Characterization of the Airflow Distribution near a Circuit Breaker’s Cu-Ag-Alloy Electrode Surface during and after Breakdown
Abstract
:1. Introduction
2. Thermal Diffusion Analysis of a Circuit Breaker’s Breakdown Process
2.1. Electromagnetic Thermal Process Model
2.2. Analysis of the Breakdown Thermal Diffusion Process
3. Breakdown Process and Thermal Process Test Research
3.1. Experimental Procedure
3.2. Study on the Development Speed of the Thermal Air Flow
3.3. Calculation of the Boundary Temperature of the Thermal Air Flow
4. Conclusions
- (1)
- At the early stage of a circuit breaker’s breakdown and discharge, the surge wave speed is maintained approximately at the speed of sound in the ambient condition, the movement speed of the hot airflow shows a decay characteristic, which is inversely proportional to the square of the time, the speed of the airflow at the observable initial moment is 34.33 m/s at the maximum, and the maximum airflow diffusion speed is 22.79 m/s at the electrode spacing of 1.0 cm.
- (2)
- The temperature of the hot gas stream is 8051 K at the end of the discharge process, and the maximum value of the gas stream diffusion velocity is 8051 K when the electrode spacing is 1.0 cm under the SF6 gas pressure of 0.11 MPa. This will affect the electric field near the electrode surface, increasing the risk of impact penetration when overvoltage occurs.
- (3)
- The hot gas conductivity is affected by the plasmonization of the gas, and the insulating property of the gas is fully recovered when the temperature is lower than 3500 K, i.e., the electrical insulation strength of SF6 is basically recovered about 10 ms after the end of the discharge, and the trend of recovery of the insulation strength of different groups tends to be the same. It is recommended to consider these data when designing breaker opening–closing speed and break spacing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khakpour, A.; Methling, R.; Gortschakow, S.; Uhrlandt, D.; Imani, M.T. An improved arc model for vacuum arc regarding anode spot modes. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 120–128. [Google Scholar] [CrossRef]
- Smajkic, A.; Hadzovic, B.B.; Muratovic, M.; Kim, M.H.; Kapetanovic, M. Determination of Discharge Coefficients for Valves of High Voltage Circuit Breakers. IEEE Trans. Power Deliv. 2020, 35, 1278–1284. [Google Scholar] [CrossRef]
- Terada, M.; Urai, H.; Yokomizu, Y. Method of Evaluating Exhaust Characteristics of High-Voltage Circuit Breaker. IEEE Trans. Power Deliv. 2020, 35, 707–714. [Google Scholar] [CrossRef]
- Frost, L.S.; Liebermann, R.W. Composition and transport properties of SF 6 and their use in a simplified enthalpy flow arc model. Proc. IEEE 1971, 59, 474–485. [Google Scholar] [CrossRef]
- Lowke, J.J.; Ludwig, H.C. A simple model for high–current arcs stabilized by forced convection. J. Appl. Phys. 1975, 46, 3352–3360. [Google Scholar] [CrossRef]
- Swanson, B.W.; Roidt, R.M. Boundary layer analysis of an SFg circuit breaker arc. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 1086–1093. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Rong, M.; Yang, F.; Zhong, J.; Li, M.; Hu, Y. A New Thomson Coil Actuator: Principle and Analysis. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1644–1655. [Google Scholar]
- Hermann, W.; Kogelschatz, U.; Niemeyer, L.; Ragaller, K.; Schade, E. Experimental and theoretical study of a stationary high-current arc in a supersonic nozzle flow. J. Phys. D Appl. Phys. 2002, 7, 1703. [Google Scholar] [CrossRef]
