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Abstract: The roller–shoe mechanism is a classic mechanical assembly with an essential role in motion
transmission. Common rail high-pressure pumps are an example of a complex assembly that uses
such a mechanism to transform the rotation motion into a translation one. The rolling element of the
mechanism is represented by a cylindrical roller. Although it can carry heavy loads due to its design,
a proper surface profile could significantly increase the life of the entire mechanism. A better solution
can be achieved using a logarithmic profile. The shoe is the second base element of the mechanism. It
is a part with an inner cylindrical surface and it is separated from the roller by a thin lubricant film.
Considering this, increasing the hardness of the roller–shoe contact surface can be obtained using a
suitable coating. The positive results of this coating are highlighted using endurance tests to which
high-pressure pumps are subjected. Therefore, the roller profile and the shoe coating represent two
directions for improving the contact between the mechanism transmission elements, in terms of wear
reduction. The purpose of this paper is to identify a suitable roller profile and to highlight its impact
on the shoe coating.

Keywords: roller–shoe; high-pressure pump; coating; logarithmic profile; FEM analyses; endurance
tests

1. Introduction

The high-pressure pump is the centerpiece of the common rail system for diesel cars
and is its most important component. It is driven by the engine crankshaft via a toothed
belt connected to gear wheels or a chain at a 1:1 gear ratio, and its main role is to compress
the fuel to pressures in excess of 2000 bar. Fuel under pressure is delivered from the pump
to the engine combustion chamber through the high-pressure pipes, the high-pressure rail,
and the injectors [1].

Over time, there have been various constructive solutions for high-pressure pumps,
depending on the motion transmission mechanism. There are cam–follower and roller–
shoe transmission mechanisms. The roller–shoe mechanism is notable for its effective
performance and economical production costs. Therefore, it has become a favored solution
that captures the attention of all automotive manufacturers. The roller, identified as a
rolling component within this mechanism [2], has a cylindrical shape, with its profile being
an important factor in wear reduction. This is crucial because, upon contact with the work
surface, maximum pressure is applied to the ends. Manufactured from a wear-resistant
material characterized by high hardness, it exhibits excellent resistance in high temperature
scenarios dictated by the operational requirements. The subsequent component in the
mechanism, namely the shoe, is composed of a robust material that is perfectly compatible
with the roller. Designed to withstand shocks and crushing, the shoe also facilitates the
optimal adhesion of the lubricating fluid. Its durability and hardness are enhanced through
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the application of a Diamond-Like Carbon (DLC) coating [3]. The camshaft serves a pivotal
role in transmitting the movement of the roller–shoe mechanism, maintaining constant
contact with the roller. This is a critical component due to its continuous interaction with
the roller. Given the stringent performance requirements of the high-pressure pump, its
components experience increasingly heavy loads, resulting in severe wear. Over time,
various strategies have been developed to improve their efficiency, including modifications
in size, materials, or surface characteristics [2]. These modifications aimed to mitigate wear
on the high-pressure pump.

The roller–shoe motion transmission mechanism is the central subassembly of the
common rail high-pressure pump. Its wear is important because it can lead to the total
failure of the pump. For this reason, it is necessary to find solutions to increase the lifetime
of its components. By examining the operation of the motion transmission mechanism,
along with its construction and overloading, various approaches are explored. These
include the study of lubrication, coatings, and surface profiles.

