Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer
Abstract
:1. Introduction
2. Mechanisms of VOC Transportation in Soil
3. VOC In Situ Monitoring Technology
4. Contaminated Site Capping Technology
5. Biochar-Modified Capping Layer of VOCs
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 2018, 610, 1154–1163. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Zhuang, J.; Chen, X. Decontaminating soil organic pollutants with manufactured nanoparticles. Environ. Sci. Pollut. Res. 2016, 23, 11533–11548. [Google Scholar] [CrossRef] [PubMed]
- Wanner, P.; Freis, M.; Peternell, M.; Kelm, V. Risk classification of contaminated sites-Comparison of the Swedish and the German method. J. Environ. Manag. 2023, 327, 116825. [Google Scholar] [CrossRef]
- Lowrie, K.; Mayer, H.; Greenberg, M. Communicating about contaminated site cleanup using coordinated and consistent metrics: Opportunity and challenge for the US Department of Energy. Risk Anal. 2021, 41, 1478–1491. [Google Scholar] [CrossRef] [PubMed]
- Swartjes, F.; Rutgers, M.; Lijzen, J.; Janssen, P.; Otte, P.; Wintersen, A.; Brand, E.; Posthuma, L. State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools. Sci. Total Environ. 2012, 427, 78. [Google Scholar] [CrossRef] [PubMed]
- Longpré, D.; Lorusso, L.; Levicki, C.; Carrier, R.; Cureton, P. PFOS, PFOA, LC-PFCAS, and certain other PFAS: A focus on Canadian guidelines and guidance for contaminated sites management. Environ. Technol. Innov. 2020, 18, 100752. [Google Scholar] [CrossRef]
- Moufawad, T.; Gomes, M.C.; Fourmentin, S. Deep eutectic solvents as absorbents for VOC and VOC mixtures in static and dynamic processes. Chem. Eng. J. 2022, 448, 137619. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, S.; Zhao, X.; Li, X.; Qiao, X.; Dionysiou, D.D.; Zheng, B. Distribution characteristics and health risk assessment of volatile organic compounds in the groundwater of Lanzhou City, China. Environ. Geochem. Health 2020, 42, 3609–3622. [Google Scholar] [CrossRef]
- Collins, R.; Takemori, T. A sum rule for unbiased Brownian motion, and generalisations of Fick’s law for space-dependent diffusivity. J. Phys. Condens. Matter 1989, 1, 3801. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, Q.; Chang, C.; Wang, R.; Liu, Z.; He, L. Recent progress regarding electrochemical sensors for the detection of typical pollutants in water environments. Anal. Sci. 2022, 38, 55–70. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Cao, J.; Yan, H. Headspace solid-phase-microextraction using a graphene aerogel for gas chromatography–tandem mass spectrometry quantification of polychlorinated naphthalenes in shrimp. J. Chromatogr. A 2022, 1672, 463012. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakis, I.; Dermatas, D. Contaminated Site Management and Remediation Technologies. Bull. Environ. Contam. Toxicol. 2018, 101, 691. [Google Scholar] [CrossRef] [PubMed]
- Bekhterev, V.; Kabina, E.; Loginova, S. Removal of chloromethanes from water by the method of vapor-phase extraction. J. Water Chem. Technol. 2014, 36, 134–138. [Google Scholar] [CrossRef]
- Qin, C.-y.; Zhao, Y.-s.; Zheng, W.; Li, Y.-s. Study on influencing factors on removal of chlorobenzene from unsaturated zone by soil vapor extraction. J. Hazard. Mater. 2010, 176, 294–299. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, L.; Miao, Y.; Qiu, L. Research progress in the enhancement technology of soil vapor extraction of volatile petroleum hydrocarbon pollutants. Environ. Sci. Process. Impacts 2021, 23, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Zhang, S.; Zhao, X.; Feng, K.; Lin, Y. Removal of volatile organic compounds in soils by soil vapor extraction (SVE). Huan Jing Ke Xue Huanjing Kexue 2011, 32, 1454–1461. [Google Scholar]
- Ding, Y.; Zhang, Y.; Deng, Z.; Song, H.; Wang, J.; Guo, H. An innovative method for soil vapor extraction to improve extraction and tail gas treatment efficiency. Sci. Rep. 2022, 12, 6495. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Picardi, F.; Todaro, F.; Notarnicola, M. Remediation of a petroleum hydrocarbon-contaminated site by soil vapor extraction: A full-scale case study. Appl. Sci. 2020, 10, 4261. [Google Scholar] [CrossRef]
- Qin, Y.; Xi, B.; Sun, X.; Zhang, H.; Xue, C.; Wu, B. Methane emission reduction and biological characteristics of landfill cover soil amended with hydrophobic biochar. Front. Bioeng. Biotechnol. 2022, 10, 905466. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency; Office of Solid Waste; Emergency Response, & Risk Reduction Engineering Laboratory (US). Final Covers on Hazardous Waste Landfills and Surface Impoundments; Office of Solid Waste and Emergency Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 89.
