Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis
Abstract
:1. Introduction
2. Cartilage and Chondrocytes in OA
2.1. Pathological Changes in OA
2.2. Cartilage Degeneration in OA
2.3. OA and Chondrocytes
3. Biomaterials in OA Therapy
4. Hydrogel Materials with Immunomodulatory Functions against Cartilage and Chondrocytes
5. Application of Hydrogel Materials in OA Immunotherapy
5.1. Drug Delivery Function
5.1.1. Responsive Modulation
5.1.2. Target Transmission
5.2. Medication
5.3. Platelet-Rich Plasma Therapy
5.4. Cell Therapy
5.5. Gene Therapy
5.6. Regulation of Cell Signaling Pathways
5.7. Biosensors
6. Challenges
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCs | Adipose stem cells |
FGF | Fibroblast growth factor |
HA | Hyaluronic acid |
IGF | Insulin-like growth factor |
IL-6 | Interleukin 6 |
MMP | Matrix metalloproteinase |
MSCs | Mesenchymal stem cells |
NF-κB | Nuclear factor-κB |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
OA | Osteoarthritis |
PDGF | Platelet-derived growth factor |
ROS | Reactive oxygen species |
TGF-β | Transforming growth factor β |
References
- Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; Jones, G.; Teichtahl, A.J.; Pelletier, J.-P. Osteoarthritis. Nat. Rev. Dis. Primers 2016, 2, 16072. [Google Scholar] [CrossRef]
- Vassallo, V.; Stellavato, A.; Russo, R.; Cimini, D.; Valletta, M.; Alfano, A.; Pedone, P.V.; Chambery, A.; Schiraldi, C. Molecular Fingerprint of Human Pathological Synoviocytes in Response to Extractive Sulfated and Biofermentative Unsulfated Chondroitins. Int. J. Mol. Sci. 2022, 23, 15865. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, C.; Yu, Z.; Yang, Z.; Zhang, Y.; Zhang, J.; Huang, Y.; Xu, N.; Zhou, X.; Jiang, M.; et al. A functional polymorphism at the miR-25-3p binding site in the 3′-untranslated region of the S1PR1 gene decreases the risk of osteoporosis in Chinese postmenopausal women. Arab. J. Chem. 2023, 16, 104888. [Google Scholar] [CrossRef]
- GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- Gaikwad, I.; Wajpeyi, S.M. Association between early menopause and incidence of Osteoarthritis in patients of Wardha district—An observational study. Int. J. Ayurvedic Med. 2023, 14, 536–541. [Google Scholar] [CrossRef]
- Cavalli, E.; Levinson, C.; Hertl, M.; Broguiere, N.; Brück, O.; Mustjoki, S.; Gerstenberg, A.; Weber, D.; Salzmann, G.; Steinwachs, M.; et al. Characterization of polydactyly chondrocytes and their use in cartilage engineering. Sci. Rep. 2019, 9, 4275. [Google Scholar] [CrossRef]
- Dai, W.-L.; Lin, Z.-M.; Shi, Z.-J.; Wang, J. Venous thromboembolic events after total knee arthroplasty: Which patients are at a high risk? J. Knee Surg. 2019, 33, 947–957. [Google Scholar] [CrossRef]
- Malcolm, T.L.; Knezevic, N.N.; Zouki, C.C.; Tharian, A.R. Pulmonary Complications After Hip and Knee Arthroplasty in the United States, 2004–2014. Anesth. Analg. 2020, 130, 917–924. [Google Scholar] [CrossRef]
- Maehara, M.; Toyoda, E.; Takahashi, T.; Watanabe, M.; Sato, M. Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int. J. Mol. Sci. 2021, 22, 2666. [Google Scholar] [CrossRef]
- Poulet, B. Models to define the stages of articular cartilage degradation in osteoarthritis development. Int. J. Exp. Pathol. 2017, 98, 120–126. [Google Scholar] [CrossRef]
- Luyten, F.P.; Vanlauwe, J. Tissue engineering approaches for osteoarthritis. Bone 2012, 51, 289–296. [Google Scholar] [CrossRef]
- Zeineddine, H.A.; Frush, T.J.; Saleh, Z.M.; El-Othmani, M.M.; Saleh, K.J. Applications of tissue engineering in joint arthroplasty: Current concepts update. Orthop. Clin. 2017, 48, 275–288. [Google Scholar]
- Gu, Z.; Wang, J.; Fu, Y.; Pan, H.; He, H.; Gan, Q.; Liu, C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. Adv. Funct. Mater. 2023, 33, 2212561. [Google Scholar] [CrossRef]
- Tran, H.D.; Park, K.D.; Ching, Y.C.; Huynh, C.; Nguyen, D.H. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J. Ind. Eng. Chem. 2020, 89, 58–82. [Google Scholar] [CrossRef]
- Singh, A.; Peppas, N.A. Hydrogels and Scaffolds for Immunomodulation. Adv. Mater. 2014, 26, 6530–6541. [Google Scholar] [CrossRef]
- Martel-Pelletier, J. Pathophysiology of osteoarthritis. Osteoarthr. Cartil. 2004, 12, 31–33. [Google Scholar] [CrossRef]
- Goldring, S.R.; Goldring, M.B. Clinical aspects, pathology and pathophysiology of osteoarthritis. J. Musculoskelet. Neuronal Interact. 2006, 6, 376. [Google Scholar]