An essential factor influencing the wear of the mechanism is the quality of the lubrica-
tion. This is important to minimize energy loss, heat generation, the wear of the mechanical
components, as well as smooth machine operation. Production and productivity are highly
dependent on the lubrication system [4]. The lubrication process in high-pressure pumps
involves the use of fuel, specifically diesel in our context. The efficacy of diesel fuel in
preventing or mitigating wear on the contacting components is diminished, primarily
due to its low viscosity. Contact surfaces within high-pressure pumps are safeguarded
against wear through the transition from hydrodynamic lubrication to boundary lubrication
regimes. In the hydrodynamic lubrication regime, a fluid film acts as a barrier, preventing
direct contact between the surfaces [5]. It represents an ideal case of roller–shoe assembly
operation. In this way, the lubricant thickness does not allow direct contact between the
two components, which leads to the long service life of the components. If a high-pressure
pump could constantly run in this regime, a coating for the components would not be
necessary. However, this case is not often encountered in roller–shoe contact. The boundary
lubrication regime is often reached when there are high loads on the roller, or even more
so, when it is operating at low speeds [6]. In this way, the two components come into
direct contact. Initially the contact is between the outer diameter surface of the roller and
the Diamond-Like Carbon (DLC) layer that is applied to the shoe. Due to high loads,
the contact surface extends to the intermediate layer (or the connecting layer) and finally
reaches the base material. These aggravating cases lead to scuffing.

Due to the specific working conditions of high-pressure pumps (low speed, high
pressure or high fluid temperature), which cannot be modified, it is necessary to investigate
new solutions for wear reduction. As a result, our paper is focused on roller profile
improvement and the impact of this change on the coating layer. For this purpose, we
identified the most used profiles in the literature and assigned them to a cylindrical roller,
adapting them according to the requirements of use. To be able to analyze the effect of their
use, we performed a simulation in a finite element analysis program and validated the best
result through experimental endurance tests. Finally, we performed an analysis of the shoe
coating and the material.

2. Considerations Regarding the Improvement of the Roller–Shoe Contact
2.1. Coating Analysis

Interest in the use of coatings has been observed in most assemblies with components
that are in contact. They are mainly used to improve wear resistance, friction coefficient,
electrical properties, corrosion protection, and last but not least to increase the hardness
of the components [7]. The mechanical coating properties have an important role in the
reliability of the components to which they are applied. If they are inadequate, this can
lead to damage to the components and also to the loss of their role in the assemblies of
which they are a part [8]. Thorough adhesion testing is essential to ensure the long-term
performance of coated components. There are many methods commonly used to test
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the adhesion of coatings to the underlying steel base of the components. Among them,
we can list the following: indentation test, scratch test, peel test, blister test, and tensile
test [9]. Under oil-lubricated conditions, DLC-coated elements showed a superior wear
performance (hardness above 60 HRC) and a reduced friction coefficient compared to other
types of coatings [10]. This type of coating has a chemical structure that is often used in the
automotive industry (for valves, components of injection systems, transmissions, etc.). It
is a type of carbon material that exhibits some of the properties of diamond (hardness or
wear resistance). At the base is an amorphous hydrogenated carbon (a:C:H). The process
by which this coating is achieved is PACVD (Plasma-Assisted Chemical Vapor Deposition).
This is a thin film deposition process (according to our measurements, the DLC layer is
about 2 microns) that involves the use of plasma to catalyze the chemical reactions required
to deposit the desired material onto the surface of a component. To improve the adhesion
of the coating to the underlying steel base in the shoe component, an intermediary layer is
integrated.

The coating layer adhesion is performed with a special test called the Rockwell-C
adhesion test [11]. This test method is simple and is performed by pressing a diamond
cone on the coated surface with a certain force (approx. 1500 N) [12]. The trace left on
the coating layer is evaluated under a microscope (Figure 1) and compared with a visual
standard [13,14].
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Figure 1. DLC adhesion test—testing method.

In a roller–shoe transmission mechanism, the coating is an important factor for re-
ducing wear, which is already achieved by covering the shoe. It is a difficult task for
manufacturers to change it, due to the complexity of the process and the high costs. Thus,
another way of reducing wear that we can focus on is modifying the roller profile and
analyzing the coverage after this change.