- Randazzo, A.; Asensio-Ramos, M.; Melián, G.; Venturi, S.; Padrón, E.; Hernández, P.; Pérez, N.; Tassi, F. Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Sci. Total Environ. 2020, 726, 138326. [Google Scholar] [CrossRef]
- Huber-Humer, M.; Tintner, J.; Böhm, K.; Lechner, P. Scrutinizing compost properties and their impact on methane oxidation efficiency. Waste Manag. 2011, 31, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, C.; Pedicone, A.; Pedersen, G.B.; Kjeldsen, P. Evaluation of respiration in compost landfill biocovers intended for methane oxidation. Waste Manag. 2011, 31, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, C.; Pedersen, R.B.; Petersen, P.H.; Jørgensen, J.H.B.; Ucendo, I.M.B.; Mønster, J.G.; Samuelsson, J.; Kjeldsen, P. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 2014, 34, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.B.; Scheutz, C.; Kjeldsen, P. Availability and properties of materials for the Fakse Landfill biocover. Waste Manag. 2011, 31, 884–894. [Google Scholar] [CrossRef]
- Mostafid, M.E.; Shank, C.; Imhoff, P.T.; Yazdani, R. Gas transport properties of compost–woodchip and green waste for landfill biocovers and biofilters. Chem. Eng. J. 2012, 191, 314–325. [Google Scholar] [CrossRef]
- Mei, C.; Yazdani, R.; Han, B.; Mostafid, M.E.; Chanton, J.; VanderGheynst, J.; Imhoff, P. Performance of green waste biocovers for enhancing methane oxidation. Waste Manag. 2015, 39, 205–215. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Klüpfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef]
- Liu, X.; Ma, E.; Zhang, Y.-K.; Liang, X. An analytical model of vapor intrusion with fluctuated water table. J. Hydrol. 2021, 596, 126085. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, D.; Xu, J.; Peng, S.; Nie, W. Investigation of the Klinkenberg effect on gas flow in coal matrices: A numerical study. J. Nat. Gas Sci. Eng. 2016, 30, 237–247. [Google Scholar] [CrossRef]
- Aranovich, G.L.; Donohue, M.D. Diffusion in fluids between K nudsen and F ickian limits: Departure from classical behavior. AIChE J. 2015, 61, 3138–3143. [Google Scholar] [CrossRef]
- Mason, E.A.; Malinauskas, A.P. Gas transportin porous media: The dusty-gas model. Chem. Eng. Monogr. 1983, 17, 1–14. [Google Scholar]
- Molins, S.; Mayer, K. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study. Water Resour. Res. 2007, 43, 5206. [Google Scholar] [CrossRef]
- Webb, S.W.; Pruess, K. The use of Fick’s law for modeling trace gas diffusion in porous media. Transp. Porous Media 2003, 51, 327–341. [Google Scholar] [CrossRef]
- Molins, S.; Mayer, K.; Scheutz, C.; Kjeldsen, P. Transport and reaction processes affecting the attenuation of landfill gas in cover soils. J. Environ. Qual. 2008, 37, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Barlaz, M.; Green, R.; Chanton, J.; Goldsmith, C.; Hater, G. Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ. Sci. Technol. 2004, 38, 4891–4899. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, X.; Tang, S.; Mohammad, A.; Singh, D.N.; Xie, H.; Chen, Y.; Zuo, X.; Sun, Z. Gas transport in landfill cover system: A critical appraisal. J. Environ. Manag. 2022, 321, 116020. [Google Scholar] [CrossRef]
- Feng, S.; Liu, H.-W. Numerical Study of Landfill Gas Emissions through Three Earthen Landfill Covers. J. Environ. Eng. 2022, 148, 04022041. [Google Scholar] [CrossRef]
- Feng, S.; Ng, C.W.W.; Leung, A.K.; Liu, H. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover. Waste Manag. 2017, 68, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.W.; Zhan, L.; Leung, A.K.; Feng, S.; Chen, Y.M. A new method and apparatus for measuring in situ air permeability of unsaturated soil. Can. Geotech. J. 2021, 58, 514–530. [Google Scholar] [CrossRef]
- Albright, W.H.; Benson, C.H.; Gee, G.W.; Abichou, T.; McDonald, E.V.; Tyler, S.W.; Rock, S.A. Field performance of a compacted clay landfill final cover at a humid site. J. Geotech. Geoenviron. Eng. 2006, 132, 1393–1403. [Google Scholar] [CrossRef]