- Qu, Y.; Zhang, N.; Luo, J.; Sun, Y.; Liu, R.; Ni, S.; Liu, C.; Ding, Y.; Geng, D.; Zhang, C.; et al. Systematically characterized mechanism of Yanhusuo powder ingredient absorbed in rat plasma for treatment osteoarthritis via UPLC-Q-TOF/MS with UPLC-MS/MS and network pharmacology. Tradit. Med. Res. 2021, 6, 51. [Google Scholar] [CrossRef]
- Ries, C.; Boese, C.; Stürznickel, J.; Koehne, T.; Hubert, J.; Pastor, M.-F.; Hahn, M.; Meier, S.; Beil, F.; Püschel, K.; et al. Age-related changes of micro-morphological subchondral bone properties in the healthy femoral head. Osteoarthr. Cartil. 2020, 28, 1437–1447. [Google Scholar] [CrossRef]
- Iijima, H.; Gilmer, G.; Wang, K.; Sivakumar, S.; Evans, C.; Matsui, Y.; Ambrosio, F. Meta-analysis Integrated With Multi-omics Data Analysis to Elucidate Pathogenic Mechanisms of Age-Related Knee Osteoarthritis in Mice. J. Gerontol. Ser. A 2022, 77, 1321–1334. [Google Scholar] [CrossRef]
- Motta, F.; Barone, E.; Sica, A.; Selmi, C. Inflammaging and osteoarthritis. Clin. Rev. Allergy Immunol. 2023, 64, 222–238. [Google Scholar] [CrossRef]
- Li, J.; Jiang, M.; Xiong, C.; Pan, J.; Jia, S.; Zhang, Y.; Zhang, J.; Xu, N.; Zhou, X.; Huang, Y. KLF4, negatively regulated by miR-7, suppresses osteoarthritis development via activating TGF-β1 signaling. Int. Immunopharmacol. 2022, 102, 108416. [Google Scholar] [CrossRef]
- Allen, K.; Thoma, L.; Golightly, Y. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 2022, 30, 184–195. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Zhu, S.; Bi, R. Comparison of early-stage changes of osteoarthritis in cartilage and subchondral bone between two different rat models. PeerJ 2020, 8, e8934. [Google Scholar] [CrossRef]
- Fujii, Y.; Liu, L.; Yagasaki, L.; Inotsume, M.; Chiba, T.; Asahara, H. Cartilage homeostasis and osteoarthritis. Int. J. Mol. Sci. 2022, 23, 6316. [Google Scholar] [CrossRef]
- Suri, S.; Walsh, D.A. Osteochondral alterations in osteoarthritis. Bone 2012, 51, 204–211. [Google Scholar] [CrossRef]
- Du, J.; Zhu, Z.; Liu, J.; Bao, X.; Wang, Q.; Shi, C.; Zhao, C.; Xu, G.; Li, D. 3D-printed gradient scaffolds for osteochondral defects: Current status and perspectives. Int. J. Bioprint. 2023, 9, 724. [Google Scholar] [CrossRef]
- Jang, S.; Lee, K.; Ju, J.H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. Int. J. Mol. Sci. 2021, 22, 2619. [Google Scholar] [CrossRef]
- Lin, Z.; Willers, C.; Xu, J.; Zheng, M.-H. The chondrocyte: Biology and clinical application. Tissue Eng. 2006, 12, 1971–1984. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, H.; Wei, Y.; Wu, M.; Fu, A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater. Sci. 2019, 7, 3143–3157. [Google Scholar] [CrossRef]
- Bao, W.; Li, M.; Yang, Y.; Wan, Y.; Wang, X.; Bi, N.; Li, C. Advancements and Frontiers in the High Performance of Natural Hydrogels for Cartilage Tissue Engineering. Front. Chem. 2020, 8, 53. [Google Scholar] [CrossRef]
- Liou, J.-J.; Rothrauff, B.B.; Alexander, P.G.; Tuan, R.S. Effect of Platelet-Rich Plasma on Chondrogenic Differentiation of Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng. Part A 2018, 24, 1432–1443. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, H.A. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Int. J. Mol. Sci. 2015, 16, 26035–26054. [Google Scholar] [CrossRef]
- Hemmati-Sadeghi, S.; Dey, P.; Ringe, J.; Haag, R.; Sittinger, M.; Dehne, T. Biomimetic sulfated polyethylene glycol hydrogel inhibits proteoglycan loss and tumor necrosis factor-α-induced expression pattern in an osteoarthritis in vitro model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 107, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Ye, J.; Yuan, F.-Z.; Zhang, J.-Y.; Chen, Y.-R.; Fan, B.-S.; Jiang, D.; Jiang, W.-B.; Wang, X.; Yu, J.-K. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front. Bioeng. Biotechnol. 2020, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Chagin, A.S.; Chu, T.L. The Origin and Fate of Chondrocytes: Cell Plasticity in Physiological Setting. Curr. Osteoporos. Rep. 2023, 21, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Agnes, C.J.; Karoichan, A.; Tabrizian, M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS Appl. Bio Mater. 2023, 6, 2515–2545. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Q.; Wang, Y.; Fan, Y.; Zhang, X. Biomaterials-assisted exosomes therapy in osteoarthritis. Biomed. Mater. 2022, 17, 022001. [Google Scholar] [CrossRef] [PubMed]
