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Abstract: (La0.2Yb0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) has shown considerable promise as a novel
thermal barrier coating material for temperatures exceeding 1300 ◦C. This study systematically inves-
tigates the interfacial stability of (La0.2Yb0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 with yttria-stabilized zirconia
(YSZ), which is of paramount importance for its application in double-layer thermal barrier coatings.
Our findings highlight that rare earth elements with a smaller radius diffuse more easily into the
YSZ lattice, resulting in a broader diffusion zone. Simultaneously, the incorporation of rare earth
elements into the YSZ lattice inhibits tetragonal-to-monoclinic phase transformation. Compared
to La2Zr2O7/YSZ, HEZ/YSZ demonstrates superior high-temperature stability, which could be at-
tributed to the higher fracture toughness and lower thermal expansion coefficient of HEZ, the absence
of t-m transformation and the formation of a continuous gradient diffusion layer that minimizes
interface stress. This study offers a practical strategy for designing materials for durable double-layer
thermal barrier coating systems.

Keywords: thermal barrier coating; high-entropy ceramics; rare earth zirconates; chemical stability;
diffusion; interface

1. Introduction

Rare earth zirconates (RE2Zr2O7, RE = La~Yb) have been considered as promising
materials for thermal barrier coating (TBC) due to their exceptional phase stability (main-
taining stability above 1300 ◦C) and low thermal conductivity [1,2]. However, the practical
application of these materials has been hampered by their low coefficient of thermal ex-
pansion (CTE) and inadequate fracture toughness [3,4]. To address these challenges, the
concept of high entropy, inherited from the field of metal alloys, has been employed to
improve the properties of rare earth zirconates [5–7]. High-entropy variants of these zir-
conates have demonstrated improved fracture toughness and phase stability, reduced
thermal conductivity, increased high CTE and improved sintering resistance compared
to their conventional single-component counterparts [8–10]. Consequently, high-entropy
rare zirconates exhibit great potential as TBC materials [11–13]. Nonetheless, the chemical
reactivity between these zirconates and Al2O3, which constitutes the primary component
of the thermal growth oxide (TGO) layer, hinders their direct application as a single top-
coat material on the bond coat [14]. Therefore, an yttria-stabilized zirconia (YSZ) buffer
layer is typically employed, leading to the formation of a RE2Zr2O7/YSZ double-layer
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structure [15–18]. Chemical stability between (5RE0.2)2Zr2O7 and YSZ is critical for the
interface stability and longevity of the (5RE0.2)2Zr2O7/YSZ double-layer system, an issue
that warrants further investigation.

This study aims to comprehensively investigate the chemical stability of a high-
entropy rare earth zirconate, namely (La0.2Yb0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ), with YSZ.
HEZ was selected for its advantageous properties, including low thermal conductivity
(1.17 W·m−1·K−1 at 1500 ◦C), high CTE (10.39 × 10−6 K−1 from room temperature to
1500 ◦C), excellent sintering resistance and elevated fracture toughness (1.69 MPa·m1/2), as
previously documented [19]. The HEZ/YSZ composite ceramic was prepared using the
solid-state method, and its phase composition, microstructure and element distribution
were analyzed and compared with those of La2Zr2O7/YSZ after sintering at 1300 and
1500 ◦C for 10 and 100 h.

2. Experimental Section

The solid-state method was employed to synthesize (La0.2Yb0.2Sm0.2Eu0.2Gd0.2)2Zr2O7
(HEZ), La2Zr2O7 (LZ) and 8 wt.% yttria-stabilized zirconia (YSZ) materials. Raw materials,
including rare-earth oxides RE2O3 (RE = La, Sm, Eu, Gd, Yb, 99.99%, Aladdin Reagent
Co., Ltd., Shanghai, China), Y2O3 and ZrO2 (99.99%, Aladdin Reagent Co., Ltd., Shanghai,
China), were dried at 800 ◦C for 2 h to remove moisture and volatile contaminants before
being weighed in stoichiometric ratios. Subsequently, the powders were mixed and ball-
milled for 20 h using a high-energy ball mill to ensure the homogenous blending of the
raw material powders for the subsequent sintering process. The resulting powders were
dried, sieved and sintered at 1500 ◦C for 4 h for HEZ and LZ, and at 1250 ◦C for 4 h for
YSZ. Composite materials HEZ/YSZ and LZ/YSZ were prepared by mixing equal masses
of YSZ and HEZ or LZ powders. The mixture was pressed into disks with a diameter of
15 mm under a pressure of 100 MPa, followed by sintering in an air atmosphere at 1300
and 1500 ◦C for 10 and 100 h.

