs.
Therefore, cement-based TSLs modified with polymers were chosen for this experiment.

Several formulations of TSL have been published in the literature [19–21], and this
paper is a continuation of these studies. In this study, VAE, SAE, and PVA were selected as
modified polymers, and some additional fillers and admixtures were added to configure a
fixed dose of TSL. In this experiment, three kinds of TSLs were prepared based on the above
materials, namely, vinyl acetate–ethylene copolymer emulsion-modified cement-based thin
spray-on liner (VTSL), styrene–acrylic emulsion-modified cement-based thin spray-on
liner (STSL), and polyvinyl alcohol powder modified cement-based thin spray-on liner
(PTSL). The flowability, viscosity, and basic mechanical properties of TSL were tested and
combined with previous studies to analyze the repair mechanism of TSL. Since natural
rock cracks are difficult to form regularly, in this paper, rock-like materials were prepared
using cement mortar based on similar principles. A new method was used to pre-fabricate
rock cracks with three angles (0◦, 45◦, 90◦). Brushing thickness was also a variable in
this paper, and the effect of different brushing thicknesses on the effectiveness of TSL
repair was investigated. The experiment tested the compressive and flexural strength of
pre-cracked rock-like specimens repaired by polymer-modified cement-based thin spray-on
liners (PR-TSL), and the variation of their compressive and flexural strength characterized
the repair performance of TSL.
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In short, this paper investigates the repair ability of polymer-modified cement-based
TSL, which can provide experience and theoretical basis for the research of other rock
repair materials and provide new ideas for the repair and prevention of rock cracks. Since
the rock-like material is made from cement mortar, the study of the repair capability of
TSL is also instructive for repairing shotcrete in the roadway. This is of great significance
in preventing the development of cracks in the surrounding rock and promoting safe
production. The repair of cracks can also further enhance the support capacity of rock
and shotcrete, and improve the service life of tunnels and buildings, which has a certain
economic value.

2. Materials and Experiments

In this paper, three TSLs were prepared. The raw materials used to prepare them
were polymers, cement, and various admixtures. It is worth noting that the polymers
used to prepare the three TSLs are different. Rock-like materials were prepared using
cement mortar based on the formulation provided by previous studies. This material
was used to prepare rock-like specimens. After that, three types of cracks were prepared
in rock-like specimens using self-designed method; PR was obtained. The extensibility,
viscosity, compressive strength, and flexural strength of the three TSLs were tested. The
compressive strength and flexural strength of the PR-TSL were tested.

2.1. Raw Materials

In this experiment, three TSLs were prepared based on cement and modified by
polymer. Since natural rock cracks are difficult to form regularly, rock-like materials were
used to prepare the rocks required for the test. A new method was designed to prepare
regular cracks at three angles (0◦, 45◦, 90◦).

1. Cement

The cement used is P·O 42.5 ordinary silicate cement, which conforms to the standard
ASTM C150 (Standard Specification for Portland Cement) with a specific surface area of
338 m2/kg. Table 1 shows the main chemical composition of the cement.

Table 1. The main chemical composition of cement.

Component SiO2 Al2O3 Fe2O3 CaO MgO SO3

Content (wt%) 20.81 4.54 3.15 64.22 2 2.5

2. Fillers

Light calcium carbonate: it is a white solid powder with no irritating odor. Particle
size is about 5 µm. It is slightly hygroscopic, stable in dry air, decomposed in acid, and
produced by Qingdao Urso Chemical Technology Co. (Qingdao, China). It is used in this
experiment for TSL.

Natural river sand: it is mainly diffuse sedimentary sand, with off-white-gray-yellow
color. The fineness modulus is 2.80, water content is 2.3%, mud content is 2.4%, and the
apparent density is 2600 kg/m³. Figure 1 shows the set curve of river sand, complying with
the Chinese standard GB 50086-2015 (Technical Specification for Geotechnical Anchor and
Shotcrete Support Works). Figure 1 shows in detail the grain size distribution of river sand.
It is used in this experiment to prepare PR.



