Physical and Mechanical Methods for the Removal of Lithobionts—A Review
Abstract
:1. Introduction
2. Review Aim
- -
- Jstor, ADVANCED SEARCH, TERMS cultural heritage AND biodeterioration AND control methods, FIELDS all fields;
- -
- Scopus, TITLE-ABS-KEY biodeterioration, stone cultural heritage, control methods;
- -
- Google Scholars and ProQuest, keywords biodeterioration, stone cultural heritage, control methods.
3. Electromagnetic Radiation
Electromagnetic Radiation | Target Organisms | Site and Technical Data | Efficiency | Recolonization | Reference |
---|---|---|---|---|---|
UV-C radiation | Green alga Chlorella minutissima | Cave, 180 kJ/m2 of radiation, double treatment | + | After 16 months | [10] |
UV-C radiation | Algae and cyanobacteria | Cave | + | After 2 years | [12] |
Artificial daylight (350–1100 nm) | Algae and cyanobacteria | Granite samples | - | [15] | |
UV-C radiation | Fungi | Cave | ± | [13] | |
UV-C radiation | Fungi | Laboratory test, four treatments at 30 kJ/m2 | + | [11] | |
Blue radiation | Cyanobacteria | Caves | ± | Drastic reduction of the phototrophic community after 10 years | [19] |
Blue radiation | Cyanobacteria | Laboratory test | - | [20] | |
Blue radiation | Biofilm mainly composed of cyanobacteria | Mausoleum. Continuous exposure for two years | - | [21] | |
Red, green and white radiation | Cyanobacteria | Laboratory test. Treatment lasted 14 days | + | [20] | |
Red and green radiation | Biofilm mainly composed of cyanobacteria | Mausoleum. Continuous exposure for two years | + | [21] | |
Combination of UV-B rays and biocide | Algae and cyanobacteria | + | [15] | ||
Combination of UV-A rays and red LED light | Two different cultures of algae and cyanobacteria | Granite samples | - | [14] | |
Combination of UV-B rays and red LED light | Two different cultures of algae and cyanobacteria | Granite samples | + | [14] | |
Combination of blue LED light and the photosensitizer erythrosine | Bacteria and fungi | Laboratory test | + | [23] | |
Combination of red light and the photosensitizer d-aminolevulinic acid | Cyanobacteria | Laboratory test | + | [22] | |
Gamma radiation | Fungi | Ancient Egyptian tombs | + | [24] |
4. Thermal Treatments
Thermal Treatments | Target Organisms | Site and Other Data | Efficiency | Recolonization | Reference |
---|---|---|---|---|---|
Heat shock | Endolithic lichens and bryophytes | Samples from rock outcrops. 6–12-h-long treatment at 55–60 °C | + | [25,26] | |
Green algae | Laboratory test. Six-h-long treatment at 20 °C, 40 °C, 60 °C for 6 h. | - | [28] | ||
Microwave heating | Biofilms and lichens | English Cemetery of Firenze | + | After 15 months | [32] |
Microwave heating | Foliose and crustose lichens and a cyanobacteria-dominated biofilm | Rock engravings of Valle Camonica | + | [33] | |
Combination of heat shock and biocides | Epilithic and endolithic lichens and bryophytes | Six hour-long treatment at 40 °C | + | [25] |
5. Laser Cleaning
5.1. Efficiency on Lichens Removal
5.2. Efficiency of Laser on Biofilms’ Removal
5.3. Effects on Substrates of Laser Treatments
Laser | Target Organisms | Fluence (J/cm2) | Efficiency | Side Effects | Reference |
---|---|---|---|---|---|
Nd:YAG laser at 1064 nm | Lichen Verrucaria nigrescens | 2 | + | [40] | |
Lichen Verrucaria nigrescens | 2 | - | Peak intensity higher than 200 MW/cm2 causes the plasma-mediated ablation of marble. | [41] | |
Lichens | 5 | + | Removal of calcite grains. | [17] | |