- Manivong, S.; Cullier, A.; Audigié, F.; Banquy, X.; Moldovan, F.; Demoor, M.; Roullin, V.G. New trends for osteoarthritis: Biomaterials, models and modeling. Drug Discov. Today 2023, 28, 103488. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, Z.; Wang, H.; Chen, D.; Tong, L. Novel strategies for the treatment of osteoarthritis based on biomaterials and critical molecular signaling. J. Mater. Sci. Technol. 2023, 149, 42–55. [Google Scholar] [CrossRef]
- Liu, L.; Tang, H.; Wang, Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon 2023, 9, e21544. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Ojha, S.; Sharma, S. Hydrogels as Potential Controlled Drug Delivery System: Drug Release Mechanism and Applications. Nanosci. Nanotechnology-Asia 2023, 13, 42–50. [Google Scholar] [CrossRef]
- Matole, V.; Digge, P. A Brief Review on Hydrogel. Res. J. Top. Cosmet. Sci. 2022, 13, 99–100. [Google Scholar] [CrossRef]
- Miao, M.; Chen, L.; McClements, D. Bioactive Delivery Systems for Lipophilic Nutraceuticals: Formulation, Fabrication, and Application; Royal Society of Chemistry: Cambridge, UK, 2023. [Google Scholar]
- Li, Y. Hydrogel for the Treatment of Osteoarthritis. Highlights Sci. Eng. Technol. 2023, 52, 49–54. [Google Scholar] [CrossRef]
- Yu, H.; Ren, P.; Pan, X.; Zhang, X.; Ma, J.; Chen, J.; Sheng, J.; Luo, H.; Lu, H.; Chen, G. Intracellular Delivery of Itaconate by Metal–Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy. Pharmaceutics 2023, 15, 724. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Zhou, C.; Yang, Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res. Rev. 2023, 85, 101864. [Google Scholar] [CrossRef]
- Han, L.; Wang, M.; Li, P.; Gan, D.; Yan, L.; Xu, J.; Wang, K.; Fang, L.; Chan, C.W.; Zhang, H.; et al. Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 28015–28026. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.A.; Mohammadi, R.; Noruzi, S.; Ganji, R.; Oroojalian, F.; Sahebkar, A. Evolution of hydrogels for cartilage tissue engineering of the knee: A systematic review and meta-analysis of clinical studies. Jt. Bone Spine 2020, 88, 100018. [Google Scholar] [CrossRef]
- Garcia, C.E.G.; Lardy, B.; Bossard, F.; Martínez, F.A.S.; Rinaudo, M. Chitosan based biomaterials for cartilage tissue engineering: Chondrocyte adhesion and proliferation. Food Hydrocoll. Health 2021, 1, 100018. [Google Scholar] [CrossRef]
- Adali, T.; Kalkan, R.; Karimizarandi, L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int. J. Biol. Macromol. 2018, 124, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Oesser, S.; Seifert, J. Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res. 2003, 311, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, H.; Dong, X.; Sang, L.; Qi, M. Effect of viscoelastic properties of cellulose nanocrystal/collagen hydrogels on chondrocyte behaviors. Front. Bioeng. Biotechnol. 2022, 10, 959409. [Google Scholar] [CrossRef] [PubMed]
- Lertwimol, T.; Sonthithai, P.; Hankamolsiri, W.; Kaewkong, P.; Uppanan, P. Development of chondrocyte-laden alginate hydrogels with modulated microstructure and properties for cartilage regeneration. Biotechnol. Prog. 2022, 39, e3322. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, K.; Mo, Y.; Xin, D.; Xiong, Z.; Yu, X. An Injectable Sustained Release Hydrogel of Hyaluronic Acid Loaded with ß-Ecdysterone Ameliorates Cartilage Damage in Osteoarthritis via Activating Autophagy. Adv. Ther. 2023, 6, 2300101. [Google Scholar] [CrossRef]
- Quarterman, J.C.; Naguib, Y.W.; Chakka, J.L.; Seol, D.; Martin, J.A.; Salem, A.K. HPLC-UV Method Validation for Amobarbital and Pharmaceutical Stability Evaluation When Dispersed in a Hyaluronic Acid Hydrogel: A New Concept for Post-Traumatic Osteoarthritis Prevention. J. Pharm. Sci. 2021, 111, 1379–1390. [Google Scholar] [CrossRef]
- Tsubosaka, M.; Kihara, S.; Hayashi, S.; Nagata, J.; Kuwahara, T.; Fujita, M.; Kikuchi, K.; Takashima, Y.; Kamenaga, T.; Kuroda, Y.; et al. Gelatin hydrogels with eicosapentaenoic acid can prevent osteoarthritis progression in vivo in a mouse model. J. Orthop. Res. 2020, 38, 2157–2169. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhang, C.; Mo, H.; Zhang, H.; Qin, X.; Li, J.; Zhang, Z.; Richel, A. Fabrication of chondroitin sulfate calcium complex and its chondrocyte proliferation in vitro. Carbohydr. Polym. 2021, 254, 117282. [Google Scholar] [CrossRef]
- Xie, J.; Wang, W.; Zhao, R.; Lu, W.; Chen, L.; Su, W.; Zeng, M.; Hu, Y. Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair. J. Mater. Sci. Mater. Med. 2021, 32, 100. [Google Scholar] [CrossRef]
- Leone, G.; Consumi, M.; Pepi, S.; Pardini, A.; Bonechi, C.; Tamasi, G.; Donati, A.; Lamponi, S.; Rossi, C.; Magnani, A. Enriched Gellan Gum hydrogel as visco-supplement. Carbohydr. Polym. 2019, 227, 115347. [Google Scholar] [CrossRef]