Coatings 2024, 14, 232 4 of 24
Coatings 2024, 14, x  4 of 24 
 

 

 
Figure 1. Sand assembly curve. 

3. Admixtures 
Cement accelerator: it is a brownish powder that can play a role in accelerating the 

effect of hydration and hardening of TSL, and its water content is less than 2%, which 
complies with the standard of GB 50119-2016 (Concrete admixture application technical 
specifications). Polycarboxylic acid water reducer: it is a white powder that can improve 
the workability of cement slurry, reduce the water consumption in the cement mixing 
process, and improve the fluidity of the slurry. Its water content is less than or equal to 
3.0%, and it complies with the GB 50119-2016 (Concrete admixture application technical 
specifications). Dodecyl alcohol ester film-forming agent: it is a white transparent liquid 
that can effectively reduce the film-forming temperature of the polymer. Polydime-
thylsiloxane defoamer: this is a milky white liquid that can effectively eliminate the air 
bubbles generated by mixing the polymer with water; therefore, it can reduce the porosity 
of the slurry and thus enhance the internal compactness of the material, and it has a solid 
content of 10%. Cellulose: it is a white powder with no irritating odor and no toxicity, 
which can play a role in water retention. 
4. Vinyl acetate–ethylene copolymer emulsion (VAE) 

It consists of vinyl acetate and ethylene monomer, its color is milky white, and the 
phase is liquid, as shown in Figure 2. The specific technical specifications of the VAE used 
in the test are shown in Table 2, produced by Qingdao Urso Chemical Technology Co 
(Qingdao, China). 

 
Figure 2. VAE. 

0

10

20

30

40

50

60

70

80

90

100

0 1 10

Pa
ss

in
g(

%
)

Paticals diameter(mm)

Partical size range

Fine aggregates

Figure 1. Sand assembly curve.

3. Admixtures

Cement accelerator: it is a brownish powder that can play a role in accelerating the
effect of hydration and hardening of TSL, and its water content is less than 2%, which
complies with the standard of GB 50119-2016 (Concrete admixture application technical
specifications). Polycarboxylic acid water reducer: it is a white powder that can improve the
workability of cement slurry, reduce the water consumption in the cement mixing process,
and improve the fluidity of the slurry. Its water content is less than or equal to 3.0%, and it
complies with the GB 50119-2016 (Concrete admixture application technical specifications).
Dodecyl alcohol ester film-forming agent: it is a white transparent liquid that can effectively
reduce the film-forming temperature of the polymer. Polydimethylsiloxane defoamer: this
is a milky white liquid that can effectively eliminate the air bubbles generated by mixing
the polymer with water; therefore, it can reduce the porosity of the slurry and thus enhance
the internal compactness of the material, and it has a solid content of 10%. Cellulose:
it is a white powder with no irritating odor and no toxicity, which can play a role in
water retention.

4. Vinyl acetate–ethylene copolymer emulsion (VAE)

It consists of vinyl acetate and ethylene monomer, its color is milky white, and the
phase is liquid, as shown in Figure 2. The specific technical specifications of the VAE used
in the test are shown in Table 2, produced by Qingdao Urso Chemical Technology Co.
(Qingdao, China).
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Table 2. Technical specifications of VAE.

Particle Size
(µm)

Solid Content
(%) Viscosity (MPa·s) pH Minimum Film Forming

Temperature (◦C)
Dilution Stability

(%)

2 54.5 500–1000 4.0–6.0 0 3.5

5. Styrene propylene emulsion (SAE)

It is obtained by emulsion copolymerization of styrene and acrylate monomer, with a
cream color, light blue luster, and liquid phase, as shown in Figure 3. It has good physical
and chemical properties, high temperature resistance, and good anti-aging properties.
It has a solid content of 40%, viscosity of 80–3000 MPa·s, pH of 8–9, a minimum film-
forming temperature of 22 ◦C, and it is produced by Qingdao Urso Chemical Technology
Co. (Qingdao, China).
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6. Polyvinyl alcohol powder (PVA)