Lichen Circinaria hoffmanniana | 1–25 | ± | Formation of visible streaks. | [42,43] | |
Lichens Aspicilia viridescens, Rhizocarpon disporum | 1.8 | - | [46] | ||
Lichens | 1.06–12.3 | - | At high fluences (around 12.3 J/cm2), it caused strong chromatic alterations on basalt. | [44] | |
Past microbial colonization | - | Discoloration and overcleaning of terracotta | [35] | ||
Biofilms (cyanobacteria, green algae, fungi) | 2 | + | [40,50] | ||
Biofilms (cyanobacteria, green algae, black fungi) | 1.5, 2.5, and 3.5 | - | [51] | ||
Nd:YAG laser at 266 nm | Lichen Candelariella vitellina | 0.2 | + | [46] | |
Lichen Rhizocarpon disporum | 0.2 | - | [46] | ||
Nd:YAG laser at 532 nm | Lichen Verrucaria nigrescens | 1–1.4 | + | [41] | |
Biofilms (cyanobacteria, green algae, black fungi) | 0.7–1 | + | Removal of the kaolinite crackled layer and the Fe-rich segregations. Slight melting and fracturing of the muscovite exfoliation planes. | [53] | |
Biofilms | + | [52] | |||
Green algae and cyanobacteria | 5 | + | [53] | ||
Nd:YAG laser at 355 nm | Lichens | 0.35 | + | [44] | |
Lichens Caloplaca sp. and Verrucaria nigrescens | 0.5 | ± | [39] | ||
Nd:YVO4 laser at 355 nm | Lichen Pertusaria amara | 0.14 and 0.21 | + | Slight melting of biotite and potassium feldspar grains of granite. | [45] |
Lichen Pertusaria pseudocorallina | 0.14 and 0.21 | ± | [45] | ||
Lichen Protoparmeliopsis muralis | 0.4 | ± | [46] | ||
Black biofilms (Trebouxia sp. and cyanobacteria) | ≥0.5 | + | Slight melting of biotite and potassium feldspar grains of granite. | [54,55] | |
Sequences of IR-UV pulses (1064 + 266 nm) | Lichens Protoparmeliopsis cf. bolcana, P. muralis | ± | [46] | ||
Lichen Aspicilia contorta | + | [46] | |||
Sequences of IR-UV pulses (1064 + 355 nm) | Lichens Caloplaca sp. and Verrucaria nigrescens | + | [39] | ||
Bacillus sp., Rhodotorula sp. and Penicillium sp. | 0.35 | - | [44] | ||
Er:YAG laser at 2940 nm | Lichen Diploschistes scruposus | 0.38–12.74 | + | [35] | |
Lichen Circinaria hoffmanniana | 1–10 | ± | Chromatic modifications visible to the naked eye and melting of biotite. | [42] | |
Past microbial colonization | ≤2 | + | [34] | ||
Biofilm | 2 and 5 | _ | Dark coloration of granite | [50] | |
Mechanical cleaning with scalpel followed by 355 nm Nd: YVO4 laser | Lichens Pertusaria amara and P. pseudocorallina | + | [45] | ||
Combination of 532 nm Nd:YAG laser and microwaves | Lichens | + | [30] | ||
Nd:YAG laser at 1064 and 266 nm followed by a biocide | Lichens Verrucaria nigrescens, Calogaya decipiens and Pyrenodesmia teicholyta | 1.8 | + | [48] | |
Nd:YAG laser at 266 nm followed by a biocide | Lichens Verrucaria nigrescens, Calogaya decipiens and Pyrenodesmia teicholyta | 0.2 | + | [48] | |
Biocide followed by 355 nm Nd:YVO4 laser | Lichens Diploschistes scruposus and Polysporina simplex, and biofilm | Two scans at 0.4 and two scans at 0.2 | + | [58] | |
Femtosecond laser at 790 and 395 nm | Biofilm | + | [58] | ||
Femtosecond laser at 1029 nm | Black and green biofilms | 1 | + | [38] | |
Femtosecond laser at 515 nm and 343 nm | Biofilm | + | Discoloration of sandstone | [38] |
6. Mechanical Methods
7. Concluding Remarks and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guillitte, O. Bioreceptivity: A new concept for building ecological studies. Sci. Total Environ. 1995, 167, 215–220. [Google Scholar] [CrossRef]