2.2. Roller Profile

By analyzing the motion transmission mechanisms with a cylindrical roller, we could
see that there is concern about the contact between the rolling/sliding element and the
fixed element. The contact problem of such a mechanism is similar to that of bearings. In
the literature, there are various studies that analyze the contact between the roller and
the support surface and its influence on wear [15–17]. The roller profile has a particular
importance on components in direct contact because under various loads applied to the
shoe, it should minimize the stress and increase the life of the two components. In the
literature, it was observed that it is difficult to find a universal algorithm for an optimum
profile of a particular roller. Most of the time, for economic reasons, it is necessary to
create a simple profile [18]. In any cylindrical roller assembly, the load is transmitted
through concentrated contacts characterized by small surfaces and very high pressures [19].
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Cylindrical rollers are designed to carry substantial radial loads; however, their role in the
lifetime of an assembly can be compromised by misalignment and end effects [20]. There
are various types of profiles, of which the most common and most analyzed are straight,
elliptical, and logarithmic (Figure 2) [21,22].
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In general, when there is a motion transmission assembly that includes a roller of finite
length, the pressure distribution along the roller tends to be more concentrated at the ends
than at the center [23]. The occurrence of pressure concentration, known as edge loading
or edge effect, intensifies undesirable conditions. This situation is particularly intensified
when the roller experiences misalignment due to factors such as mounting errors, thermal
errors, or shoe distortion in our case. To attenuate this issue, cylindrical rollers should
undergo axial profiling, ensuring a more uniform stress distribution and preventing the
occurrence of edge peaks. Following analytical calculations, a logarithmically expressed
curve was expressed between two cylinders aligned in contact. Thus, a uniform pressure
distribution and a rectangular contact area are obtained [18]. The shape of the measured
roller profile from a high-pressure pump is depicted in Figure 3. The highlighted area
indicates premature wear [24].
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Figure 3. Profile of a high-pressure pump roller.

As previously noted, the three profiles (straight, elliptical, and logarithmic) can be
adapted for application to a cylindrical roller within the transmission mechanism of a
high-pressure pump. To facilitate this adaptation, a theoretical analysis is imperative for
obtaining the profile generators through mathematical means.

3. Roller Profile Theoretical Improvement

The durability of cylindrical roller assemblies is closely connected to the loads that
occur within these mechanisms. In both bearings and roller–shoe assemblies, due to the
higher pressures on the edges of the roller rather than the central area, even at moderate
loads, they can have premature component wear. In order to avoid plastic deformations,
it is necessary to use a modified roller profile that is adapted according to the demands,
which leads to a uniform pressure distribution [25].

A straight profile is the simplest solution to achieve the contact surface of the roller
with the shoe or the shaft. The advantages of this solution are represented by the reduced
costs for part design and the manufacturing process. Over time, various tests have been
carried out that highlight the fact that a roller with such a profile has high loads on the
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ends [26]. Also, the performance requirements of high-pressure pumps (Delphi, Iasi,
Romania) have increased, necessitating new, more efficient solutions. The performance of a
high-pressure pump is closely related to the fuel pressure it can deliver. As this pressure
increases, the wear on its components will increase due to overloading. Thus, the operating
parameters will be changed and, implicitly, technical improvement solutions will need to
be sought to reduce wear. Using two basic mathematical functions, we built the following
graphic representation (Figure 4).
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Figure 4. Straight roller profile representation in graphic coordinates.

High-stress distributions on the straight profile roller ends can be reduced by modify-
ing the profile [16]. Thus, a new profile solution for the roller–shoe assembly is an elliptical
profile. This can be obtained based on mathematical functions (Equations (1) and (2)) with
the help of which we can create an elliptically-shaped profile generator. The role of the con-
stant k is to globally determine the shape of the elliptic curve. A graphical representation
of the profile based on Equations (1) and (2) is shown in Figure 5.