The powder is usually polymerized with vinyl acetate as the monomer, which is then
alcoholized or hydrolyzed to make polyvinyl alcohol. It is a white, non-toxic, and odorless
powder solid, as shown in Figure 4. The aqueous solution’s pH of polyvinyl alcohol powder
is 4.5–6.5. It has a minimum film-forming temperature of 2 ◦C and is produced by Qingdao
Urso Chemical Technology Co. (Qingdao, China).
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2.2. Ratio of TSL

In this experiment, VAE, SAE, and PVA were selected to modify the cement-based
TSL, and three TSLs were obtained, namely VTSL, STSL, and PTSL. This experiment was
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a continuation of the existing research, and the following ratios were obtained from the
existing literature [19–21]. The water–cement ratio (W/C) was set to 50%. The poly–cement
ratio (P/C) was set to 10%. The ratio of light calcium carbonate to cement mass (L/C)
was set to 5%. The ratio of cellulose to cement mass (Ce/C) was set to 0.4. The ratio of
accelerator to cement mass (A/C) was set to 4%. The ratio of water reducer to cement mass
(R/C) was set to 0.5%. The ratio of defoamer to polymer mass (D/P) was set to 0.2%. The
ratio of film-forming agent to polymer mass (F/P) was set to 1%. The detailed proportions
of the raw materials are listed in Table 3. It should be noted that for polymeric materials
where the phase is a polymer emulsion, the mass of the polymer is obtained by multiplying
the mass of the emulsion with its solid ratio. The remaining mass is considered to be the
mass of water. So, the mass of water obtained by calculating the water–ash ratio includes
the mass of water in the emulsion and the mass of water alone. Figure 5 shows the three
TSL repair materials prepared. As can be seen in Figure 5, the STSL surface was guilty of a
light blue color, the VTSL was light gray, and the PTSL appeared to have a higher viscosity.

Table 3. Specific ratio of TSL.

W/C P/C L/C Ce/C A/C R/C D/P F/P

50% 10% 5% 0.4% 4% 0.5% 0.2% 1%
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2.3. Preparation and Grouping of PR

In this experiment, ordinary cement mortar was used as the rock-like material to make
rock-like specimens. The ratio of rock-like material was determined as cement, fine sand,
and water mass ratio = Mcement:Msand:Mwater = 5:5:2, according to the literature and similar
theorems [22–24].

The preparation of PR was carried out strictly according to Chinese standards GB/T
17671-1999 (Cementitious sand strength test method) and DL/T5126-2001 (Polymer modi-
fied cement mortar test procedure), and the molds used were 40 mm × 40 mm × 160 mm
triplex molds.

The specific operation steps were: (1) cement, fine sand, and water were mixed well
beforehand, then loaded into the triclinic mold and densely vibrated on a vibrating table.
(2) The specimens were first cured under natural conditions for 4 h, and three angles of the
cracks were prepared on the specimens. The plastic tube was pressed in the center of the
specimens with a certain strength until the plastic tube was completely in the specimens,
after which the plastic tube was carefully removed. The diameter of the plastic tube was
4 mm and the length was 20 mm, as shown in Figure 6b. The prefabricated crack was
4 mm deep, 4 mm wide, and 20 mm long, and it was tilted at 0◦, 45◦ and 90◦, as shown in
Figure 6c. (3) After that, the specimens continued to be set in the triclinic mold for 20 h and
then demolded. (4) The demolded specimens were cured in water for 7 d and then cured
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for 28 d in nature. The curing temperature fluctuated between 23 ◦C and 26 ◦C. The whole
preparation process is shown in Figure 6.
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According to the type of polymer, the angle of prefabricated cracks, and the number
of times TSL was brushed, the following grouping can be obtained, as seen in Table 4.
In Table 4, odd-numbered specimens would be used for the compressive test, and even-
numbered specimens would be used for the flexural test. “C” represents the control group,
where specimens in the C-1 and C-2 groups are not treated in any way. However, both
group C-3 and group C-4 need to prepare three kinds of cracks at 0◦, 45◦ and 90◦. “STSL,
VTSL, PTSL” refers to the TSL applied by each group, and the number of brushing times
for each group has been detailed in Table 4. It should be added that the groups starting
with “STSL, VTSL, PTSL” need to prepare cracks at 0◦, 45◦ and 90◦. According to the
requirements of Table 4, TSL was brushed on PR, and PR-TSL were obtained, after which
compressive and flexural tests were conducted.

