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Abstract: The wet electrostatic precipitator (WESP) overcomes the shortcomings of traditional
electrostatic precipitators, such as dust re-entrainment and back corona. It can effectively remove
high-specific-resistivity dust, with a good removal effect on PM2.5. It is proposed to adopt chemical
agglomeration and humidification agglomeration technology in the wet electrostatic precipitators to
achieve ultra-low dust emissions from coal-fired power plants. The results show that the addition
of chemical agglomerates, surfactants, and water vapor all affect the dust diameter of coal-fired
power plants. After adding sesbania gum (SG), the D50 of dust particles increases from 28.29 µm to
48.22 µm. And the D50 of dust particles is 36.46 µm when spraying 3.6 kg/h water vapor only. With
the cooperation of chemical agglomeration agents and water vapor, the dust agglomeration effect
and removal efficiency can be further improved. When 10 mg/L SG is synergistically combined with
2.9 kg/h water vapor, the D50 is 64.75 µm, and the dust removal efficiency reaches 97.88%. On this
basis, by adding 5 mg/L of Hexadecyltrimethylammonium bromide (CTAB), the D50 is 83.06 µm,
and the dust removal efficiency increases to 98.62%. The synergistic effect of chemical agglomeration
and humidification agglomeration promotes the aggregation of dust from coal-fired power plants. It
can improve the removal efficiency of WESP for fine particulate matter but has little impact on the
operation of existing equipment. The synergistic effects of multiple agglomeration technologies are
also the direction for future research on the removal efficiency of fine particulate matter.

Keywords: fine particles wet electrostatic precipitator; humidification coagulation; chemical coagula-
tion; dust removal efficiency

1. Introduction

As the world’s largest coal producer and consumer, China’s primary energy and
power generation fuel structure has long been dominated by coal. In 2022, China’s coal
industry achieved new economic and technological indicators, and the raw coal production
of enterprises above the designated size reached 4.09 billion tons [1]. It is expected that the
proportion of coal-fired power generation will still reach about 50% by 2030 [2,3]. Coal-fired
power plants are one of the main sources of atmospheric pollutants. Coal can produce
atmospheric pollutants such as smoke, sulfur dioxide, nitrogen oxides, and mercury com-
pounds during combustion [4,5], of which PM2.5 is an important factor in environmental
problems such as low atmospheric visibility and haze weather. More research shows that
air pollution caused by high concentrations of PM2.5 is an important factor in inducing
chronic respiratory and circulatory diseases [6–9]. Therefore, it is necessary to improve the
fine particle removal efficiency of dust collectors to achieve the goal of controlling PM2.5
emissions and reducing pollution. This study uses a wet electrostatic precipitation system
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as the experimental platform and adopts chemical agglomeration and humidification ag-
glomeration technology to improve the collection efficiency of fine particles. It provides
new ideas for agglomeration technology to remove fine particles.

Among the existing agglomeration technologies, chemical agglomeration has received
widespread attention from researchers due to its advantages of simple operation, obvious
effect on fine particles, and low energy consumption. It has broad development prospects.
In 1999, Durham et al. [10] conducted a study on the removal efficiency of particulate matter
affected by the chemical agglomeration injection into flue gas. After injecting a chemical
agglomerant with a mass fraction of 0.05%, the removal efficiency of particulate matter
by electrostatic precipitators increased from 73% to 83%. In 2001, Torben [11] conducted
research on the mechanism of chemical agglomeration and tested the influence of various
factors on the coalescence and growth of particulate matter during each agglomeration
process. He found that fine particulate matter agglomerates under the simultaneous action
of coalescence and shear forces. In 2003, Zhang J et al. [12] proposed using chemical ag-
glomeration to improve the removal efficiency of dust removal equipment in power plants
and cement plants. By spraying the agglomeration promoter solution into the flue gas at
the front end of the dust removal device, the fine particles can be agglomerated, grown and
captured by the dust collector. In 2007, Zhao Y et al. [13] studied the influence of factors
such as flow rate and concentration of the agglomerant solution on the agglomeration
effect. In 2008, Sarah et al. [14] found that aggregates with larger diameters have lower
water content. As the gas flow rate increases, the aggregates will break. When the solution
viscosity increases to a certain extent, the aggregates become more stable. In 2009, Dong Y
et al. [15] found that adding chemical agglomeration promoters to a fluidized bed desulfur-
ization tower can improve the removal efficiency of fine particles. Li H et al. [16,17] selected
four polymer compounds to prepare agglomeration promoter solutions and analyzed the
particle size before and after agglomeration by using a laser particle size analyzer. In 2012,
the experimental results of Leiviskä et al. [18] showed that kaolin can significantly improve
the agglomeration and sedimentation of particulate matter. In 2015, Balakin et al. [19]
conducted multiphase flow agglomeration experiments and explored the mechanism and
collision efficiency of liquid bridge agglomeration by using numerical simulation methods.
In 2017, Guo et al. [20] added different chemical agglomeration agents and explored their
agglomeration effects from the perspectives of solution concentration, temperature, pH,
etc. In 2018, Sun et al. [21,22] compared the results of single turbulence agglomeration
experiments with those of turbulence-coupled chemical agglomeration experiments and
found that chemical agglomeration was more conducive to the agglomeration and re-
moval of larger particles. In 2022, Zhou et al. [23] found through experiments that when
styrene butadiene lotion (SBE) and Triton X-100 were added together, fine particles could
be agglomerated into large particle agglomerates whose diameter is greater than 10 µm.