The phase composition of the as-sintered powders and composites was characterized
using X-ray diffraction (XRD, Rigaku Smart lab SE, Tokyo, Japan) with a scanning range of
10–90◦ at a speed of 10◦/min. The relative contents (A) of the tetragonal (T) phase, cubic
(C) phase and monoclinic (M) phase of YSZ after high-temperature heat treatment were
determined through the Lorenz fitting of the XRD pattern in the ranges of 27~32◦ and
72~76◦ using the following equation:

AM =
IM (111

)
+ IM(111)

IM (111
)
+ IM(111) + IC,T(111)

(1)

AT =
(1 − AM)× (I T(400) + IT(004)

IT(400) + IT(004) + IC(400)
(2)

AC = 1 − (AM + AT) (3)

where I is the integrated intensity of corresponding peaks. For microstructural and elemen-
tal analysis of the composites, scanning electron microscopy (SEM, FEI F50, Hillsboro, USA)
was employed using the MIRA3 TESCAN instrument equipped with an energy-dispersive
spectroscopy (EDS, FEI F50, Hillsboro, OR, USA) system. Prior to the SEM measurements,
the composite surface was ground and polished.

3. Results

Figure 1 depicts the XRD patterns of the synthesized HEZ, LZ and YSZ powders,
as well as the reference peaks of RE2Zr2O7 (RE = La, Sm, Eu, Gd, Yb) obtained from
ICDD/JCPDS cards for comparison. Both the HEZ and LZ powders exhibit a single
pyrochlore (P) structure, as evidenced by the characteristic super-lattice (331) and (511)
diffraction peaks [20]. Notably, the diffraction peaks of HEZ shift to higher angles compared
to LZ, indicating a contraction in lattice parameters attributed to the decrease in the
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effective ion radius. The YSZ powder presents a single tetragonal (T) structure without any
impurity phases.
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Figure 1. (a) XRD of the as-synthesized HEZ, LZ and YSZ powders and (b) partial enlarged view of
the selected area in (a).

Figure 2a illustrates the XRD patterns of the LZ/YSZ and HEZ/YSZ composites after
sintering at 1300 and 1500 ◦C for 10 and 100 h. The XRD patterns in the range of 27~32◦

and 72~76◦ are presented to provide a clear view of the YSZ phase evolution. In LZ/YSZ,
after sintering at 1300 ◦C for 10 h, the YSZ is predominantly composed of tetragonal (T)
and cubic (C) phases. With prolonged sintering, a minor amount of monoclinic (M) phase
emerges after 100 h, evident from characteristic (111) and (111) peaks [21]. Elevating the
sintering temperature to 1500 ◦C results in the occurrence of a monoclinic phase even after
10 h. This indicates the transformation of YSZ from a tetragonal (T) to a monoclinic (M)
phase, which is accompanied by a 3~5% volume expansion and induces local compressive
stress [22]. The characteristic peaks of the T-YSZ in the range of 72~75◦ almost disappear
after a 100 h of sintering at 1500 ◦C, suggesting complete transformation to the cubic phase.
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Figure 3a illustrates the phase evolution of HEZ/YSZ composites after sintering at
1300 and 1500 ◦C for 10 and 100 h. It is obvious that the tetragonal (T) YSZ in HEZ/YSZ
composites undergoes a transformation into the cubic phase with prolonged sintering
time and temperature, and no peaks corresponding to monoclinic (M) YSZ are observed.
Additionally, the peaks exhibit a shift towards lower angles, indicative of lattice expansion.
Another significant feature is the decreasing intensity of the HEZ with the pyrochlore phase
marked with HEZ-P in Figure 3b, with the phase nearly disappearing after sintering at
1500 ◦C for 100 h. Meanwhile, a new peak at 2θ of 29.7◦ occurs between the existing peaks
of HEZ-P and (111) the peaks of YSZ, which is identified as HEZ-F with a fluorite (cubic)
phase according to the XRD analysis.
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For a quantitative analysis of the phase evolution of YSZ in LZ/YSZ and HEZ/YSZ
composites, the phase content of YSZ was determined from the XRD results and is presented
in Figure 4. It is evident that the content of T-YSZ in LZ/YSZ decreases from 64.13% to
37.96%, while the content of the monoclinic phase increases to 32.39% with an increase
in sintering time from 10 to 100 h at 1300 ◦C. Upon elevating the sintering temperature
to 1500 ◦C, the T-YSZ is almost decomposed into cubic (C) and monoclinic (M) phases.
Meanwhile, the content of the monoclinic (M) phase increases with both sintering time
and temperature. In contrast, in the case of HEZ/YSZ, the T-YSZ transforms into the cubic
(C) phase and no monoclinic (M) phase is detected. This observed difference is related to
variations in elemental diffusion between these two samples.