- Tang, Q.; Lim, T.; Shen, L.-Y.; Zheng, G.; Wei, X.-J.; Zhang, C.-Q.; Zhu, Z.-Z. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application. Biomaterials 2020, 268, 120605. [Google Scholar] [CrossRef]
- Xu, J.; Fang, Q.; Liu, Y.; Zhou, Y.; Ye, Z.; Tan, W.-S. In situ ornamenting poly(ε-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells. Colloids Surfaces B Biointerfaces 2021, 197, 111374. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Zhang, Y.; Dai, K.; Wei, Y. 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/FAK signaling axis. Nanomed. Nanotechnol. Biol. Med. 2021, 37, 102426. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Lin, J.; Zhu, Y.; Wang, F.; Deng, L.; Zhang, H.; Xu, X.; Cui, W. Ball-Bearing-Inspired Polyampholyte-Modified Microspheres as Bio-Lubricants Attenuate Osteoarthritis. Small 2020, 16, 2004519. [Google Scholar] [CrossRef]
- Lin, F.; Zhuang, Y.; Xiang, L.; Ye, T.; Wang, Z.; Wu, L.; Liu, Y.; Deng, L.; Cui, W. Localization of Lesion Cells and Targeted Mitochondria Via Embedded Hydrogel Microsphere using Heat Transfer Microneedles. Adv. Funct. Mater. 2023, 33, 2212730. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Xiong, C.; Shang, J.; Huang, Y.; Zhou, X.; Zhang, S. Calcipotriol suppresses GPX4-mediated ferroptosis in OA chondrocytes by blocking the TGF-β1 pathway. Cytokine 2023, 171, 156382. [Google Scholar] [CrossRef] [PubMed]
- Zoetebier, B.; Schmitz, T.C.; Ito, K.; Karperien, M.; Tryfonidou, M.A.; Paez, J.I. Injectable Hydrogels for Articular Cartilage and Nucleus Pulposus Repair: Status Quo and Prospects. Tissue Eng. Part A 2022, 28, 478–499. [Google Scholar] [CrossRef]
- Liebesny, P.H.; Mroszczyk, K.; Zlotnick, H.; Hung, H.-H.; Frank, E.; Kurz, B.; Zanotto, G.; Frisbie, D.; Grodzinsky, A.J. Enzyme Pretreatment plus Locally Delivered HB-IGF-1 Stimulate Integrative Cartilage Repair In Vitro. Tissue Eng. Part A 2019, 25, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yang, X.; Jones, E.; Bingham, P.A.; Scrimshire, A.; Thornton, P.D.; Tronci, G. An injectable, self-healing and MMP-inhibiting hyaluronic acid gel via iron coordination. Int. J. Biol. Macromol. 2020, 165, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Li, J.; Xiong, C.; Zhou, X.; Liu, T. Isorhynchophylline alleviates cartilage degeneration in osteoarthritis by activating autophagy of chondrocytes. J. Orthop. Surg. Res. 2023, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, L.; Song, X.; Fang, K.; Sun, L. Applications of antioxidant nanoparticles and hydrogels in osteoarthritis: A review. Mater. Express 2023, 13, 189–205. [Google Scholar] [CrossRef]
- Zhou, T.; Ran, J.; Xu, P.; Shen, L.; He, Y.; Ye, J.; Wu, L.; Gao, C. A hyaluronic acid/platelet-rich plasma hydrogel containing MnO2 nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr. Polym. 2022, 292, 119667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, L.; Yu, H.; He, Z.; Huang, C.; Li, C.; Nie, Y.; Li, L.; Zhou, F.; Liu, B.; et al. Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomater. 2023, 158, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Fang, F.; Kong, Y.; Greer, S.E.; Kuss, M.; Liu, B.; Xue, W.; Jiang, X.; Lovell, P.; Mohs, A.M.; et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication 2021, 14, 014107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xiong, H.; Ahmed, W.; Yao, Y.; Wang, S.; Fan, C.; Gao, C. Reactive oxygen species-responsive and scavenging polyurethane nanoparticles for treatment of osteoarthritis in vivo. Chem. Eng. J. 2020, 409, 128147. [Google Scholar] [CrossRef]
- Köck, H.; Striegl, B.; Kraus, A.; Zborilova, M.; Christiansen, S.; Schäfer, N.; Grässel, S.; Hornberger, H. In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes. Bioengineering 2023, 10, 767. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, L.; Cai, X.; Li, Z.; Fan, Y.; Yang, F. Icariin-Loaded Hydrogel Regulates Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and Promotes Cartilage Repair in Osteoarthritis. Front. Bioeng. Biotechnol. 2022, 10, 755260. [Google Scholar] [CrossRef]
- Feng, K.; Xie, X.; Yuan, J.; Gong, L.; Zhu, Z.; Zhang, J.; Li, H.; Yang, Y.; Wang, Y. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment. J. Extracell. Vesicles 2021, 10, e12160. [Google Scholar] [CrossRef]