f1(x), f2(x) : [0, a] → R

f1(x) =
b
2
+

√
b2

4
+

ax − x2

k2 (1)

f2(x) =
b
2
−

√
b2

4
+

ax − x2

k2 (2)
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Another roller profile, as a solution for improved contact and reducing wear, is a
logarithmic one. As we can see in Figure 6, the logarithmic profile of a cylindrical roller
refers to its cross-sectional shape, which is obtained by applying Equations (3) and (4). In
this instance, the roller’s diameter undergoes a specific variation along its axis, ensuring
that the cross-section of the roller adheres to a logarithmic curve.

f1(x), f2(x) : [0, a] → R

f1(x) = b + αln
[
1 + β

(
αx − x2

)]
(3)
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f2(x) = −αln
[
1 + β

(
αx − x2

)]
(4)
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Equations (3) and (4) are developed with the help of elementary functions composed
according to the requirements imposed (generation of a logarithmic profile curve). The
curvature constants α and β determine globally (starting from central area) and locally (at
the roller ends) the shape of the logarithmic curve. These can be arbitrarily chosen so that
the resulting profile can minimize contact pressure distributions on overloaded areas.

To observe the impact of each profile in minimizing stress, we performed a finite
element analysis. Thus, we can study the evolution of contact pressures, equivalent stress,
specific deformations, and contact forces under real operating conditions.

4. Simulation of the Transmission Mechanism Operation

A numerical simulation is carried out on the entire transmission mechanism, composed
of shoe, roller, and shaft cam. The shaft cam is vertically positioned, thus the piston is at
the top dead center, compressing the fluid in the compression chamber.

4.1. Component Design in Catia

The program used for the design of the element’s parts is Catia (Catia V5 r19) (Figure 7).
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Designing the straight profile roller is a simple process, which does not imply a special
mathematical function in the design program. Thus, using the basic commands and taking
into account the dimensional characteristics, we were able to obtain a 3D variant for the
straight profile roller (Figure 8).
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Using the Equations (1) (Figure 9) and (2) and the values from Table 1 is obtained the
elliptical profile (Figure 10) of the cylindrical roller in the Catia V5 program. The values
from the table are the measured dimensions from a real roller–shoe transmission.
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Table 1. Dimensions and constants values for generating the elliptical profile.

Dimension/Constant Value Comments

Roller length 21 mm Measured parameter
Roller diameter 12,029 mm Measured parameter

k 3 Constant with arbitrarily
chosen value, k > 0
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The logarithmic profile is another improved version compared to the previous ones.
Referring to the complexity of the roller manufacturing process, creating a logarithmic
profile is a high-precision operation that is susceptible to processing deviations.

By entering Equation (3) and the values from Table 2 in the Catia program (Figure 11)
we obtain the logarithmic profile generator (Figure 12).

Table 2. Values for dimensions and constants needed to calculate the logarithmic profile.

Dimension/Constant Value Comments

Roller length 21 mm Measured parameter
Roller diameter 12,029 mm Measured parameter

α 0.003 Constant with arbitrarily
chosen value, k > 0

β 0.056 Constant with arbitrarily
chosen value, k > 0
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4.2. FEM Analysis Technical Details

The purpose of this simulation is to observe the evolution of the pressure distribution
at the roller–cam contact when the roller has various profile shapes (straight, elliptical, and
logarithmic profile). The simulation is statically performed using the ANSYS program. To
obtain a realistic result, we take into account the forces acting in the vertical direction (Fr)
and the friction coefficients from Table 3. These friction coefficients were obtained using
the Castro relation [27] and also considering the constructive and usual running conditions
of the mechanism [28]. The roller–shoe and roller–cam friction forces are calculated directly
using the ANSYS program, at the required pressures, and it is only necessary to enter the
friction coefficients according to the type of materials.

Table 3. Friction coefficients used on the ANSYS simulation.

Components in Contact Coefficient Value

Roller–shoe friction coefficient 0.059
Roller–cam friction coefficient 0.076

The sum of the forces acting in the vertical direction in the four phases of operation
(phase 1—cranking, phase 2—idle, phase 3—maximum torque, phase 4—maximum power)
of the high-pressure pump will be taken into account (Table 4).