Table 4. Test grouping for repair of PR.

Group Crack Angle (Angle with
Pressure Direction) Brushing Times Test Type

C-1 - - Compression test
C-2 - - Flexural test
C-3 0◦, 45◦, 90◦ - Compression test
C-4 0◦, 45◦, 90◦ - Flexural test

STSL-5 0◦, 45◦, 90◦ 1 Compression test
STSL-6 0◦, 45◦, 90◦ 1 Flexural test
STSL-7 0◦, 45◦, 90◦ 2 Compression test
STSL-8 0◦, 45◦, 90◦ 2 Flexural test
STSL-9 0◦, 45◦, 90◦ 3 Compression test

STSL-10 0◦, 45◦, 90◦ 3 Flexural test
VTSL-11 0◦, 45◦, 90◦ 1 Compression test
VTSL-12 0◦, 45◦, 90◦ 1 Flexural test
VTSL-13 0◦, 45◦, 90◦ 2 Compression test
VTSL-14 0◦, 45◦, 90◦ 2 Flexural test
VTSL-15 0◦, 45◦, 90◦ 3 Compression test
VTSL-16 0◦, 45◦, 90◦ 3 Flexural test
PTSL-17 0◦, 45◦, 90◦ 1 Compression test
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Table 4. Cont.

Group Crack Angle (Angle with
Pressure Direction) Brushing Times Test Type

PTSL-18 0◦, 45◦, 90◦ 1 Flexural test
PTSL-19 0◦, 45◦, 90◦ 2 Compression test
PTSL-20 0◦, 45◦, 90◦ 2 Flexural test
PTSL-21 0◦, 45◦, 90◦ 3 Compression test
PTSL-22 0◦, 45◦, 90◦ 3 Flexural test

2.4. Test Methods

In this experiment, the fluidity, viscosity, and basic mechanical properties of three TSLs
were tested at first. Testing TSLs’ fluidity can help us understand the mechanism of TSL
crack penetration. Testing the viscosity and mechanical strength of TSLs were important to
analyze the repair mechanisms of TSLs. Thus, TSL basic performance tests provided data
to support tests of TSL repair performance. Then, TSL repair tests were conducted. TSLs
were painted around the cracks of rock-like specimens, and after curing for 7 d, changes
in compressive and flexural strength of PR-TSL were compared to characterize the repair
effect of TSLs.

(1) TSL basic performance tests

The flow extensibility, viscosity, and compressive and flexural strength of three TSLs
were tested. The flow extensibility of freshly mixed TSL was measured using a Cone
mold conforming to GB/T 8077-2012 (Concrete admixture homogeneity test method); the
viscosity of TSL was measured using NDJ-79 rotary viscometer produced by Shanghai
Precision Instruments & Meters Co (Shanghai, China). The steps of the extensibility test
and viscosity test are shown in Figure 7. Compressive and flexural tests were conducted
according to GB/T 17671-1999 (Cementitious sand strength test method).
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of TSL slurry; (c): extensibility text; (d): viscosity test.

(2) Repair tests of TSL

The repair performance of TSL was tested according to a self-designed test method.
TSLs were pre-prepared and brushed on PR, according to Table 4. TSLs were applied
around the cracks of rock-like specimens with a brush. The range of the brushed TSL was
about 30 mm above and below the center of the crack’s midpoint. The thickness of the
brushed TSL was characterized by the number of brushing times. The thickness of brushed
TSL represented by different brushing times was measured. The thickness of brushed TSL
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was approximately 1.5 mm for one brushing, 2.8 mm for two brushings, and 4.2 mm for
three brushings.