- Kapusta, O.; Jarosz, A.; Stadnik, K.; Giannakoudakis, D.A.; Barczyński, B.; Barczak, M. Antimicrobial Natural Hydrogels in Biomedicine: Properties, Applications, and Challenges—A Concise Review. Int. J. Mol. Sci. 2023, 24, 2191. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.-W.; Huang, C.-C.; Kuo, W.-S.; Liao, T.-L.; Tsai, T.-L.; Wu, P.-C. Multifunctional Hydrogel Dressing That Carries Three Antibiotics Simultaneously and Enables Real-Time Ultrasound Bacterial Colony Detection. ACS Omega 2023, 8, 10278–10287. [Google Scholar] [CrossRef]
- Stealey, S.T.; Gaharwar, A.K.; Zustiak, S.P. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals 2023, 16, 821. [Google Scholar] [CrossRef]
- Wei, J.; Ran, P.; Li, Q.; Lu, J.; Zhao, L.; Liu, Y.; Li, X. Hierarchically structured injectable hydrogels with loaded cell spheroids for cartilage repairing and osteoarthritis treatment. Chem. Eng. J. 2021, 430, 132211. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Lin, T.; Cheng, L. Multi-Target Study of Osteosarcoma Based on Microarray Analysis. Hans J. Biomed. 2019, 9, 107–113. [Google Scholar] [CrossRef]
- Coleman, R.M. Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies. Curr. Rheumatol. Rep. 2022, 24, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, S.; Qi, Y.; Gong, Z.; Zhang, H.; Liang, K.; Shen, P.; Huang, Y.-Y.; Zhang, Z.; Ye, W.; et al. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv. 2022, 8, eabk0011. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.M.; Silva, S.S.; Rodrigues, L.C.; Reis, R.L. Alginate/acemannan-based beads loaded with a biocompatible ionic liquid as a bioactive delivery system. Int. J. Biol. Macromol. 2023, 242, 125026. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yin, W.; Ru, X.; Liu, C.; Song, B.; Qian, Z. Dual role of injectable curcumin-loaded microgels for efficient repair of osteoarthritic cartilage injury. Front. Bioeng. Biotechnol. 2022, 10, 994816. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.C.; Goetz, J.E.; Brouillette, M.J.; Seol, D.; Willey, M.C.; Petersen, E.B.; Anderson, H.D.; Hendrickson, N.R.; Compton, J.; Khorsand, B.; et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci. Transl. Med. 2018, 10, eaan5372. [Google Scholar] [CrossRef]
- Stefani, R.M.; Lee, A.J.; Tan, A.R.; Halder, S.S.; Hu, Y.; Guo, X.E.; Stoker, A.M.; Ateshian, G.A.; Marra, K.G.; Cook, J.L.; et al. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 2019, 102, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, H.; Auddy, B.; Sur, T.; Gupta, M.; Datta, S. Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis. Drug Deliv. Transl. Res. 2020, 10, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Ragni, E.; Colombini, A.; Lopa, S. Advances in Musculoskeletal Cell Therapy: Basic Science and Translational Approaches. Cells 2022, 11, 3858. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, X.; Zhang, L.; Hu, B.; Hu, S.; Zhang, X.; Hu, J. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front. Physiol. 2023, 14, 582. [Google Scholar] [CrossRef]
- Khare, S.; Dal, S.S.; Lingam, S.; Veeramanikandan, V.; Balaji, P.; Hota, A.; Kannaiyan, J. Plate-Rich Plasma and its Utility in Clinical Conditions: A Systematic Review. J. Drug Deliv. Ther. 2021, 11, 186–194. [Google Scholar] [CrossRef]
- Das, G.; Roy, C.; Dutta, D.; Pathak, L. Platelet-rich Plasma: A Recent Review. J. Recent Adv. Pain 2020, 6, 20–23. [Google Scholar] [CrossRef]
- Boswell, S.G.; Cole, B.J.; Sundman, E.A.; Karas, V.; Fortier, L.A. Platelet-rich plasma: A milieu of bioactive factors. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 429–439. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chen, J.; Qian, D.; Gao, P.; Qin, T.; Jiang, T.; Yi, J.; Xu, T.; Huang, Y.; et al. Exosomes derived from platelet-rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J. Nanobiotechnol. 2022, 20, 56. [Google Scholar] [CrossRef]
- Yu, Y.; Xia, Y.; Sun, N.; Tian, Y.; Chen, X.; Fan, L.; Zhao, C.; Xia, C.; Yang, A.; Liu, H. Extraction and Purification, Structural Characterization and Biological Activity of a Polysaccharide, PRP-1, from Plumeria rubra. Chem. Biodivers. 2023, 20, e202300866. [Google Scholar] [CrossRef]
- Jiang, W.; Xiang, X.; Song, M.; Shen, J.; Shi, Z.; Huang, W.; Liu, H. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater. Today Bio 2022, 17, 100485. [Google Scholar] [CrossRef]
- Narcisi, R.; Jones, E. Editorial: Cell-Based Approaches for Modulating Cartilage and Bone Phenotype. Front. Bioeng. Biotechnol. 2021, 9, 716323. [Google Scholar] [CrossRef]