- Bort, L.S.; Franck, C.M. Effects of nozzle and contact geometry on arc voltage in gas circuit-breakers. In Proceedings of the IEEE International Conference on High Voltage Engineering & Application, Chengdu, China, 19–22 September 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Ragaller, K.; Egli, W.; Brand, K.P. Dielectric recovery of an axially blown SF6-Arc after current zero: Part II-theoretical investigations. IEEE Trans. Plasma Sci. 1982, 10, 154–162. [Google Scholar] [CrossRef]
- Sun, H.; Wu, Y.; Tanaka, Y.; Tomita, K.; Rong, M. Investigation on chemically non-equilibrium arc behaviors of different gas media during arc decay phase in a model circuit breaker. J. Phys. D Appl. Phys. 2019, 52, 075202. [Google Scholar] [CrossRef]
- Mitchell, R.R.; Tuma, D.T.; Osterle, J.F. Transient Two-Dimensional Calculations of Properties of Forced Convection-Stabilized Electric Arcs. IEEE Trans. Plasma Sci. 1985, 13, 207–220. [Google Scholar] [CrossRef]
- Inada, Y.; Matsumoto, H.; Matsuoka, S.; Kumada, A.; Ikeda, H.; Hidaka, K. Shack-Hartmann Type Laser Wavefront Sensor for Measuring Electron Density in Low Current Arc. IEEJ Trans. Fundam. Mater. 2011, 131, 872–877. [Google Scholar] [CrossRef]
- Trepanier, J.Y.; Zhang, X.D.; Pellegrin, H.; Camarero, R. Application of computational fluid dynamics tools to circuit-breaker flow analysis. IEEE Trans. Power Deliv. 1995, 10, 817–823. [Google Scholar] [CrossRef]
- Zhang, J.M.; Yan, J.D.J. Effects of DC Component in Asymmetric Fault Current on the Thermal Recovery Characteristics of an SF6 Autoexpansion Circuit Breaker. IEEE Trans. Plasma Sci. 2014, 42, 2117–2123. [Google Scholar] [CrossRef]
- Karetta, F.; Lindmayer, M. Simulation of the gas dynamic and electromagnetic processes in low voltage switching arcs. IEEE Trans. Compon. Pack. Technol. Manufact. Technol. 1998, 21, 96–103. [Google Scholar]
- Lindmayer, M.; Springstubbe, M. Three Dimensiona Simulation of Arc Motion between Arc Runners Including the Influence of magnetic Material. IEEE Trans. Compon. Pack. Technol. 2002, 25, 409–414. [Google Scholar] [CrossRef]
- Brown, B.R.; Mahajan, S.M. Circuit-Based Mathematical Model of an Arc Heater for Control System Development. IEEE Access 2021, 9, 143085–143092. [Google Scholar] [CrossRef]
- Frost, L.S.; Lee, A. Interruption Capability of Gases and Gas Mixtures in a Puffer-Type Interrupter. IEEE Trans. Plasma Sci. 1980, 8, 362–367. [Google Scholar]
- Robin-Jouan, P.; Yousfi, M. New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications. Plasma Sci. Technol. 2007, 9, 690. [Google Scholar] [CrossRef]
- Fu, L.; Guan, Y.; Zhang, L.; Jin, H.; Wang, H.; Jing, Y. Study on the Mechanism and Influencing Factors of SF6 Decomposition Products. IOP Conf. Ser. Earth Environ. Sci. 2021, 657, 012039. [Google Scholar] [CrossRef]
- Lebouvier, A.; Delalondre, C.; Fresnet, F.; Boch, V.; Rohani, V.; Cauneau, F.; Fulcheri, L. Three-Dimensional Unsteady MHD Modeling of a Low-Current High-Voltage Nontransferred DC Plasma Torch Operating with Air. IEEE Trans. Plasma Sci. 2011, 39, 1889–1899. [Google Scholar] [CrossRef]
- Song, Y.; Lin, X.; Zhou, T.; Wang, F. Simulation of Airflow Field and Breaking Capacity of 550 kV Fast Circuit Breaker. High Volt. Eng. 2023, 49, 2432–2441. [Google Scholar]
- Zhang, Y.; Lü, Q.; Xiang, Z.; Guo, Z.; Li, X. Influence of Frequency on Arcing Characteristics of High-voltage Puffer SF6 Circuit Breaker. High Volt. Eng. 2023, 44, 3987–3994. [Google Scholar]