To analyze the elemental diffusion behavior in LZ/YSZ and HEZ/YSZ, the surface
microstructure and elemental mapping at the interface were characterized using BSE and
EDS, as presented in Figures 5 and 6. Figure 5 reveals the presence of numerous pores in
both composites, with a non-uniform distribution primarily concentrated in the rare earth
zirconate (LZ and HEZ) regions. This non-uniform pore distribution could be attributed
to the higher sintering resistance of rare earth zirconates compared to YSZ. At higher
magnification, microcracks are visible in LZ, while none are present in HEZ. Additionally,
the boundaries between the LZ and YSZ boundaries are sharp, whereas those between
HEZ and YSZ are gradual and diffuse. The elemental distribution around the interface of
the samples is shown in Figure 6, indicating an expansion in the element diffusion region as
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temperature increases, particularly evident in HEZ/YSZ. Table 1 summarizes the element
composition at the marked position in Figure 6, where the rare earth superposition is labeled
“RE”. Several notable observations are made: (1) The diffusion of Y3+ is more pronounced
in LZ/YSZ than in HEZ/YSZ. This could be related to the severe lattice distortion of HEZ,
which hinders the inward diffusion of Y3+ [23]. (2) RE diffuses faster into YSZ than Y3+

diffuses into HEZ (or LZ) [24,25]. (3) The RE content in the diffusion region of HEZ/YSZ
increases as the ionic radius (as shown in Table 1) decreases.

Line scanning was performed along the path indicated by the black arrow in Figure 6
to determine the diffusion zone width of the samples, with the corresponding element
distribution illustrated in Figure 7. The diffusion zone was assessed based on the concen-
tration of La3+, found to be higher than in the bulk LZ or HEZ but lower than in the bulk
YSZ. After sintering at 1500 ◦C for 10 and 100 h, the diffusion zone widths of LZ/YSZ are
1.2 ± 0.2 µm and 2.2 ± 0.3 µm, respectively. These values are significantly smaller than
those observed in HEZ/YSZ, which recorded diffusion zone widths of 4.5 ± 0.5 µm and
6.5 ± 0.5 µm after the same sintering periods. This demonstrates significantly more rapid
elemental diffusion in HEZ/YSZ, with the rate increasing as sintering time increases.
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Figure 6. Backscattered electron (BSE) images and corresponding EDS mapping around the phase
boundary of (a,b) LZ/YSZ and (c,d) HEZ/YSZ after sintering at 1500 ◦C for 10 and 100 h, respectively.
The red dotted circle represents the typical area (YSZ, HEZ or LZ, and the interface).

Table 1. Element composition of the points marked in Figure 6 (at.%) and the ion radius corresponding
to each element.

O Y Zr La Sm Eu Gd Yb RE

Ionic Radius (Å) 1.019 0.72 1.16 1.079 1.066 1.053 0.985

LZ/YSZ
(1500 ◦C 10 h)

1 (LZ) 59.6(2) 0.6(2) 20.9(4) 18.9(4) - - - - -
2 (Interface) 60.3(1) 1.1(2) 36.0(5) 2.7(4) - - - - -

3 (YSZ) 61.2(0) 3.8(2) 33.6(3) 1.4(1) - - - - -

LZ/YSZ
(1500 ◦C 100 h)