- Shang, J.; Yu, Z.; Xiong, C.; Zhang, J.; Gong, J.; Yu, C.; Huang, Y.; Zhou, X. Resistin targets TAZ to promote osteogenic differentiation through PI3K/AKT/mTOR pathway. iScience 2023, 26, 107025. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.; Kolhe, R.; Hunter, M.; Isales, C.; Hamrick, M.; Fulzele, S. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics. Stem Cells Int. 2016, 2016, 5802529. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xi, K.; Bian, J.; Li, Z.; Wu, L.; Tang, J.; Xiong, C.; Yu, Z.; Zhang, J.; Gu, Y.; et al. Injectable engineered micro/nano-complexes trigger the reprogramming of bone immune epigenetics. Chem. Eng. J. 2023, 462, 142158. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jo, S.-H.; Kim, S.-H.; Kim, C.-S.; Park, S.-H. Anti-Osteoarthritic Effects of Cartilage-Derived Extracellular Matrix in a Rat Osteoarthritis Model. Tissue Eng. Regen. Med. 2022, 20, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Palao, B.A.; de Torre, I.G.; Castrillo, A.V.; Hernández, H.J.A.; Rodrigo, M.A.; Barcia, Á.J.Á.; Sanchez, A.; Diaz, V.G.; Peña, M.L.; et al. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. Regen. Biomater. 2019, 6, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-C.; Park, Y.-B.; Ha, C.-W.; Cole, B.J.; Lee, B.-K.; Jeong, H.-J.; Kim, M.-K.; Bin, S.-I.; Choi, C.-H.; Choi, C.H.; et al. Allogeneic Umbilical Cord Blood–Derived Mesenchymal Stem Cell Implantation Versus Microfracture for Large, Full-Thickness Cartilage Defects in Older Patients: A Multicenter Randomized Clinical Trial and Extended 5-Year Clinical Follow-up. Orthop. J. Sports Med. 2021, 9, 2325967120973052. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Duong, C.M.; Nguyen, X.-H.; Than, U.T.T. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoarthritis Treatment: Extracellular Matrix Protection, Chondrocyte and Osteocyte Physiology, Pain and Inflammation Management. Cells 2021, 10, 2887. [Google Scholar] [CrossRef]
- Song, J.-S.; Hong, K.-T.; Kim, N.-M.; Park, H.-S.; Choi, N.-H. Human umbilical cord blood-derived mesenchymal stem cell implantation for osteoarthritis of the knee. Arch. Orthop. Trauma Surg. 2020, 140, 503–509. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Song, J.; Li, X.; Zhang, X.; Zhou, Z.; Chen, D.; Ma, P.X.; Peng, W.; Wang, W.; et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater. 2018, 79, 202–215. [Google Scholar] [CrossRef]
- Yin, H.; Yan, Z.; Wu, J.; Li, M.; Ge, Q.; Zhang, T.; Ma, Y.; Sui, X.; Liu, S.; Guo, Q. M2 macrophages-derived exosomes combined with acellular cartilage matrix scaffolds promote osteochondral regeneration via modulatory microenvironment. Mater. Des. 2023, 226, 111672. [Google Scholar] [CrossRef]
- Park, Y.-B.; Ha, C.-W.; Rhim, J.H.; Lee, H.-J. Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. Am. J. Sports Med. 2017, 46, 2540–2552. [Google Scholar] [CrossRef]
- Iturriaga, L.; Hernáez-Moya, R.; Erezuma, I.; Dolatshahi-Pirouz, A.; Orive, G. Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin. Biol. Ther. 2018, 18, 883–896. [Google Scholar] [CrossRef]
- Emanuela, M.; Kandalaft, L.E. Challenges and advantages of cell therapy manufacturing under Good Manufacturing Practices within the hospital setting. Curr. Opin. Biotechnol. 2020, 65, 233–241. [Google Scholar]
- Xu, Z.; Yang, H.; Zhou, X.; Li, J.; Jiang, L.; Li, D.; Wu, L.; Huang, Y.; Xu, N. Genetic variants in mTOR-pathway-related genes contribute to osteoarthritis susceptibility. Int. Immunopharmacol. 2019, 77, 105960. [Google Scholar] [CrossRef]
- Uebelhoer, M.; Lambert, C.; Grisart, J.; Guse, K.; Plutizki, S.; Henrotin, Y. Interleukins, growth factors, and transcription factors are key targets for gene therapy in osteoarthritis: A scoping review. Front. Med. 2023, 10, 1148623. [Google Scholar] [CrossRef]
- Wan, J.; He, Z.; Peng, R.; Wu, X.; Zhu, Z.; Cui, J.; Hao, X.; Chen, A.; Zhang, J.; Cheng, P. Injectable photocrosslinking spherical hydrogel-encapsulated targeting peptide-modified engineered exosomes for osteoarthritis therapy. J. Nanobiotechnol. 2023, 21, 284. [Google Scholar] [CrossRef]
- Li, X.; Shen, L.; Deng, Z.; Huang, Z. New treatment for osteoarthr: pbad014itis: Gene therapy. Precis. Clin. Med. 2023, 6, pbad014. [Google Scholar] [CrossRef]
- Garcia, J.P.; Stein, J.; Cai, Y.; Riemers, F.; Wexselblatt, E.; Wengel, J.; Tryfonidou, M.; Yayon, A.; Howard, K.A.; Creemers, L.B. Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. J. Control. Release 2018, 294, 247–258. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Rothrauff, B.; Fritch, M.; Chang, A.; He, Y.; Yeung, M.; Liu, S.; Lipa, K.; Lei, G.; et al. Novel role of estrogen receptor-α on regulating chondrocyte phenotype and response to mechanical loading. Osteoarthr. Cartil. 2021, 30, 302–314. [Google Scholar] [CrossRef]
