Hydrophobic and Transparent Tantalum Pentoxide-Based Coatings for Photovoltaic (PV) Solar Panels
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Diffraction (XRD)
3.2. Infrared Spectroscopy (FTIR)
3.3. Atomic Force Microscopy (AFM)
3.4. Contact Angle (CA)
3.5. UV-VIS Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Zhang, Y.; Lu, C.; Zhang, R.; Wang, X.; Zhang, W.; Jiang, Z. MACl-Induced Controlled Crystallization in Sequentially Deposited Perovskites for High-Efficiency and Stable Perovskite Solar Cells. Coatings 2023, 13, 1885. [Google Scholar] [CrossRef]
- Deo, M.; Möllmann, A.; Haddad, J.; Ünlü, F.; Kulkarni, A.; Liu, M.; Tachibana, Y.; Stadler, D.; Bhardwaj, A.; Ludwig, T.; et al. Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cells. Nanomaterials 2022, 12, 780. [Google Scholar] [CrossRef] [PubMed]
- Arayro, J.; Mezher, R.; Sabbah, H. Comparative Simulation Study of the Performance of Conventional and Inverted Hybrid Tin-Based Perovskite Solar Cells. Coatings 2023, 13, 1258. [Google Scholar] [CrossRef]
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables. Prog. Photovolt. Res. Appl. 2018, 26, 3–12. [Google Scholar] [CrossRef]
- Gan, Y.; Qiu, G.; Yan, C.; Zeng, Z.; Qin, B.; Bi, X.; Liu, Y. Numerical Analysis on the Effect of the Conduction Band Offset in Dion–Jacobson Perovskite Solar Cells. Energies 2023, 16, 7889. [Google Scholar] [CrossRef]
- Syafiqa, A.; Pandeya, A.K.; Adzmana, N.N. Nasrudin Abd Rahim Superhydrophilic Smart Coating for Self-Cleaning Application on Glass Substrate. Sol. Energy 2018, 162, 597. [Google Scholar]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Kozlovskiy, A.L.; Zdorovets, M.V.; Popov, A.I. Improvement of β-SiC Synthesis Technology on Silicon Substrate. Technologies 2023, 11, 152. [Google Scholar] [CrossRef]
- Kudriavtsev, Y.; Hernandez, A.G.; Asomoza, R. Solar cell degradation caused by glass superstrate corrosion. Sol. Energy 2019, 187, 82–84. [Google Scholar] [CrossRef]
- Kok, J.F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA 2011, 108, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Pillai, S.R.; Singh, N.; Philip, S.A.; Mohanan, V. Preliminary investigation of dust deposition on solar cells. Mater. Today Proc. 2021, 46, 6812–6815. [Google Scholar] [CrossRef]
- Sharma, V.; Chandel, S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2013, 27, 753–767. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kapsali, M. Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements. Energy 2011, 36, 5154–5161. [Google Scholar] [CrossRef]
- Nugroho, H.S.; Refantero, G.; Septiani, N.L.W.; Iqbal, M.; Marno, S.; Abdullah, H.; Prima, E.C.; Nugraha; Yuliarto, B. A progress review on the modification of CZTS(e)-based thin-film solar cells. J. Ind. Eng. Chem. 2022, 105, 83. [Google Scholar] [CrossRef]
- Vivar, M.; Herrero, R.; Anton, I.; Martinez-Moreno, F.; Moreton, R.; Sala, G.; Blakers, A.W.; Smeltink, J. Effect of soiling in CPV systems. Sol. Energy 2010, 84, 1327–1335. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.; Park, S.; Lee, D.; Hyun, H.; Kim, J. Engineering lotus leaf-inspired micro- and nanostructures for the manipulation of functional engineering platforms. J. Ind. Eng. Chem. 2018, 61, 39–52. [Google Scholar] [CrossRef]
- Baxevani, A.; Stergioudi, F.; Skolianos, S. The Roughness Effect on the Preparation of Durable Superhydrophobic Silver-Coated Copper Foam for Efficient Oil/Water Separation. Coatings 2023, 13, 1851. [Google Scholar] [CrossRef]