- Toktaliev, P.D.; Semenev, P.A.; Moralev, I.A.; Kazanskii, P.N.; Bityrin, V.A.; Bocharov, A.N. Numerical modeling of electric arc motion in external constant magnetic field. J. Phys. Conf. Ser. 2020, 1683, 032009. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the Partial Difference Equations of Mathematical Physics. IBM J. Res. Dev. 1967, 11, 215–234. [Google Scholar] [CrossRef]
- Xu, X.; Hu, W. Modeling and simulation of arc grounding fault of middle and low voltage distribution network based on ATP-EMTP. J. Comput. Methods Sci. Eng. 2020, 20, 1279–1288. [Google Scholar] [CrossRef]
- Yuen, H.; Lax, M. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory 1973, 19, 740–750. [Google Scholar] [CrossRef]
- Katsunori, M.; Kenji, K.; Toshiro, S. Breakdown Effects of Dissolved SF6 Gas on Uniform Field in Perfluorocarbon Liquid. IEEJ Trans. Fundam. Mater. 1999, 119, 311–316. [Google Scholar]
- Roy, S.A.; Kiran, R.; Rao, M.M. Estimation of Gas Discharge Rates in EHV Gas Circuit Breakers. In Proceedings of the 2019 International Conference on High Voltage Engineering and Technology (ICHVET), Hyderabad, India, 7–8 February 2019. [Google Scholar]
- Urai, H.; Koizumi, M.; Ooshita, Y.; Yaginuma, N.; Tsukushi, M. Measurement of hot gas exhaust characteristics in SF6 circuit breaker with small model interrupter. In Proceedings of the 2013 2nd International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST), Matsue, Japan, 20–23 October 2013. [Google Scholar]
- Yang, R.; Xu, M.; Yan, J.; Yang, M.; Geng, Y.; Liu, Z.; Wang, J. Decomposition Characteristics of SF6 under Arc Discharge and the Effects of Trace H2O, O2, and PTFE Vapour on Its By-Products. Energies 2021, 14, 414. [Google Scholar] [CrossRef]
- Vajnar, V.; Vostracky, Z.; Sedlacek, J. Analysis of breaking capability within asymmetrical short circuits. In Proceedings of the 2015 16th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 20–22 May 2015. [Google Scholar]
- Sun, J.; Song, S.; Li, X.; Lv, Y.; Ren, J.; Ding, F.; Guo, C. Restraining Surface Charge Accumulation and Enhancing Surface Flashover Voltage through Dielectric Coating. Coatings 2021, 11, 750. [Google Scholar] [CrossRef]
Arc Contact Spacing/cm | Breakdown Current/kA |
---|---|
0.6 | 10.357 |
0.8 | 12.092 |
0.9 | 13.857 |
1.0 | 13.861 |
1.2 | 15.452 |
1.4 | 16.632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Shao, C.; Zhang, K.; Liu, J.; Yan, S.; Liu, Y.; Zhang, Y. Characterization of the Airflow Distribution near a Circuit Breaker’s Cu-Ag-Alloy Electrode Surface during and after Breakdown. Coatings 2024, 14, 305. https://doi.org/10.3390/coatings14030305
Sun J, Shao C, Zhang K, Liu J, Yan S, Liu Y, Zhang Y. Characterization of the Airflow Distribution near a Circuit Breaker’s Cu-Ag-Alloy Electrode Surface during and after Breakdown. Coatings. 2024; 14(3):305. https://doi.org/10.3390/coatings14030305
Chicago/Turabian StyleSun, Jixing, Chenxi Shao, Kun Zhang, Jiyong Liu, Shengchun Yan, Yang Liu, and Yan Zhang. 2024. "Characterization of the Airflow Distribution near a Circuit Breaker’s Cu-Ag-Alloy Electrode Surface during and after Breakdown" Coatings 14, no. 3: 305. https://doi.org/10.3390/coatings14030305
APA StyleSun, J., Shao, C., Zhang, K., Liu, J., Yan, S., Liu, Y., & Zhang, Y. (2024). Characterization of the Airflow Distribution near a Circuit Breaker’s Cu-Ag-Alloy Electrode Surface during and after Breakdown. Coatings, 14(3), 305. https://doi.org/10.3390/coatings14030305