- Pinna, D. Coping with Biological Growth On Stone Heritage Objects. Methods, Products, Applications, and Perspectives, Apple; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Pinna, D. Microbial growth and its effects on inorganic heritage materials. Chapter 1. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–36. [Google Scholar]
- López, D.; Vlamakis, H.; Kolte, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2010, 2, a00398. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Jacob, J.M.; Schmull, M.; Villa, F. Biofilms and lichens on eroded marble monuments. APT Bull. J. Preserv. Technol. 2018, 49, 55–60. [Google Scholar]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodete-rioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- Cameron, S.; Urquhart, D.C.M.; Young, M.E. Biological Growths on Sandstone Buildings: Control and Treatment; Historic: Edinburgh, Scotland, 1997. [Google Scholar]
- Borderie, F.; Tête, N.; Cailhol, D.; Alaoui-Sehmer, L.; Bousta, F.; Rieffel, D.; Aleya, L.; Alaoui-Sossé, B. Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci. Total Environ. 2014, 484, 43–52. [Google Scholar] [CrossRef]
- Borderie, F.; Alaoui-Sehmer, L.; Bousta, F.; Alaoui-Sossé, B.; Aleya, L. Cellular and molecular damage caused by high UV-C irradiation of the cave-harvested green alga Chlorella minutissima: Implications for cave management. Int. Biodeterior. Biodegrad. 2014, 93, 118–130. [Google Scholar] [CrossRef]
- Pfendler, S.; Karimi, B.; Alaoui-Sosse, L.; Bousta, F.; Alaoui-Sossé, B.; Abdel-Daim, M.M.; Aleya, L. Assessment of fungi proliferation and diversity in cultural heritage: Reactions to UV-C treatment. Sci. Total Environ. 2019, 647, 905–913. [Google Scholar] [CrossRef]
- Pfendler, S.; Einhorn, O.; Karimi, B.; Bousta, F.; Cailhol, D.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. UV-C as an efficient means to combat biofilm formation in show caves: Evidence from in situ and laboratory experiments. Environ. Sci. Pollut. Res. 2017, 24, 24611–24623. [Google Scholar] [CrossRef]
- Kigawa, R.; Sano, C.; Kiyuna, T.; Tazato, N.; Sugiyama, J.; Takatori, K.; Kumeda, Y.; Morii, M.; Hayakawa, N.; Kawanobe, W. New measure to control microorganisms in Kitora Tumulus: Effects of intermittent UV irradiation. Sci. Conserv. 2010, 49, 253–264. [Google Scholar]
- Sanmartín, P.; Méndez, A.; Carballeira, R.; López, E. New insights into the growth and diversity of subaerial biofilms colonizing granite-built heritage exposed to UV-A or UV-B radiation plus red LED light. Int. Biodeterior. Biodegrad. 2021, 161, 105225. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Sanmartín, P. Exposure to artificial daylight or UV irradiation (A, B or C) prior to chemical cleaning: An effective combination for removing phototrophs from granite. Biofouling 2018, 34, 851–869. [Google Scholar] [CrossRef]
- Geraldes, V.; Pinto, E. Mycosporine-like amino acids (MAAs): Biology, chemistry and identification features. Pharmaceuticals 2021, 14, 63. [Google Scholar] [CrossRef]
- Leavengood, P.; Twilley, J.; Asmus, J.F. Lichen removal from Chinese Spirit Path figures of marble. J. Cult. Herit. 2000, 1, S71–S74. [Google Scholar] [CrossRef]
- Bruno, L.; Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman catacombs. Int. Biodeterior. Biodegrad. 2017, 123, 286–295. [Google Scholar] [CrossRef]
- Bruno, L.; Bellezza, S.; Urzì, C.; De Leo, F. A study for monitoring and conservation in the Roman catacombs of St. Callistus and Domitilla, Rome (Italy). In The Conservation of Subterranean Cultural Heritage; Jimenez, C.S., Ed.; CRC Press/Balkema: Leiden, The Netherlands, 2014; pp. 37–44. [Google Scholar]