- Iyoho, A.E.; Stuhmiller, J.H.; Ng, L.J. Assessing the application of acute toxic gas standards. Inhal. Toxicol. 2011, 23, 707–723. [Google Scholar] [CrossRef]
- Chen, G.; Farooq, M.Z.; Sun, B.; Lin, F.; Yan, B.; Rajput, G.; Chawla, M. Pollutants formation, distribution, and reaction mechanism during WT pyrolysis: A review. J. Anal. Appl. Pyrolysis 2021, 157, 105218. [Google Scholar] [CrossRef]
- Xue, S.; Ding, W.; Li, L.; Ma, J.; Chai, F.; Liu, J. Emission, dispersion, and potential risk of volatile organic and odorous compounds in the exhaust gas from two sludge thermal drying processes. Waste Manag. 2022, 138, 116–124. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, H.; Ma, M.; Huang, T.; Guo, H.; Yang, W.; Huang, Y.; Liu, X.; Li, H. Nitrogen removal by two strains of aerobic denitrification actinomycetes: Denitrification capacity, carbon source metabolic ability, and raw water treatment. Bioresour. Technol. 2022, 344, 126176. [Google Scholar] [CrossRef]
- Knobloch, M.C.; Schinkel, L.; Schilling, I.; Kohler, H.-P.E.; Lienemann, P.; Bleiner, D.; Heeb, N.V. Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB–formation of mono-and di-hydroxylated metabolites. Chemosphere 2021, 262, 128288. [Google Scholar] [CrossRef]
- İskurt, Ç.; Aliyev, E.; Gengec, E.; Kobya, M.; Khataee, A. Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. Chemosphere 2022, 307, 135954. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.S.; Rashid, N.; Basheer, S. Physiological and molecular basis of plants tolerance to linear halogenated hydrocarbons. In Handbook of Bioremediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 591–602. [Google Scholar]
- Kumar, M.; Bolan, N.S.; Hoang, S.A.; Sawarkar, A.D.; Jasemizad, T.; Gao, B.; Keerthanan, S.; Padhye, L.P.; Singh, L.; Kumar, S. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? J. Hazard. Mater. 2021, 420, 126534. [Google Scholar] [CrossRef]
- Konstantinova, E.; Minkina, T.; Konstantinov, A.; Sushkova, S.; Antonenko, E.; Kurasova, A.; Loiko, S. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ. Geochem. Health 2022, 44, 409–432. [Google Scholar] [CrossRef]
- Makoś, P.; Przyjazny, A.; Boczkaj, G. Methods of assaying volatile oxygenated organic compounds in effluent samples by gas chromatography—A review. J. Chromatogr. A 2019, 1592, 143–160. [Google Scholar] [CrossRef]
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1122, 222–229. [Google Scholar] [CrossRef]
- Ying, D.; Chuanyu, C.; Bin, H.; Yueen, X.; Xuejuan, Z.; Yingxu, C.; Weixiang, W. Characterization and control of odorous gases at a landfill site: A case study in Hangzhou, China. Waste Manag. 2012, 32, 317–326. [Google Scholar] [CrossRef]
- Tripathy, B.; Dash, A.; Das, A.P. Detection of environmental microfiber pollutants through vibrational spectroscopic techniques: Recent advances of environmental monitoring and future prospects. Crit. Rev. Anal. Chem. 2022, 2022, 2144994. [Google Scholar] [CrossRef]
- Halpern, B.; Jellum, E. Biomedical Application of Gas Chromatography-Mass Spectrometry; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar] [CrossRef]
- Almeida, M.O.; Oloris, S.C.S.; Faria, V.H.F.; Ribeiro, M.C.M.; Cantini, D.M.; Soto-Blanco, B. Optimization of method for pesticide detection in honey by using liquid and gas chromatography coupled with mass spectrometric detection. Foods 2020, 9, 1368. [Google Scholar] [CrossRef]
- Zhan-Ying, C.; Shu-Jiang, L.; Jian-Long, W.; Chang, Y.-Z. Determination of atmospheric krypton and xenon by gas chromatography-mass spectrometry in direct injection mode. Chin. J. Anal. Chem. 2016, 44, 468–473. [Google Scholar] [CrossRef]