4 (LZ) 60.2(1) 0.9(4) 20.4(2) 18.5(1) - - - - -
5 (Interface) 59.6(1) 1.0(2) 34.2(1) 5.0(2) - - - - -

6 (YSZ) 62.0(4) 4.2(1) 32.2(2) 1.6(3) - - - - -

HEZ/YSZ
(1500 ◦C 10 h)

7 (HEZ) 58.7(1) 0.0(3) 25.0(4) 2.4(3) 3.2(2) 3.4(0) 3.6(3) 3.7(0) 16.3
8 (Interface) 61.0(1) 2.7(0) 29.2(3) 1.2(1) 1.3(2) 1.3(2) 1.4(2) 1.8(1) 7.1

9 (YSZ) 60.8(5) 3.5(1) 32.8(4) 0.7(2) 0.6(3) 0.5(2) 0.6(0) 0.6(2) 3.1



Coatings 2024, 14, 269 8 of 12

Table 1. Cont.

O Y Zr La Sm Eu Gd Yb RE

Ionic Radius (Å) 1.019 0.72 1.16 1.079 1.066 1.053 0.985

HEZ/YSZ
(1500 ◦C 100 h)

10 (HEZ) 58.9(2) 0.0(0) 21.5(2) 5.3(5) 4.2(3) 3.9(1) 3.8(4) 2.5(3) 19.6
11 (Interface) 59.0(3) 0.1(2) 25.2(4) 2.2(3) 2.9(0) 3.1(2) 3.3(4) 4.1(2) 15.6

12 (YSZ) 62.1(2) 3.0(0) 28.8(1) 1.1(3) 1.2(3) 1.2(3) 1.2(3) 1.5(1) 6.1
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4. Discussion

It has been established that HEZ/YSZ exhibits a significantly larger elemental diffusion
zone compared to LZ/YSZ, particularly evident after sintering at 1500 ◦C. The boundary
between LZ and YSZ is well-defined, while HEZ and YSZ form a dense and continuous
reaction zone, accompanied by a phase transformation of YSZ. In this section, RE3+ diffusion
behavior and its impact on YSZ phase transformation are examined.

4.1. RE Diffusion

The element diffusion zone between the rare earth zirconates and YSZ is presented in
both samples. The similar crystal structures of rare earth zirconates (cubic and tetragonal)
and YSZ facilitate element interdiffusion between the two phases [26]. However, the
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elemental diffusion zone in HEZ/YSZ is significantly wider than in LZ/YSZ. RE3+ ions
with smaller radii diffuse more easily into the YSZ lattice, a finding supported by the EDS
results. This is attributed to their smaller radius difference with Zr4+, making it easier for
them to replace Zr4+ and form a single-phase solid solution. In contrast, LZ/YSZ exhibits a
clearly defined boundary between the two phases, and the diffusion of Y3+ into LZ is much
easier than into HEZ. This discrepancy could be related to the severe lattice distortion of
HEZ, which retards the inward diffusion of Y3+.

4.2. Phase Evolution

The phase transformation of YSZ in HEZ/YSZ differs from that of LZ/YSZ. This can
be elucidated using the phase diagram of ZrO2-REO1.5, depicted in Figure 8 [27], where
the red dashed line represents the annealing temperature of the material at 1500 ◦C. The
blue and yellow arrows represent the phase evolution of LZ/YSZ and HEZ/YSZ after
sintering. For the LZ/YSZ composite, La3+ diffuses into the T-ZrO2 lattice and reaches its
solubility limit (less than 0.5 mol%), leading to a transformation from T to cubic (C) [28].
However, due to the significant radius difference with Zr4+, the content of La3+ in YSZ is
very low even at a sintering temperature of 1500 ◦C. Upon cooling, the T-ZrO2 decomposes
into the M+C phase. The content of Y3+ in LZ is less than 1%, and LZ preserves the
pyrochlore structure.
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Figure 8. Phase diagram of ZrO2-REO1.5. The composition evolution of YSZ and rare earth zirconate,
including LZ (green) and HEZ (yellow), are marked with arrows. The red dashed line represents a
temperature of 1500 ◦C.