After that, PR-TSL were placed under natural conditions for 7 d, and the curing
temperature fluctuated between 23 ◦C and 26 ◦C. Chen et al. [19] found in their study that
the bond strength was basically unchanged when the TSL curing time was greater than 7 d.
Therefore, in this experiment, we decided to cure PR-TSL under natural conditions for 7 d.
After the repair was completed, PR-TSL needed to be tested for compressive and flexural
strength, and the whole experimental procedure is shown in Figure 8. The compressive and
flexural tests were carried out according to GB/T 17671-1999 (Cementitious sand strength
test method). Figure 9 shows the schematic diagram of the compressive test, flexural test,
and the damage of the PR-TSL.
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3. Results and Discussion

In the process of cement-based TSL repair, a series of physicochemical reactions will oc-
cur, and the amount of brushing TSL will produce different repair effects on different cracks.
A large amount of domestic and foreign literature has shown that in roadway engineering,
many types of cracks are produced on the surface of or inside the rock. The development
process of these cracks is different, so these rocks exhibit different mechanical properties.
Moreover, the compressive and flexural strength of cementitious materials do not improve
after the addition of polymer admixture into cement; they may even show a decreasing
trend. Of course, there is information suggesting that polymer admixture can significantly
improve the compressive and flexural strength of cementitious materials [25–30].

3.1. Basic Performance of TSL

The basic properties of the three TSLs measured in the test are shown in Table 5. The
ratio of flexural strength to compressive strength responds to the toughness of the TSL.
The larger this ratio, the better the toughness of TSL. The smaller the ratio, the worse the
toughness of TSL.

Table 5. Basic performance of TSL.

Extensibility/
mm Viscosity/MPa·s Compressive

Strength/MPa
Flexural

Strength/MPa

Ratio of
Bending to

Compression

Air
Permeability/cm3·m−2

STSL 226 1400 16.02 12.89 0.81 1.20 × 106

VTSL 196 3800 19.43 8.98 0.46 1.11 × 106

PTSL 172 4200 22.05 13.47 0.61 1.14 × 106

The test results of the control groups C-1 and C-2 showed that the compressive strength
and flexural strength of the rock-like materials were 43.81 MPa and 10.11 MPa, respectively,
and the ratio of bending to compression was 0.3. It was evident that the ratio of bending to
compression of TSL was significantly higher than that of the rock-like materials, indicating
that the toughness of TSL was better. In this experiment, the curing temperature was
between 23–26 ◦C, which was greater than the minimum film-forming temperature of the
three polymers. According to the Ohama model [31] and the B-O-V model [32], it is known
that the continuous hydration of the cement in TSL glues the polymer particles into a film,
forming a spatial mesh structure that enhances the toughness of TSL [33–35], as shown in
Figure 10.
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3.2. Compressive and Flexural Performance of PR-TSL

Figures 11, 17 and 23 show the changes in compressive strength of PR-TSL. Figures 12,
18 and 24 show the rates of improvement in compressive strength of PR-TSL. Figures 13, 19
and 25 show the changes in flexural strength of PR-TSL. Figures 14, 20 and 26 show the
rates of improvement in flexural strength of PR-TSL.