- Bonato, A.; Fisch, P.; Ponta, S.; Fercher, D.; Manninen, M.; Weber, D.; Eklund, K.K.; Barreto, G.; Zenobi-Wong, M. Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering. Adv. Health Mater. 2023, 12, e2202271. [Google Scholar] [CrossRef] [PubMed]
- Tanikella, A.S.; Hardy, M.J.; Frahs, S.M.; Cormier, A.G.; Gibbons, K.D.; Fitzpatrick, C.K.; Oxford, J.T. Emerging Gene-Editing Modalities for Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 6046. [Google Scholar] [CrossRef] [PubMed]
- Ghivizzani, S.C.; Evans, C.H. Gene therapy for osteoarthritis. In Gene Therapy for Autoimmune and Inflammatory Diseases; Springer: Basel, Switzerland, 2010; pp. 91–112. [Google Scholar]
- Ramani, N.; Figg, C.A.; Anderson, A.J.; Winegar, P.H.; Oh, E.; Ebrahimi, S.B.; Samanta, D.; Mirkin, C.A. Spatially-Encoding Hydrogels With DNA to Control Cell Signaling. Adv. Mater. 2023, 35, e2301086. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, S.; Jian, Y.; Shao, X.; Han, D.; Zhang, F.; Liang, C.; Liu, W.; Fan, J.; Yang, Z.; et al. Icariin-loaded hydrogel with concurrent chondrogenesis and anti-inflammatory properties for promoting cartilage regeneration in a large animal model. Front. Cell Dev. Biol. 2022, 10, 1011260. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, Z.; Zhou, Y.; Yu, Z.; Mai, H.; Xu, C.; Zhang, J.; Wang, J. The novel hyaluronic acid granular hydrogel attenuates osteoarthritis progression by inhibiting the TLR-2/NF-κB signaling pathway through suppressing cellular senescence. Bioeng. Transl. Med. 2022, 8, e10475. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.E. Mechanical Properties and In Vitro Modelling of the Osteochondral Unit. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2019. [Google Scholar]
- Wan, J.; He, Z.; Zhao, Y.; Hao, X.; Cui, J.; Chen, A.; Zhou, J.; Zhang, J. Novel strategy of senescence elimination via toxicity-exempted kinome perturbations by nanoliposome-based thermosensitive hydrogel for osteoarthritis therapy. Adv. Compos. Hybrid Mater. 2023, 6, 104. [Google Scholar] [CrossRef]
- Ruscitto, A.; Chen, P.; Tosa, I.; Wang, Z.; Zhou, G.; Safina, I.; Wei, R.; Morel, M.M.; Koch, A.; Forman, M.; et al. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity. Cell Stem Cell 2023, 30, 1179–1198.e7. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, P.; Samokhvalov, P.; Sukhanova, A.; Nabiev, I. Biosensors Based on Inorganic Composite Fluorescent Hydrogels. Nanomaterials 2023, 13, 1748. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.T.; Foster, D.A.N.; Thompson, S.I.; Han, S.; Fernandez, M.K.; Hwang, D.K. A New Rapid Microfluidic Detection Platform Utilizing Hydrogel-Membrane under Cross-Flow. Adv. Mater. Technol. 2022, 7, 2101396. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, L. Bibliometric analysis of acupuncture research through the Web of Science database from 1990 to 2019. Tradit. Med. Res. 2021, 6, 9. [Google Scholar] [CrossRef]
- Scalzone, A.; Cerqueni, G.; Wang, X.; Ferreira-Duarte, A.; Dalgarno, K.; Mattioli-Belmonte, M.; Gentile, P. An In Vitro Engineered Osteochondral Model as Tool to Study Osteoarthritis Environment. Adv. Health Mater. 2022, 12, e2202030. [Google Scholar] [CrossRef]
- Li, J.; Jiang, M.; Yu, Z.; Xiong, C.; Pan, J.; Cai, Z.; Xu, N.; Zhou, X.; Huang, Y.; Yang, Z. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell. Mol. Biol. Lett. 2022, 27, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, J.; Zhou, Y.; Yang, Z.; Yang, H.; Li, D.; Zhang, J.; Zhang, Y.; Xu, N.; Huang, Y.; et al. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging 2020, 12, 20163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jiang, L.; Fan, G.; Yang, H.; Wu, L.; Huang, Y.; Xu, N.; Li, J. Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. Int. Immunopharmacol. 2019, 71, 233–240. [Google Scholar] [CrossRef]
- Yu, Z.; Jiang, X.; Yin, J.; Han, L.; Xiong, C.; Huo, Z.; Xu, J.; Shang, J.; Xi, K.; Nong, L.; et al. CK1ε drives osteogenic differentiation of bone marrow mesenchymal stem cells via activating Wnt/β-catenin pathway. Aging 2023, 15, 10193–10212. [Google Scholar] [CrossRef]
- Shang, J.; Xiong, C.; Jiang, W.; Yu, Z.; Zhang, J.; Zhang, Y.; Han, L.; Miao, K.; Yu, C.; Huang, Y.; et al. Gossypol Acetic Acid alleviates the Ferroptosis of Chondrocytes in Osteoarthritis by Inhibiting GPX4 Methylation. Curr. Med. Chem. 2024. Online ahead of print. [Google Scholar] [CrossRef]