Table 4. Roller–shoe mechanism radial forces.

Operating Phase Total Force Fr [N]

Phase 1 878.42
Phase 2 1574.78
Phase 3 6051.38
Phase 4 7444.1

In order to achieve an optimal balance of convergence and validity of the results, with
the aim of obtaining applicable results in a similar manner to all the simulations in this
study, we finally chose hexahedral elements (with six faces). These elements are known for
providing high precision results.
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Following the discretization tests, with different values of the mesh, we found a fine
configuration to be optimal, as a coarse discretization mesh provided imprecise distri-
butions of pressures, equivalent stresses, and specific strains. A fine discretization mesh
also offers the advantage of eliminating the pressure and stress concentration values, with
optimal element size values leading to the convergence of finite element analysis results,
whilst also involving higher processing time.

For the simulations, we considered Augmented Lagrange frictional contacts (using
the friction coefficients established in Table 3). Alternative contact formulations such as
Normal Lagrange, MPC (Multiple Point Constraints), or Pure Penalty would have provided
similar but inconsistent results across the duplication of simulations, discretization grid,
and solver parameters (Analysis Settings).

We opted to exclusively examine the interaction between the roller and the cam, as the
inclusion of the shoe amplifies the non-linearity of the assembly. This causes convergence
issues. Consequently, our simulations concentrated only on the components that best
illustrate the impact of the roller profile. In order to avoid cases of non-convergence of
the analyses, we opted for a simple application of the contour conditions. This consists in
embedding on the side faces of the cam and pressing the roller with the force values (Table 4).
Additionally, using a translational joint, we ensured that the roller has a displacement in
the vertical direction, thus restricting the model even better and ensuring full success when
running the simulations (Figure 13).
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4.3. ANSYS Simulation Results

We studied, in simulation, the three roller profiles.
The straight roller profile develops contact forces and pressures, equivalent stress,

and moderate specific strains, but with peaks at the ends of the roller contact area. This is
visible in both the surface and the section distributions (Figure 14).

The simulation results of the contact between the cam and the roller with an elliptical
profile show increased values of contact pressures, stresses, and strains (Figure 15). The
load concentrations on the central area, together with the high values of the analyzed
parameters, lead to high wear for the roller and cam.
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Figure 14. Simulation results of contact between cam and straight profile roller.
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Figure 15. The simulation results of the contact between the cam and the roller with an elliptical
profile.
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The simulation of the roller–cam contact with a logarithmic profile reveals a noticeable
improvement when high forces are applied to the mechanism. A better dispersion of the
contact pressures and the equivalent stresses are visible. Also, the contact force vectors
along the roller show a stress-free distribution at the ends (Figure 16), which are shown
by the ANSYS program for each individual node, the legend presenting the value of the
maximum contact force in that area.
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Figure 16. Simulation results of contact between cam and roller with logarithmic profile.

4.4. Simulation Comparative Analysis

Figure 17 provides an overview of the simulation results.
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4.4.1. Quantitative Comparisons between Straight Profile Roller and Logarithmic Profile
Roller

• The simulation outcomes at a force of 878.42 N reveal an approximately 22% variance
in the maximum contact pressure between the straight profile (47.75 MPa) and the
logarithmic profile (61.66 MPa), with the latter exhibiting a disadvantageous result.
This pattern persists in terms of specific strains and contact forces, showing differences
of approximately 15% and 25%, respectively. It is important to mention that this force
corresponds to a short operating phase of the vehicle, with little impact on the wear of
the motion transmission components.

• When applying the same force (878.42 N), the equivalent stress shows a percentage
difference of 9% in favor of the roller with the logarithmic profile (32.56 MPa compared
to 29.6 MPa).