- Wang, B.; Sivret, E.; Parcsi, G.; Le, N.; Kenny, S.; Bustamante, H.; Stuetz, R. Reduced sulfur compounds in the atmosphere of sewer networks in Australia: Geographic (and seasonal) variations. Water Sci. Technol. 2014, 69, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Qiao, S.; Liu, X.; Ma, Y. Highly sensitive hydrogen sensing based on tunable diode laser absorption spectroscopy with a 2.1 μm diode laser. Chemosensors 2022, 10, 321. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Guo, J.; Du, B.; Zheng, R. A portable tunable diode laser absorption spectroscopy system for dissolved CO2 detection using a high-efficiency headspace equilibrator. Sensors 2021, 21, 1723. [Google Scholar] [CrossRef]
- Xiao, H.; Zhao, J.; Sima, C.; Lu, P.; Long, Y.; Ai, Y.; Zhang, W.; Pan, Y.; Zhang, J.; Liu, D. Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane. Photoacoustics 2022, 26, 100353. [Google Scholar] [CrossRef]
- Lin, H.; Gao, F.; Ding, Y.; Yan, C.; He, S. Methane detection using scattering material as the gas cell. Appl. Opt. 2016, 55, 8030–8034. [Google Scholar] [CrossRef]
- Zhang, T.; Xing, Y.; Wang, G.; He, S. High sensitivity continuous monitoring of chloroform gas by using wavelength modulation photoacoustic spectroscopy in the near-infrared range. Appl. Sci. 2021, 11, 6992. [Google Scholar] [CrossRef]
- Jaworski, P.; Krzempek, K.; Bojęś, P.; Wu, D.; Yu, F. Mid-IR antiresonant hollow-core fiber based chirped laser dispersion spectroscopy of ethane with parts per trillion sensitivity. Opt. Laser Technol. 2022, 156, 108539. [Google Scholar] [CrossRef]
- Goldschmidt, J.; Nitzsche, L.; Wolf, S.; Lambrecht, A.; Wöllenstein, J. Rapid quantitative analysis of IR absorption spectra for trace gas detection by artificial neural networks trained with synthetic data. Sensors 2022, 22, 857. [Google Scholar] [CrossRef]
- Bi, R.; Pi, M.; Zheng, C.; Zhao, H.; Liang, L.; Song, F.; Wang, D.; Zhang, Y.; Wang, Y.; Tittel, F.K. A niobium pentoxide waveguide sensor for on-chip mid-infrared absorption spectroscopic methane measurement. Sens. Actuators B Chem. 2023, 382, 133567. [Google Scholar] [CrossRef]
- Ji, Y.; Duan, K.; Lu, Z.; Ren, W. Mid-infrared absorption spectroscopic sensor for simultaneous and in-situ measurements of ammonia, water and temperature. Sens. Actuators B Chem. 2022, 371, 132574. [Google Scholar] [CrossRef]
- Khire, M.; Benson, C.; Bosscher, P.; Pliska, R. Field-scale comparison of capillary and resistive landfill covers in an arid climate. In Proceedings of the 14th Annual American Geophysical Union Hydrology Days, Fort Collins, CO, USA, 5–8 April 1994; Volume 57, p. 94027-3926. [Google Scholar]
- Li, J.; Li, L.; Chen, R.; Li, D. Cracking and vertical preferential flow through landfill clay liners. Eng. Geol. 2016, 206, 33–41. [Google Scholar] [CrossRef]
- Ng, C.W.; Coo, J.L.; Chen, Z.K.; Chen, R. Water infiltration into a new three-layer landfill cover system. J. Environ. Eng. 2016, 142, 04016007. [Google Scholar] [CrossRef]
- Zhan, L.-t.; Li, G.-y.; Jiao, W.-g.; Wu, T.; Lan, J.-w.; Chen, Y.-m. Field measurements of water storage capacity in a loess–gravel capillary barrier cover using rainfall simulation tests. Can. Geotech. J. 2017, 54, 1523–1536. [Google Scholar] [CrossRef]
- Zhan, L.-t.; Li, G.-y.; Jiao, W.-g.; Lan, J.-w.; Chen, Y.-m.; Shi, W. Performance of a compacted loess/gravel cover as a capillary barrier and landfill gas emissions controller in Northwest China. Sci. Total Environ. 2020, 718, 137195. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Creamer, A.E.; Cao, C.; Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. J. Hazard. Mater. 2017, 338, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xiao, S.; Dong, H.; Xiao, J.; Tian, R.; Chen, J.; Li, Y.; Li, L. Adsorption and catalytic degradation of organic contaminants by biochar: Overlooked role of biochar’s particle size. J. Hazard. Mater. 2022, 422, 126928. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yi, X.; Xu, B.; Lai, K. Effect of wheat straw derived biochar on immobilization of Cd and Pb in single-and binary-metal contaminated soil. Hum. Ecol. Risk Assess. 2020, 26, 2420–2433. [Google Scholar] [CrossRef]