- Mocioiu, A.-M.; Baila, D.-I.; Codrea, C.I.; Mocioiu, O.C. A Simple Method to Obtain Protective Film against Acid Rain. Inorganics 2022, 10, 44. [Google Scholar] [CrossRef]
- Seyhan, A.; Kartal, E. Optical, Electrical and Structural Properties of ITO/IZO and IZO/ITO Multilayer Transparent Conductive Oxide Films Deposited via Radiofrequency Magnetron Sputtering. Coatings 2023, 13, 1719. [Google Scholar] [CrossRef]
- Chen, T.-H.; Jian, B.-L. Optical and Electronic Properties of Mo:ZnO Thin Films Deposited Using RF Magnetron Sputtering with Different Process Parameters. Opt. Quant. Electron. 2016, 48, 77. [Google Scholar] [CrossRef]
- Ponja, S.D.; Sathasivam, S.; Parkin, I.P.; Carmalt, C.J. Highly Conductive and Transparent Gallium Doped Zinc Oxide Thin Films via Chemical Vapor Deposition. Sci. Rep. 2020, 10, 638. [Google Scholar] [CrossRef]
- Fu, Y.-C.; Chen, Y.-C.; Wu, C.-M.; Hsiao, V.K.S. Tailored Nanoscale Architectures for White Light Photoelectrochemistry: Zinc Oxide Nanorod-Based Copper Oxide Heterostructures. Coatings 2023, 13, 2051. [Google Scholar] [CrossRef]
- Luo, Y.-T.; Zhou, Z.; Wu, C.-Y.; Chiu, L.-C.; Juang, J.-Y. Analysis of Hazy Ga- and Zr-Co-Doped Zinc Oxide Films Prepared with Atmospheric Pressure Plasma Jet Systems. Nanomaterials 2023, 13, 2691. [Google Scholar] [CrossRef]
- Ellmer, K. Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 2012, 6, 809. [Google Scholar] [CrossRef]
- Lai, D.; Kong, G.; Che, C. Synthesis and corrosion behavior of ZnO/SiO2 nanorod-sub microtube superhydrophobic coating on zinc substrate. Surf. Coat. Technol. 2017, 315, 509–518. [Google Scholar] [CrossRef]
- Poortmans, J.; Arkhipov, V. Thin Film Solar Cells; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Eisenhauer, D.; Trinh, C.T.; Amkreutz, D.; Becker, C. Light management in crystalline silicon thin-film solar cells with imprint-textured glass superstrate. Sol. Energy Mater. Sol. Cells 2019, 200, 109928. [Google Scholar] [CrossRef]
- Quan, Z.; Lu, H.; Zhao, W.; Zheng, C.; Zhu, Z.; Qin, J.; Yue, M. A Review of Dust Deposition Mechanism and Self-Cleaning Methods for Solar Photovoltaic Modules. Coatings 2023, 13, 49. [Google Scholar] [CrossRef]
- Ndeto, M.P.; Wekesa, D.W.; Njoka, F.; Kinyua, R. Correlating dust deposits with wind speeds and relative humidity to overall performance of crystalline silicon solar cells: An experimental study of Machakos County, Kenya. Sol. Energy 2022, 246, 203–215. [Google Scholar] [CrossRef]
- Fern, C.-L.; Liu, W.-J.; Chang, Y.-H.; Chiang, C.-C.; Lai, J.-X.; Chen, Y.-T.; Chen, W.-G.; Wu, T.-H.; Lin, S.-H.; Lin, K.-W. Studying the Crucial Physical Characteristics Related to Surface Roughness and Magnetic Domain Structure in CoFeSm Thin Films. Coatings 2023, 13, 1961. [Google Scholar] [CrossRef]
- Krishnan, R.R.; Vinodkumar, R.; Rajan, G.; Gopchandran, K.G.; Mahadevan Pillai, V.P. Structural, optical, and morphological properties of laser ablated ZnO doped Ta2O5 films. Mater. Sci. Eng. B 2010, 174, 150–158. [Google Scholar] [CrossRef]
- Chen, X.; Bai, R.; Huang, M. Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Opt. Mater. 2019, 97, 109404. [Google Scholar] [CrossRef]
- Băilă, D.-I.; Vițelaru, C.; Trușcă, R.; Constantin, L.R.; Păcurar, A.; Parau, C.A.; Păcurar, R. Thin Films Deposition of Ta2O5 and ZnO by E-Gun Technology on Co-Cr Alloy Manufactured by Direct Metal Laser Sintering. Materials 2021, 14, 3666. [Google Scholar] [CrossRef]