Figures 11–14 indicate the repair effect of STSL on rock-like specimens. From the
information in Figures 11 and 13, the R2 of all six fitted curves is greater than 0.87, which
indicates a good fit. Therefore, the repair effect of STSL is consistent with the variation of
the relation y = ax2 + bx + c. Both Figures 11 and 13 present the same repair trend of STSL.
When the specimen is brushed once, the strength of the specimen shows a decreasing trend.
After two brushings, the strength of the specimen is improved compared with that of the
specimen brushed once but still lower than that of the specimen without brushing. When
the specimen is brushed three times, the strength of the specimen is improved again and
can be equal to or even exceed the compressive strength of the specimen without brushing.
As shown in Figures 11–14, the repair effect of STSL on rock-like specimens is not obvious
enough when the number of brushing times is small, and the rock-like specimens also show
a decrease in strength. For 0◦ specimens, the repair effect is shown when the thickness of
brushing slurry is greater than that of point a. For 45◦ specimens, the repair effect is shown
when the thickness of brushing slurry is greater than that of point b. For 90◦ specimens, the
repair effect is shown when the thickness of brushing slurry is greater than that of point c.
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According to our analysis, STSL has good fluidity and low viscosity. When the number
of brushing times is 1 and 2, the thickness of brushing slurry is about 1.5–2.8 mm, and
TSL does not occupy the whole crack. The main role in this phase is played by the stress
concentration around the crack under external pressure. Moreover, STSL penetrates into
the tiny surface cracks and capillaries of PR with its own excellent fluidity. The capillary
pore is a hydrophilic capillary pore. Although it is beneficial to the infiltration of STSL, its
cement wall surface also absorbs part of the water. This phenomenon is not beneficial to
twater participation in the hydration of STSL, so STSL did not reach the expected strength
within 7 d. As a result, STSL was brushed around the cracks, an operation similar to
adding foreign material into the cracks and capillaries, leading to stress concentrations
under pressure [36–38], as shown in Figure 15. The red arrows in Figures 15, 16 and 21
represent stresses. This resulted in damage forming first from around the crack, which is
not beneficial to the repair of PR by STSL.
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When the number of brush times was 3, the thickness of brush slurry was about
4.2 mm, which completely occupied the crack surface. At this time, the hydration of STSL
played a major role, leading to polymer film formation. With the help of gravity and
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capillary effects, STSL easily penetrated into the capillary pores and surface cracks on the
surface of the PR. The water molecules were smaller compared with cement particles and
polymer particles, so it was easier to move within the cracks. Although capillary pores and
crack walls of the PR absorbed part of the water, the amount of absorption was relatively
small compared to the whole brushing volume. This had less effect on the hydration
of STSL. Within the capillary pores of PR, as the hydration reaction of STSL proceeded,
water levels decreased continuously, and the polymer particles agglomerated to form a
continuous layer on the surface of unhydrated cement particles, the C-S-H gel, and between
aggregates and the polymer cement paste. The intermolecular forces caused the polymer
particles to agglomerate into a continuous film, which, together with hydration products,
formed a penetrating mesh structure, as shown in Figure 16 [31–35]. STSL can penetrate
into the capillary pores and surface cracks of the PR during the repair process. When the
capillary holes and surface cracks are compressed, STSL provides good support. When they
were tensile, STSL connected the two ends. Thus, it was difficult for the capillary pores and
cracks to reach the displacement required for damage, so the repair effect was realized.
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Figure 16. Polymer film formation in the capillaries of rock-like specimens. (a): Distribution of TSL in
capillaries, (b): water decreases as hydration proceeds, (c): polymer membrane structure formation.

Figures 17–20 show the effect of VTSL on the repair of PR. From the information in
Figures 17 and 19, the R2 of all six fitted curves is greater than 0.90, which indicates a good
fit. Therefore, the repair effect of STSL is in accordance with the variation of the relation
y = ax2 + bx + c. The repair trend of VTSL on PR, as indicated in Figure 17, is different
from that indicated in Figure 19. The repair trend of VTSL on the compressive strength
of specimens decreases and then increases, while the repair trend on flexural strength
continuously increases. As shown in Figures 17 and 18, the repair effect of STSL on PR
is not obvious enough when the number of brushing times is small, PR-TSL even shows
a drop in strength. For 0◦ specimens, the repair effect is shown when the thickness of
brushing slurry is greater than that of point a. For 45◦ specimens, the repair effect is shown
when the thickness of brushing slurry is greater than that of point b. For 90◦ specimens, the
repair effect is shown when the thickness of brushing slurry is greater than that of point c.
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Figure 17. Changes in compressive strength of specimens after repair by VTSL.
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Figure 18. Rate of increase in compressive strength of specimens repaired by VTSL.
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Figure 19. Changes in flexural strength of specimens after repair by VTSL.
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Figure 20. Rate of increase in flexural strength of specimens repaired by VTSL.