- Hsieh, P.; Pedersen, J.Z.; Bruno, L. Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Photochem. Photobiol. 2014, 90, 533–543. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, Y.; Liu, W.; Li, X.; Li, Y.; Zhou, P.; Feng, Y.; Delgado-Baquerizo, M. Innovative strategy for the conservation of a millennial mausoleum from biodeterioration through artificial light management. Biofilms Microbiomes 2023, 9, 69. [Google Scholar] [CrossRef]
- Hsieh, P.; Pedersen, J.Z.; Albertano, P. Generation of reactive oxygen species upon red light exposure of cyanobacteria from Roman hypogea. Int. Biodeterior. Biodegrad. 2013, 84, 258–265. [Google Scholar] [CrossRef]
- De Lucca, A.J.; Carter-Wientjes, C.; Williams, K.A.; Bhatnagar, D. Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett. Appl. Microbiol. 2012, 55, 460–466. [Google Scholar] [CrossRef]
- Abdel-Haliem, M.E.F.; Ali, M.F.; Ghaly, M.F.; Sakr, A. Efficiency of antibiotics and gamma irradiation in eliminating Streptomyces strains Isolated from paintings of ancient Egyptian tombs. J. Cult. Herit. 2013, 14, 45–50. [Google Scholar] [CrossRef]
- Tretiach, M.; Bertuzzi, S.; Candotto Carniel, F. Heat shock treatments: A new safe approach against lichen growth on outdoor stone surfaces. Environ. Sci. Technol. 2012, 46, 6851–6859. [Google Scholar] [CrossRef]
- Bertuzzi, S.; Candotto Carniel, F.; Pipan, G.; Tretiach, M. Devitalization of poikilohydric lithobionts of open-air monuments by heat shock treatments: A new case study centred on bryophytes. Int. Biodeterior. Biodegrad. 2013, 84, 44–53. [Google Scholar] [CrossRef]
- Gasulla, F.; Del Campo, E.M.; Casano, L.M.; Guéra, A. Advances in understanding of desiccation tolerance of lichens and lichen-forming algae. Plants 2021, 10, 807. [Google Scholar] [CrossRef]
- Bertuzzi, S.; Gustavs, L.; Pandolfini, G.; Tretiach, M. Heat shock treatments for the control of lithobionts: A case study with epilithic green microalgae. Int. Biodeterior. Biodegrad. 2017, 123, 236–243. [Google Scholar] [CrossRef]
- Riminesi, C.; Olmi, R. Localized microwave heating for controlling biodeteriogens on cultural heritage assets. Int. J. Conserv. Sci. 2016, 7, 281–294. [Google Scholar]
- Cuzman, O.A.; Olmi, R.; Riminesi, C.; Tiano, P. Preliminary study on controlling black fungi dwelling on stone monuments by using a microwave heating system. Int. J. Conserv. Sci. 2013, 4, 133–144. [Google Scholar]
- Mascalchi, M.; Osticioli, I.; Riminesi, C.; Cuzman, O.A.; Salvadori, B.; Siano, S. Preliminary investigation of combined laser and microwave treatment for stone biodeterioration. Stud. Conserv. 2015, 60 (Suppl. S1), S19–S27. [Google Scholar] [CrossRef]
- Mascalchi, M.; Orsini, C.; Pinna, D.; Salvadori, B.; Siano, S.; Riminesi, C. Assessment of different methods for the removal of biofilms and lichens on gravestones of the English Cemetery in Florence. Int. Biodeterior. Biodegrad. 2020, 154, 105041. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Matteucci, E.; Pinna, D.; Ruggiero, M.G.; Riminesi, C. Efficacy of the environmentally sustainable microwave heating compared to biocide applications in the devitalization of phototrophic communities colonizing rock engravings of Valle Camonica, UNESCO world heritage site, Italy. Int. Biodeterior. Biodegrad. 2021, 165, 105327. [Google Scholar] [CrossRef]
- Metaxas, A.C.; Meredith, R.J. Industrial Microwave Heating; The Institution of Engineering and Technology: London, UK, 1988. [Google Scholar]