• Comparatively analyzing the results when applying the other forces, an obvious
improvement is visible for all parameters when we use a logarithmic profile.

4.4.2. Quantitative Comparisons between the Roller with an Elliptical Profile and the Roller
with a Logarithmic Profile

• Compared to the maximum contact pressure of 168.38 MPa provided by the straight
profile at a force of 878.42 N, the logarithmic profile develops a maximum of 61.66 MPa,
showing a decrease of about 63%. This trend is maintained for all parameters, with
the percentage difference remaining close to 60%.

• The same favorable percentage difference is maintained in the case of the other applied
forces.

5. Experimental Validation

The high-pressure pumps wear can be highlighted based on the performance of
experimental tests. The evaluation must be carried out by simulating real operating
conditions, which is why the testing process becomes a complex and important stage.
The roller–shoe mechanism operates at high forces for most of its working time. After
the simulation at high forces, the logarithmic profile shows lower values of the contact
parameters (contact pressure, equivalent stress, equivalent elastic strain, and contact force)
compared to the straight one. All these parameters are involved in the production of wear
and friction [29]. Considering the favorable results of using the logarithmic profile in the
simulation and the limited financial resources, we chose to perform a physical test on a
single pump, whose transmission mechanism contains such a roller profile. Thus, from a
batch of components from the manufacturer, we chose a roller with an identical profile to
the one in the simulation and mounted it on a high-pressure pump. We then performed an
endurance test on the resulting assembly.

5.1. Testing Methodology

High-pressure pump tests are carried out on special test machines (Bosch EPS 815,
Istanbul, Turkey) (Figure 18). They are equipped with measurement sensors for pressures,
flows, temperatures or speeds, parameters that can be checked in real time. The test
algorithm is adapted so that we can obtain a wide range of values for these parameters of
interest. Based on this test, a detailed analysis of the contact surface of the roller–shoe is
pursued. For this reason, the chosen test is a static one, through which we can maintain
constant values of the above-mentioned parameters for a period of approximately 20 h.
The aggravating test conditions are achieved by reducing the fluid film between roller and
shoe. Thus, we imposed a reduced speed (approx. 400 rpm) for the pump shaft, a high
pressure for the fluid exiting the pump (approx. 2000 bar) and, at the same time, a high
temperature for this fluid (approx. 120 degrees). The testing fluid has diesel-like properties.
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5.2. Testing Data Analysis

The analysis of the data obtained from the test bench is carried out by carefully
monitoring the evolution of the important parameters of the high-pressure pump. The
monitored parameters are shaft speed, pressure, and temperature. The experimental data
are taken from the test bench, after which graphs are made. They indicate the evolution of
the parameters throughout the test (Figure 19).
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The results do not indicate deviations from the values initially imposed on the param-
eters. The speed and pressure keep setpoints constant during the test. The temperature on
the pump return has a slight increase due to the friction of the pump’s internal components.
Two peaks are visible on the graphs (at the beginning and at the end). The first is due to the
initialization period of the pump (in which the parameter values were imposed). The one
at the end is caused by the maintenance period (oil and filter change) of the test bench.

5.3. Drive Train Component Visual Analysis

The high-pressure pump (Delphi, Iasi, Romania) is disassembled in order to observe
the condition of the transmission mechanism elements (Figure 20). We perform this visual
inspection to confirm the results of the test bench data analysis.
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Figure 20. Transmission mechanism visual condition.

There are no friction marks on the ends of the roller, the surface condition being the
same along its entire length. The inner surface of the shoe is similar to the surface of a new
component. No areas of coating removal or circular contact streaks are observed. This
indicates a very low level of wear due to uniform contact with the roller. The shaft cam
shows no signs of wear or overheating. The contact area of the cam with the roller is easily
visible, without overheated areas on the edges. Considering the experimental test and also
the simulation results, the logarithmic roller profile is beneficial for the wear behavior of
the transmission mechanism. Finite element analysis is a basic tool for the design of any
product, and the comparison between the straight and the logarithmic profiles showed
the superiority of the latter in terms of wear reduction. Therefore, experimental testing
is performed only on the assembly that shows the best results, without the need to waste
resources.