According to our analysis, the repair of PR compressive strength by VTSL tended to
decrease and then increase. VTSL itself has relatively good fluidity. When applied with 1 or
2 brushings, resulting in a 1.5–2.8 mm thickness of brush slurry, VTSL does not occupy all
of the crack. What plays a major role at this phase is the concentration of stresses around
the crack under external pressure. The repair effect exhibited at a brush slurry number of 3
can also be explained by the polymer film formation phenomenon. Compared with STSL,
the damage effect of VTSL was weaker and the repair effect was stronger, which may be
due to the fact that VTSL was less fluid than STSL. The stress concentration area formed by
VTSL was smaller than that of STSL, as shown in Figure 21, where the stress concentration
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area was within the yellow dashed line. Moreover, the compressive strength of VTSL was
19.43 MPa greater than that of STSL, which was 16.02 MPa. This made VTSL relatively
stronger in supporting capillaries and cracks.
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Figure 21. Comparison of STSL and VTSL stress concentration areas. (a): Stress concentration area
after STSL repair, (b): stress concentration area after VTSL repair.

According to our analysis, the repair of PR flexural strength by VTSL tended to
increase. The viscosity of VTSL is 3800 MPa·s, which can effectively connect the two ends
of the prefabricated cracks and also effectively bond the pore wall in the capillary pore.
In the flexural strength test, the area around the crack was mainly affected by the tensile
stress. With the help of its high viscosity, VTSL made the connected cracks more resistant
to deformation under the influence of external loads. This is due to the polymer membrane
structure formed in the VTSL connecting the hydration products of the cement. At the same
time, this membrane structure also had a certain tensile strength and bonding strength to
hydration products, which made the VTSL less susceptible to deformation, as shown in
Figure 22. As the number of brushing times increased, the coverage of the prefabricated
cracks and the filling of surface capillaries were higher. The contact area of the TSL with the
PR increased, its bond area increased, and the flexural strength of PR continued to increase.
Thus, the repair effect of VTSL continued to increase.
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Figures 23–26 imply the effect of PTSL on the repair of PR. From the information
in Figures 23 and 25, the R2 of all six fitted curves is greater than 0.87, which indicates
a good fit. Therefore, the repair effect of STSL is in accordance with the variation of the
relation y = ax2 + bx + c. The repair trends shown in Figures 23 and 25 show continuous
improvement. According to the characteristics of the quadratic equation, the slope of the
six trend lines in the figure is the highest when the number of brushing times is 0–1, which
indicates that the strength of PR-TSL is improved the most when brushed once. PTSL can
achieve a good repair effect, but the repair effect is not improved significantly with the
increase in brushing times.
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Figure 23. Changes in compressive strength of specimens after repair by PTSL.
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Figure 24. Rate of increase in compressive strength of specimens repaired by PTSL.
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Figure 25. Changes in flexural strength of specimens after repair by PTSL.
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Figure 26. Rate of increase in flexural strength of specimens repaired by PTSL.

This paragraph analyzes the reasons for the above phenomenon. The extension of
PTSL was 172 mm and the viscosity was 4200 MPa·s. The amount of its penetration into
the pores of PR was less, which led to a smaller stress concentration area. Consequently,
the main thing that determined the strength of PR-TSL was the degree of filling and
repairing of the prefabricated cracks. The viscosity of PTSL was the largest among the three
TSLs. When PR-TSL were subjected to compression, PTSL filled around the prefabricated
cracks, providing good support and preventing the destruction of the prefabricated cracks.
When PR-TSL were subjected to tension, the PTSL was well-bonded to both sides of
the prefabricated cracks with its high viscosity [39,40]. PTSL relied on its high flexural
strength to make itself more difficult to break and to stop the deformation of the cracks.
Consequently, PTSL showed a good repair effect with a single brushing slurry. However,
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with the increase in the number of brushing times, the growth of the repair effect slowed
down, possibly indicating a saturation threshold of the repair effect.