Type | Trait | Model | Function | Limitation | Type | Cell | Ref. | |
---|---|---|---|---|---|---|---|---|
Natural hydrogel | Chitosan | An amino acid polysaccharide with a chemical structure similar to glycosaminoglycans naturally found in cartilage. | Injectable; adhesive | Biocompatible, it promotes cellular activity and tissue regeneration. | Low solubility and poor mechanical properties. | In vitro | Human chondrocytes | [51] |
Silk fibroin | Composed of natural silk proteins. | Injectable | Mechanical properties, biocompatible, enzymatically degradable, hemocompatible. | May cause an immune response. | In vitro | Human chondrocytes | [52] | |
Collagen | Type II collagen is a major component of natural cartilage tissue, and type I collagen is the most widely available and used collagen type in tissue-engineered scaffolds. | Injectable; adhesive | Regulates chondrocyte proliferation and induces cartilage repair. | Low solubility, poor mechanical properties, and fast degradation rate. | In vitro | Bovine chondrocytes | [53] | |
Cellulose | Natural cellulose. | Injectable | Non-toxic, high strength and stiffness, excellent water affinity, renewability, and versatility. | May cause an immune response. | In vitro | Rat chondrocytes | [54] | |
Alginate | A heteropolysaccharide extracted from brown algae composed of βD-mannuronic acid and α-L-glucuronic acid monomers. | Injectable; adhesive | Biocompatible, non-toxic, non-immunogenic, low cost. | Lack of cell adhesion motifs and weak mechanical properties. | In vitro | Human chondrocytes | [55] | |
Hyaluronic acid | Extracellular matrix of epithelial and neural tissues. | Injectable; adhesive | Promotes chondrocyte growth, metabolism, and maintenance of the chondrocyte phenotype. Commonly used as a lubricant in synovial fluid. | Lubrication only. | In vitro/in vivo | Rat chondrocytes | [56,57] | |
Gelatin | Collagen hydrolysis product of the extracellular matrix, consisting of heterogeneous single- and multi-chain polypeptides. | Injectable; adhesive | Excellent loading efficiency to promote cell attachment. | Failure to ensure cell attachment and the formation of new tissue around the site of injury. | In vivo | Mouse chondrocytes | [58] | |
Chondroitin sulfate | The extracellular matrix of many connective tissues, including cartilage. | Injectable | Biocompatible and bioactive, it promotes chondrocyte proliferation and differentiation, cartilage matrix synthesis, and remodeling. | Poor cell adhesion and lower mechanical properties. | In vitro | Human chondrocytes | [59] | |
Synthetic hydrogel | Polyvinyl alcohol (PVA) | Polymers are formed by the polymerization of vinyl alcohol monomers. | Injectable | High expansion, porous, good viscoelastic properties, mechanical support. | Poor biocompatibility. | In vitro/in vivo | Goat chondrocytes | [60,61] |
Poly(ethylene glycol) PEG | A polymer consisting of ethylene glycol molecules linked by ether bonds. | Injectable; adhesive | Soluble and biocompatible. Commonly used in drug delivery, biomaterials, and cosmetics. | Rapid proliferation and clearance, interferes with metabolism and immune response. | In vitro | Rat chondrocytes | [62] | |
Poly-ε-caprolactone(PCL) | Linear polymers consisting of caprolactone monomers linked by ester bonds. | Injectable | Biocompatibility and mechanical properties, drug retardation, bioactivity. | Poor biological activity and low cellular interaction capacity. | In vitro | Rabbit articular chondrocytes | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Huo, Z.; Xu, J.; Shang, J.; Weng, Y.; Xu, D.; Liu, T.; Huang, Y.; Zhou, X. Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis. Coatings 2024, 14, 308. https://doi.org/10.3390/coatings14030308
Yao J, Huo Z, Xu J, Shang J, Weng Y, Xu D, Liu T, Huang Y, Zhou X. Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis. Coatings. 2024; 14(3):308. https://doi.org/10.3390/coatings14030308
Chicago/Turabian StyleYao, Jiapei, Zhennan Huo, Jie Xu, Jingjing Shang, Yiping Weng, Dongmei Xu, Ting Liu, Yong Huang, and Xindie Zhou. 2024. "Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis" Coatings 14, no. 3: 308. https://doi.org/10.3390/coatings14030308
APA StyleYao, J., Huo, Z., Xu, J., Shang, J., Weng, Y., Xu, D., Liu, T., Huang, Y., & Zhou, X. (2024). Enhanced Surface Immunomodification of Engineered Hydrogel Materials through Chondrocyte Modulation for the Treatment of Osteoarthritis. Coatings, 14(3), 308. https://doi.org/10.3390/coatings14030308