- Shakya, A.; Agarwal, T. Potential of biochar for the remediation of heavy metal contaminated soil. Biochar Appl. Agric. Environ. Manag. 2020, 2020, 77–98. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Bai, L.; Han, C.; Sun, X. Application of biochar-based materials for remediation of arsenic contaminated soil and water: Preparation, modification, and mechanisms. J. Environ. Chem. Eng. 2022, 2022, 108292. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, K.; Fang, J.; He, F.; Hu, X.; Tsang, D.C.; Ok, Y.S.; Gao, B. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem. Eng. J. 2020, 385, 123842. [Google Scholar] [CrossRef]
- Cheng, T.; Li, J.; Ma, X.; Zhou, L.; Wu, H.; Yang, L. Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment. Environ. Pollut. 2022, 295, 118714. [Google Scholar] [CrossRef] [PubMed]
- Mayilswamy, N.; Nighojkar, A.; Edirisinghe, M.; Sundaram, S.; Kandasubramanian, B. Sludge-derived biochar: Physicochemical characteristics for environmental remediation. Appl. Phys. Rev. 2023, 10, 3. [Google Scholar] [CrossRef]
- Matuštík, J.; Hnátková, T.; Kočí, V. Life cycle assessment of biochar-to-soil systems: A review. J. Clean Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, S.; Zhang, X.; Lei, L.; Ma, W.; Ma, C.; Song, L.; Chen, J.; Pan, B.; Xing, B. Cation–Pi Interaction: A key force for sorption of fluoroquinolone antibiotics on pyrogenic carbonaceous materials. Environ. Sci. Technol. 2017, 51, 13659–13667. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Haddao, K.M.; Emami, N.; Nalchifard, F.; Hussain, W.; Dawood, A.H.; Toghraie, D.; Hekmatifar, M. Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. Sustain. Chem. Pharm. 2022, 29, 100757. [Google Scholar] [CrossRef]
- Chun, Y.; Sheng, G.; Chiou, C.T.; Xing, B. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Sun, K.; Liu, X.; Zheng, W.; Zhao, Y. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ. Pollut. 2011, 159, 2594–2601. [Google Scholar] [CrossRef]
- Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014, 186, 187–194. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Zheng, Y.; Hu, X.; Creamer, A.E.; Annable, M.D.; Li, Y. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresour. Technol. 2017, 245, 606–614. [Google Scholar] [CrossRef]
- Qin, L.; Xu, Z.; Liu, L.; Lu, H.; Wan, Y.; Xue, Q. In-situ biodegradation of volatile organic compounds in landfill by sewage sludge modified waste-char. Waste Manag. 2020, 105, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Moghaddam, T.B.; Chen, M.; Wu, S.; Adhikari, S. Biochar removes volatile organic compounds generated from asphalt. Sci. Total Environ. 2020, 745, 141096. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, E.; Khapre, A.; Bordoloi, N.; Kumar, S. Sorption of volatile organic compounds on non-activated biochar. Bioresour. Technol. 2020, 297, 122469. [Google Scholar] [CrossRef]
- Rajabi, H.; Mosleh, M.H.; Prakoso, T.; Ghaemi, N.; Mandal, P.; Lea-Langton, A.; Sedighi, M. Competitive adsorption of multicomponent volatile organic compounds on biochar. Chemosphere 2021, 283, 131288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jiang, X.; Li, X.; Jia, C.Q.; Jiang, W. Preparation of high-yield N-doped biochar from nitrogen-containing phosphate and its effective adsorption for toluene. RSC Adv. 2018, 8, 30171–30179. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Song, L.; He, H.; Zhang, W. Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer. Coatings 2024, 14, 270. https://doi.org/10.3390/coatings14030270
Wang S, Song L, He H, Zhang W. Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer. Coatings. 2024; 14(3):270. https://doi.org/10.3390/coatings14030270
Chicago/Turabian StyleWang, Shifang, Lei Song, Haijie He, and Wenjie Zhang. 2024. "Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer" Coatings 14, no. 3: 270. https://doi.org/10.3390/coatings14030270
APA StyleWang, S., Song, L., He, H., & Zhang, W. (2024). Volatile Organic Compounds (VOCs) in Soil: Transport Mechanisms, Monitoring, and Removal by Biochar-Modified Capping Layer. Coatings, 14(3), 270. https://doi.org/10.3390/coatings14030270