3.3. Comparative Analysis of Three TSLs’ Repair Performance

Among all the above trend lines, the three TSLs have the best fit to the repair trend
lines of PR containing 90◦ crack, and their R2 values are greater than 0.96. Therefore, the
repair results of TSLs on PR containing 90◦ cracks were selected as representative. The
repair performance of the three TSLs was compared and analyzed (Figure 27).
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Figure 27. Changes in strength after repair of rock-like specimens with 90◦ cracks.

In Figure 27, C-STSL demonstrates the changes in compressive strength of PR after it
was repaired by STSL. C-VTSL demonstrates the changes in compressive strength of PR
after it was repaired by VTSL. C-PTSL demonstrates the changes in compressive strength
of PR after it was repaired by PTSL. F-STSL demonstrates the changes in flexural strength
of PR after it was repaired by STSL. F-VTSL demonstrates the changes in flexural strength
of PR after it was repaired by VTSL. F-PTSL demonstrates the changes in flexural strength
of PR after it was repaired by PTSL.

From Figure 27, it can be seen that PTSL was better than STSL and VTSL in repairing
PR. The results of the compressive strength test showed that the repair effect of STSL on
PR was similar to that of VTSL. However, the flexural strength test results showed that
the repair effect of VTSL on PR was slightly better than that of STSL. Therefore, it was
concluded that the repair performance of VTSL was slightly better than that of STSL in
the experiment. Both trend lines, C-PTSL and F-PTSL, showed a tendency to increase in
strength as the number of brushing times increased. There was a significant increase in
strength when the PTSL was brushed once, which suggests that PTSL can be brushed once
to achieve good repair. However, the increase in repair results was not significant with
the increase in the number of brushing times. Therefore, PTSL was selected as the best
restoration material.

According to the basic performance of PTSL in Table 5, PTSL has relatively good
mechanical properties and viscosity, but the flowability of PTSL is relatively poor. The next
step will be to conduct research on enhancing the fluidity of the PTSL.

3.4. Correlation Analysis between Different Crack Angles and PTSL Repair Performance

Figure 28 demonstrates that the unrepaired PR containing a 45◦ crack is the most easily
damaged in the compressive experiments. The compressive strengths of PR containing



Coatings 2024, 14, 232 21 of 24

0◦ cracks and PR containing 90◦ cracks are close to each other. This is consistent with the
previous study [41–43]. However, PR containing a 45◦ crack is not the most easily damaged
when the slurry is brushed twice.
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Figure 29 demonstrates that the unrepaired PR containing a 90◦ crack is the easiest to
damage in the flexural experiments, and the flexural strengths of PR containing 0◦ cracks
and PR containing 45◦ cracks are significantly higher than that of PR containing a 90◦

crack. However, after repair by PTSL, the flexural strength of PR containing a 90◦ crack is
significantly increased, and PR containing a 90◦ crack becomes the most difficult specimen
to damage.
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4. Conclusions

By studying the changes in compressive and flexural strength of PR-TSL, the main
conclusions obtained are as follows:

(1) When the number of brushing times was 1 or 2, PR containing 0◦, 45◦, and 90◦

cracks were repaired by STSL and VTSL. The compressive and flexural strength of PR-TSL
were found to decrease to different degrees. This may be due to the fact that the two TSLs
existed within the cracks as monstrosities, which led to the stress concentration causing
strength reduction. In contrast, PTSL was effective in repairing the three cracks. This was
due to the fact that it connected the cracks with high viscosity and increased the resistance
of the cracks to deformation.

(2) For the three TSLs, when their brushing times were more than 3 and the brushing
thickness was greater than or equal to 4.2 mm, all three TSLs showed repair effects, but the
PTSL had the best repair effect. This can be attributed to the fact that TSL completely filled
the cracks and had a bonding effect on both ends of the cracks. The increase in strength
caused by the bonding effect was greater than the decrease in strength caused by stress
concentration; thus, they showed a repair effect.

(3) The repair effects of the three TSLs on PR were, in descending order, PTSL, VTSL,
and STSL. PTSL is effective in repairing low-strength PR and has excellent repair perfor-
mance. As the thickness of the brush slurry increased, its repair performance continued
to improve.
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