- Pereira-Pardo, L.; Camurcuoglu, D.; Orsini, M.; Vasiliou, S.; Weglowska, K.; Kiely, T.; Korenberg, C. The use of an Er:YAG laser in the removal of biological growth from polychrome archaeological terracotta figurines from Cyprus. In Proceedings of the Recent Advances in Glass and Ceramics Conservation, Interim Meeting of the ICOM-CC Working Group, London, UK, 5–7 September 2019. [Google Scholar]
- DeCruz, A.; Wolbarsht, M.L.; Andreotti, A.; Colombini, M.P.; Pinna, D.; Culberson, C.F. Investigation of the Er:YAG Laser at 2.94 μm to Remove Lichens Growing on Stone. Stud. Conserv. 2009, 54, 268–277. [Google Scholar] [CrossRef]
- Rode, A.V.; Baldwin, K.G.H.; Wain, A.; Madsen, N.R.; Freeman, D.; Delaporte, P.; Luther-Davies, B. Ultrafast laser ablation for restoration of heritage objects. Appl. Surf. Sci. 2008, 254, 3137–3146. [Google Scholar] [CrossRef]
- Brand, J.; Wain, A.; Rode, A.V.; Madden, S.; Rapp, L. Towards safe and effective femtosecond laser cleaning for the preservation of historic monuments. Appl. Phys. A 2023, 129, 246. [Google Scholar] [CrossRef]
- Sanz, M.; Oujja, M.; Ascaso, C.; de los Ríos, A.; Pérez-Ortega, S.; Souza-Egipsy, V.; Wierzchos, J.; Speranza, M.; Vega Cañamares, M.; Castillejo, M. Infrared and ultraviolet laser removal of crustose lichens on dolomite heritage stone. Appl. Surf. Sci. 2015, 346, 248–255. [Google Scholar] [CrossRef]
- Speranza, M.; Sanz, M.; Oujja, M.; de los Rios, A.; Wierzchos, J.; Pérez-Ortega, S.; Castillejo, M.; Ascaso, C. Nd-YAG laser irradiation damages to Verrucaria nigrescens. Int. Biodeterior. Biodegrad. 2013, 84, 281–290. [Google Scholar] [CrossRef]
- Osticioli, I.; Mascalchi, M.; Pinna, D.; Siano, S. Removal of Verrucaria nigrescens from Carrara marble artefacts using Nd:YAG Lasers: Comparison among different pulse durations and wavelengths. Appl. Phys. A 2015, 118, 1517–1526. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Barreiro, P.; Gonzalez, P.; Paz-Bermudez, G. Nd:YAG and Er:YAG laser cleaning to remove Circinaria hoffmanniana (Lichenes, Ascomycota) from schist located in the Coa Valley Archaeological Park. Int. Biodeterior. Biodegrad. 2019, 144, 104748. [Google Scholar] [CrossRef]
- Sanmartín, P.; Fuentes, E.; Montojo, C.; Barreiro, P.; Paz-Bermúdez, G.; Prieto, B. Tertiary bioreceptivity of schists from prehistoric rock art sites in the Côa Valley (Portugal) and Siega Verde (Spain) archaeological parks: Effects of cleaning treatments. Int. Biodeterior. Biodegrad. 2019, 142, 151–159. [Google Scholar] [CrossRef]
- Gemeda, B.T.; Lahoz, R.; Caldeira, A.T.; Schiavon, N. Efficacy of laser cleaning in the removal of biological patina on the volcanic scoria of the rock-hewn churches of Lalibela, Ethiopia. Environ. Earth Sci. 2018, 77, 36. [Google Scholar] [CrossRef]
- Rivas, T.; Pozo-Antonio, J.S.; López de Silanes, M.E.; Ramil, A.; López, A.J. Laser versus scalpel cleaning of crustose lichens on granite. Appl. Surf. Sci. 2018, 440, 467–476. [Google Scholar] [CrossRef]
- Sanz, M.; Oujja, M.; Ascaso, C.; Pérez-Ortega, S.; Souza-Egipsy, V.; Fort, R.; de los Ríos, A.; Wierzchos, J.; Canamares, M.V.; Castillejo, M. Influence of wavelength on the laser removal of lichens colonizing heritage stone. Appl. Surf. Sci. 2017, 399, 758–768. [Google Scholar] [CrossRef]
- Pereira-Pardo, L.; Korenberg, C. The use of erbium lasers for the conservation of cultural heritage. A review. J. Cult. Herit. 2018, 31, 236–247. [Google Scholar] [CrossRef]