- Mihaiu, S.; Toader, A.; Atkinson, I.; Mocioiu, O.C.; Hornoiu, C.; Teodorescu, V.S.; Zaharescu, M. Advanced Ceramics in the SnO2-ZnO Binary System. Ceram. Int. 2015, 41, 4936–4945. [Google Scholar] [CrossRef]
- Potera, P.; Virt, I.S.; Cieniek, B. Structure and Optical Properties of Transparent Cobalt-Doped ZnO Thin Layers. Appl. Sci. 2023, 13, 2701. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Li, M.; Hou, J.; Zhang, R. Study on the optical properties and electrochromic applications of LTO/TaOx ion storage-transport composite structure films. Ionics 2018, 24, 3995–4003. [Google Scholar] [CrossRef]
- Rubio, F.; Albella, J.M.; Denis, J.; Martinez-Duart, J.M. Optical properties of reactively sputtered Ta2O5 films. J. Vac. Sci. Technol. 1982, 21, 1043–1052. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–VIS spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, H.M.; Yahia, I.S.; Zahran, H.Y. Correlation between the static refractive index and the optical bandgap: Review and new empirical approach. Phys. B Condens. Matter 2021, 620, 413246. [Google Scholar] [CrossRef]
- Ravindra, N.M.; Auluck, S.; Srivastava, V.K. On the Penn Gap in Semiconductors. Phys. Stat. Sol. 1979, 93, K155. [Google Scholar] [CrossRef]
- Mocioiu, O.C.; Vladut, C.M.; Atkinson, I.; Bratan, V.; Mocioiu, A.-M. The Influence of Gel Preparation and Thermal Treatment on the Optical Properties of SiO2-ZnO Powders Obtained by Sol–Gel Method. Gels 2022, 8, 498. [Google Scholar] [CrossRef] [PubMed]
Film | Roughness Parameters | |
---|---|---|
Ra (nm) | Rrms (nm) | |
Ta2O5 | 2.82 | 3.31 |
75Ta2O5-25ZnO | 4.86 | 5.63 |
50Ta2O5-50ZnO | 7.04 | 9.7 |
Sample | The Average CA and the Mean Deviation Values | Image/Contact Angle (°) | |||
---|---|---|---|---|---|
Glass Substrate | 53.81 ± 2.16 | 52.97 | 50.55 | 58.16 | 51.15 |
51.93 | 57.05 | 54.23 | 54.50 | ||
Ta2O5 | 93.91 ± 1.83 | 96.85 | 93.52 | 93.92 | 91.21 |
97.73 | 92.14 | 91.45 | 94.45 | ||
75Ta2O5 25ZnO | 111.05 ± 2.92 | 114.89 | 109.17 | 114.94 | 112.85 |
104.34 | 108.44 | 110.58 | 113.22 | ||
50Ta2O5 50ZnO | 110.66 ± 1.21 | 108.99 | 110.86 | 108.92 | 110.11 |
112.35 | 112.69 | 111.58 | 109.79 |
Sample | Eg (eV) | n |
---|---|---|
Ta2O5 | 4.6 | 1.23 |
75Ta2O5-25ZnO | 4.51 | 1.28 |
50Ta2O5-50ZnO | 4.53 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocioiu, O.C.; Atkinson, I.; Aricov, L.; Bratan, V.; Mocioiu, A.-M.; Tudor, I.A.; Băilă, D.I. Hydrophobic and Transparent Tantalum Pentoxide-Based Coatings for Photovoltaic (PV) Solar Panels. Coatings 2024, 14, 273. https://doi.org/10.3390/coatings14030273
Mocioiu OC, Atkinson I, Aricov L, Bratan V, Mocioiu A-M, Tudor IA, Băilă DI. Hydrophobic and Transparent Tantalum Pentoxide-Based Coatings for Photovoltaic (PV) Solar Panels. Coatings. 2024; 14(3):273. https://doi.org/10.3390/coatings14030273
Chicago/Turabian StyleMocioiu, Oana Cătălina, Irina Atkinson, Ludmila Aricov, Veronica Bratan, Ana-Maria Mocioiu, Ioan Albert Tudor, and Diana Irinel Băilă. 2024. "Hydrophobic and Transparent Tantalum Pentoxide-Based Coatings for Photovoltaic (PV) Solar Panels" Coatings 14, no. 3: 273. https://doi.org/10.3390/coatings14030273
APA StyleMocioiu, O. C., Atkinson, I., Aricov, L., Bratan, V., Mocioiu, A. -M., Tudor, I. A., & Băilă, D. I. (2024). Hydrophobic and Transparent Tantalum Pentoxide-Based Coatings for Photovoltaic (PV) Solar Panels. Coatings, 14(3), 273. https://doi.org/10.3390/coatings14030273