In the case of HEZ/YSZ, cubic phases are presented after sintering at 1500 ◦C for 10 h.
This is attributed to RE3+ ions with small radii, such as Yb3+, easily entering the T-ZrO2
lattice. According to the EDS results, the proportion of stabilizers in YSZ was determined,
defined as the ratio of stabilizer ions (including Y3+ and RE3+) to all cations (including
Y3+, RE3+ and Zr4+). This value was calculated to be 16.75 % for point 9, exceeding the
solubility limit and driving the phase transformation from T to C. With an increase in
sintering time of 100 h, the stabilizer content proportion in YSZ (point 12) rises to 24.01%,
causing an almost complete transformation of T-YSZ into the C phase. HEZ transitions
from a single pyrochlore (P) phase into a mixed pyrochlore and fluorite (or cubic) phase as
the molar ratio of RE3+/Zr4+ falls from 50% to 42%. Element diffusion could also contribute
to the formation of the mixing phase of HEZ, as elements with small radii, like Yb3+, can
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rapidly enter the diffusion zone. In this region, as the radius ratio between RE3+ and Zr4+

falls below the threshold value (1.46), the rare earth zirconates transform into a fluorite
(cubic, C) structure. This is supported by the XRD results, showing the emergence of a
new phase with a fluorite structure with prolonged sintering time. The element diffusion
and phase evolution of the two samples at 1500 ◦C at the boundary are proposed and
schematically illustrated in Figure 9. The LZ/YSZ system has a relatively narrow transition
zone. Due to the diffusion of Y3+, the content of stabilizer ions in YSZ decreases, leading
to ZrO2 undergoing a T-M phase transition, thereby reducing the stability of YSZ in high-
temperature environments. In contrast, the HEZ/YSZ system features a wide transition
zone. Due to the diffusion of RE3+ into the YSZ lattice, the concentration of stabilizer ions
increases, hindering the T-M phase transformation of ZrO2.
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4.3. Implication of TBC Applications

According to the aforementioned discussion, it is evident that the chemical compati-
bility of LZ with YSZ surpasses that of HEZ, primarily due to reduced elemental diffusion
and a smaller diffusion zone. Nonetheless, it is crucial to note that small cracks develop in
LZ after sintering at elevated temperatures, while no cracks are observed in HEZ. Several
potential reasons account for this observation: (1) the fracture toughness of HEZ, mea-
sured at 1.69 MPa·m1/2, is 22.5% higher than that of LZ, which impedes the formation of
cracks [29]; (2) HEZ exhibits a CTE of 10.39 × 10−6 K−1, which is 16.6% larger than that of
LZ (8.91 × 10−6 K−1) [19], making it comparable to YSZ and resulting in less misfit stress;
(3) local stress concentration caused by the T-M transformation in LZ/YSZ, accompanied
by 3~5% volume expansion, eventually leads to crack initiation and propagation; (4) the
higher porosity in HEZ than that of LZ due to its higher sintering resistance may provide
more free space to alleviate the phase transformation strain; (5) a continuous gradient
layer is generated at the HEZ/YSZ boundary, potentially relieving the interface stress.
Despite having more element diffusion, HEZ/YSZ may demonstrate superior interfacial
stability compared to LZ/YSZ, indicating promising prospects for long-term application
in double-layer TBCs. The thermal cycling life and failure behaviors of the HEZ/YSZ
double-layer coating will be systematically examined in our upcoming work.

5. Conclusions

(La0.2Yb0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (HEZ) and La2Zr2O7 (LZ) were synthesized via a
solid-state reaction, and their chemical stability with YSZ was comparatively studied.

It was observed that RE3+ with a smaller radius, such as Yb3+, can easily enter the
YSZ lattice and stabilize the tetragonal and cubic (fluorite) phases, thereby prohibiting
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tetragonal-to-monoclinic phase transformation. The diffusion of Y3+ into LZ was found to
be much easier than into HEZ, possibly due to the severe lattice distortion of HEZ, which
impedes the inward diffusion of Y3+. Despite the rapid element diffusion, HEZ exhibited
higher high-temperature stability than LZ. This can be attributed to its high fracture
toughness and low thermal expansion coefficient, the absence of T-M transformation and
the formation of a continuous gradient diffusion layer capable of relieving interface stress.
Consequently, HEZ holds great promise for long-term application in double-layer TBC due
to its superior comprehensive properties and excellent high-temperature stability with YSZ.
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