- Pena-Poza, J.; Ascaso, C.; Sanz, M.; Pérez-Ortega, S.; Oujja, M.; Wierzchos, J.; Souza-Egipsy, V.; Cañamares, M.V.; Urizal, M.; Castillejo, M.; et al. Effect of biological colonization on ceramic roofing tiles by lichens and a combined laser and biocide procedure for its removal. Int. Biodeterior. Biodegrad. 2018, 126, 86–94. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Rivas, T.; López de Silanes, M.E.; Ramil, A.; López, A.J. Dual combination of cleaning methods (scalpel, biocide, laser) to enhance lichen removal from granite. Int. Biodeterior. Biodegrad. 2022, 168, 105373. [Google Scholar] [CrossRef]
- Barreiro, P.; González, P.; Pozo-Antonio, J.S. IR irradiation to remove a sub-aerial biofilm from granitic stones using two different laser systems: An Nd: YAG (1064 nm) and an Er:YAG (2940 nm). Sci. Total Environ. 2019, 688, 632–641. [Google Scholar] [CrossRef]
- Mascalchi, M.; Osticioli, I.; Cuzman, O.A.; Mugnaini, S.; Giamello, M.; Siano, S. Laser removal of biofilm from Carrara marble using 532 nm: The first validation study. Measurement 2018, 130, 255–263. [Google Scholar] [CrossRef]
- Warscheid, T.; Leisen, H. Microbiological studies on stone deterioration and development of conservation measures at Angkor Wat. In Biocolonization of Stone: Control and Preventive Methods; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian Institute Scholarly Press: Washington, DC, USA, 2011; pp. 1–18. [Google Scholar]
- Barreiro, P.; Andreotti, A.; Colombini, M.P.; González, P.; Pozo-Antonio, J.S. Influence of the laser wavelength on harmful effects on granite due to biofilm removal. Coatings 2020, 10, 196. [Google Scholar] [CrossRef]
- López, A.J.; Rivas, T.; Lamas, J.; Ramil, A.; Yáñez, A. Optimisation of laser removal of biological crusts in granites. Appl. Phys. A: Mater. Sci. Process. 2010, 100, 733–739. [Google Scholar] [CrossRef]
- Pozo, S.; Montojo, C.; Rivas, T.; López-Díaz, A.J.; Fiorucci, M.P.; López De Silanes, M.E. Comparison between methods of biological crust removal on granite. Key Eng. Mater. 2013, 548, 317–325. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Siano, S.; Margheri, F.; Pini, R.; Mazzinghi, P.; Salimbeni, R. Cleaning processes of encrusted marbles by Nd:YAG lasers operating in free-running and Q-switching regimes. Appl. Opt. 1997, 36, 7073–7079. [Google Scholar] [CrossRef]
- Rivas, T.; Lopez, A.J.; Ramil, A.; Pozo, S.; Fiorucci, M.P.; López de Silanes, M.E.; Garcia, A.; Vazquez de Aldana, J.R.; Romero, C.; Moreno, P. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers. Appl. Surf. Sci. 2013, 278, 226–233. [Google Scholar] [CrossRef]
- Fotakis, C.; Anglos, D.; Zafiropoulos, V.; Georgiou, S.; Tornari, V. Lasers in the Preservation of Cultural Heritage, Principles and Applications; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Delgado Rodrigues, J.; Costa, D.; Mascalchi, M.; Osticioli, I.; Siano, S. Laser ablation of iron-rich black films from exposed granite surfaces. Appl. Phys. A Mater. Sci. Process. 2014, 117, 365–370. [Google Scholar] [CrossRef]
- Sanmartín, P.; Rodríguez, A.; Aguiar, U. Medium-term field evaluation of several widely used cleaning-restoration techniques applied to algal biofilm formed on a granite-built historical monument. Int. Biodeterior. Biodegr. 2020, 147, 104870. [Google Scholar] [CrossRef]
- Pinna, D. Microbial recolonization of artificial and natural stone artworks after cleaning and coating treatments. J. Cult. Herit. 2023, 61, 217–228. [Google Scholar] [CrossRef]