6. Shoe Coating and Material Analysis

Using the tested logarithmic profile, we can study its impact on the shoe surface,
more specifically on the coating layer. This analysis involves measuring the hardness and
coating layer adhesion in the areas where there is greater friction between the components.
We performed hardness measurements and adhesion tests according to the VDI 3198
standard [13].

6.1. Hardness Measurement

Hardness is measured using the Vickers method [30]. This is used more often for
small parts. To check material hardness, it is necessary to cut the piece on the most initial
overloaded area (central area).

This allows for measuring the hardness of the material on the contact area. Before
doing this, we visually checked the surface of the shoe’s inner diameter under a microscope
(SEM FEI Quanta 200 3D microscope, Brno, Czech Republic) (Figure 21). It had no defects.
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Figure 21. Visual analysis of shoe’s surface.

To obtain the hardness at the six points, using the Vickers method, the time the
durometer tip is held on the surface of the shoe is 10–15 s. We used a period of about 12 s
for all six measurements.

Figure 22 exposes the six measurement positions. The results obtained after measuring
the hardness have a constant trend and are around the value of 700 HV (Figure 23). Mea-
surements were made both in depth and towards the edge area to observe if the changes
in hardness (its decrease) were caused by the increase in temperature due to the intense
friction. The fact that all these values are high and constant indicates the preservation of
the original properties of the material and the reduced friction obtained as a result of the
profile improvement.
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6.2. Coating Adhesion Test

As mentioned in the introductory part, the adhesion test is an important solution for
evaluating the DLC layer. Thus, following the directions described, we decided to evaluate
the Diamond-Like Carbon layer after testing the high-pressure pump. To assess the defect,
we used the visual standard in Figure 24. An acceptable result predicts an increased life of
the shoe.
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Figure 24. DLC adhesion test visual standard.

Considering the mark left on the part surface (Figure 25) and comparing it with the
visual standard, we considered that the adhesion test shows a positive result. It falls
between the values of standards HF2 and HF3. Although there are not many cracks, a slight
delamination can be observed in a few areas, which is why we chose this approximation.
Considering the operating parameters of the pump and the fact that this delamination does
not cover large surfaces, this was considered a good result.
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7. Conclusions

The components inside a pump are lubricated with diesel fuel. Its viscosity is low
compared to other lubricants but it is impossible to modify the lubricant, considering its use
in the common rail system. The lubrication of a roller–shoe assembly can migrate in various
regimes, over different periods of time, depending on the operating mode of the vehicle.
Considering that diesel fuel is the only fluid that can circulate in a pump, we focus on the
roller profile and its influence on the shoe contact surface. Improving the roller profile can
be easily implemented in the production process. Thus, initially we theoretically analyzed
different types of profiles that are already used on cylindrical rollers. In order to observe
their impact on the roller of the transmission mechanism, we performed a simulation of its
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operation in the ANSYS program. The simulation results show an obvious improvement of
the pressure distribution when we use a logarithmic profile calculated for the cylindrical
rollers compared to the straight and elliptical profiles. This result was validated by an
experimental test, which indicated a guaranteed applicability. The coating analysis is an
additional analysis carried out to observe the roller profile improvement impact on this.
By analyzing the clean surface of the shoe, free of defects, we can consider that the DLC
is an anti-friction solution that can still be used on such parts. This is also confirmed by
the sufficient adhesion, the result of which falls within the acceptable area. These analyses
were performed on the actual mechanism and are not found in the literature. The study is
based on the interaction between theory and automotive exploitation conditions, where
high-pressure pumps are used. The developed solution was designed so that it can be
applied in the industrial environment, respecting the trend of improving performance
indicators (time and cost).
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