- Delgado Rodrigues, J.; Vale Anjos, M.; Charola, A.E. Recolonization of marble sculptures in a garden environment. In Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series; Charola, A.E., McNamara, C.J., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 71–85. [Google Scholar]
- DePriest, P.T.; Beaubien, H.F. Case study: Deer stones of Mongolia after three millennia. In Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series; Charola, A.E., McNamara, C.J., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 103–108. [Google Scholar]
- Sterflinger, K.; Sert, H. Biodeterioration of buildings and works of art—Practical implications on restoration practice. In Heritage, Weathering and Conservation; Fort, R., Alvarez de Buergo, M., Gomez-Heras, M., Vazquez-Calvo, C., Eds.; Taylor & Francis Group: London, UK, 2006; Volume 1, pp. 299–304. [Google Scholar]
- Lo Schiavo, S.; De Leo, F.; Urzì, C. Present and future perspectives for biocides and antifouling products for stone-built cultural heritage: Ionic liquids as a challenging alternative. Appl. Sci. 2020, 10, 6568. [Google Scholar] [CrossRef]
- Romeo, S.; Zeni, O. Microwave heating for the conservation of cultural heritage assets: A review of main approaches and challenges. IEEE J. Electromagn. 2023, 7, 110–121. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
Pros | Cons | |
---|---|---|
UV-C radiation | The method is easy to carry out and relatively inexpensive. | It poorly penetrates inside substrates and in very thick biofilms. It can induce photooxidation in organic materials and it interacts with some pigments. Difficult to use in remote areas. |
Monochromatic visible light | illumination systems in caves for the prevention of the growth of autotrophic microorganisms. | Controversial results on its efficacy. A site-specific study along with the characterization of the microorganisms is needed. |
Microwaves | Eco-compatible. Low impact on the substrates. Localized effects. Low costs. | The equipment has limitations for large-scale applications. It requires access to energy supply. It only allows the irradiation of small surfaces (4 cm × 3 cm), and thus multiple adjacent applications are needed. |
Laser cleaning | Selective, time-efficient, contactless, and environmentally friendly. Localized effects. | Discordant results on the efficiency in eliminating lithobionts. It can cause thermal-related damage and shockwaves propagating through the substrate. Costly. |
Mechanical methods | Efficient in removing superficial layers. Efficient when combined with other cleaning methods. | Substrates can be severely damaged. Microbial fragments can remain on and inside the stone. The surfaces must be in a good state of conservation. Poorly effective in the long-term. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna, D. Physical and Mechanical Methods for the Removal of Lithobionts—A Review. Coatings 2024, 14, 272. https://doi.org/10.3390/coatings14030272
Pinna D. Physical and Mechanical Methods for the Removal of Lithobionts—A Review. Coatings. 2024; 14(3):272. https://doi.org/10.3390/coatings14030272
Chicago/Turabian StylePinna, Daniela. 2024. "Physical and Mechanical Methods for the Removal of Lithobionts—A Review" Coatings 14, no. 3: 272. https://doi.org/10.3390/coatings14030272
APA StylePinna, D. (2024). Physical and Mechanical Methods for the Removal of Lithobionts—A Review. Coatings, 14(3), 272. https://doi.org/10.3390/coatings14030272