The above studies indicate that chemical agglomeration technology can effectively
promote the coarsening of fine particles, which is beneficial for the capture and removal of
fine particles. In practical industrial applications, the simultaneous action of humidification
and chemical agglomeration in wet electrostatic precipitation is not implemented, and the
addition of chemical agglomeration agents requires the installation of separate devices,
which increases operating costs. Through the action of chemical agglomeration agents,
whose long polymer chains with polar groups connect multiple fine particles in a “bridging”
manner, they agglomerate fine particles into large-sized particles. Surfactants can enhance
the wettability of solutions and reduce the surface tension of solutions. Spraying water
vapor can change the humidity of flue gas, promote fine particles to become condensation
nuclei and increase the collision probability between particles. This study combines humid-
ification with chemical agglomeration without changing the structure of the electrostatic
precipitator; it will form dust-laden droplets with fine particles as condensation nuclei
to improve the adhesion of particles. This further improves the capture efficiency of fine
particles and it provides a direction for ultra-clean emissions from coal-fired power plants.



Coatings 2024, 14, 420 3 of 14

2. Materials and Methods
2.1. Experimental Facility
2.1.1. Wet Electrostatic Precipitation System

The wet electrostatic precipitation system required for this experiment is shown
in Figure 1. The main components are the feeding system, low-voltage control system,
high-voltage power supply system, fan system, and spray system. The gas flow of the
electrostatic precipitator system is 10,000 m3/h, and the size of the electrostatic precipitator
(length × width × height) is 2.8 m × 1.4 m × 5.8 m. The inlet dust content in this experiment
is 110 mg/m3. While adding the dust into the screw feeder, it is stirred by a stirring blade,
and the power supply frequency for the drive motor is changed by a variable frequency
controller at the same time, enabling the dust to enter the removal system evenly at a
given speed. The chemical agglomeration agent is added to a water tank with dimensions
(length × width × height) of 1.5 m × 1.2 m × 1.2 m. One side of the water tank has a
corresponding volume of water filling scale. During the experiment, the water volume
in the tank was 1.5 m3. The mass of chemical agglomeration agent added is determined
according to the desired solution concentration. The water vapor generation device is used
to humidify the flue gas. It consists of a pressure controller, pressure gauge, water tank,
dial gauge, outlet valve, safety valve, inlet valve, drain valve, and exhaust pipe. During
testing, record the dial gauge before and after the experiment, and calculate the spray rate
of water vapor sprayed out.
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Figure 1. Wet electrostatic precipitator system.

2.1.2. Sampling System

This experiment uses the isokinetic sampling method to sample dust content, which
has the advantages of high analytical accuracy, easy operation, and wide applicability. The
sampling system mainly includes a sampling pipe, a regulating valve, a drying bottle, a
vacuum pump, a buffer bottle, and a wet-type flowmeter. The filter cartridge is installed
inside the sampling pipe and can be quickly disassembled. It is made of high-purity
fiberglass, which has minor weightlessness when dried in an oven before and after the
experiment. The total measurement error of the sampling system is less than 0.1 mg/m3.
The dust content sampling system is shown in Figure 2.
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Figure 2. Sampling system: 1. Sampling pipe. 2. Regulating valve. 3. Drying bottle. 4. Vacuum
pump. 5. Buffer bottle. 6. Wet type flowmeter.

2.1.3. Measurement and Observation Technology

The device for determining the particle size distribution of dust is a BT-9300H laser
particle size analyzer, which consists of a laser particle size analyzer and a circulating
disperser, and is used to obtain the particle size distribution of the test sample. The
scanning electron microscope model is S4800-II, which is produced by Japan for observing
the morphology and elemental composition of dust from coal-fired power plants.

2.2. Experimental Materials

The dust used in the experiment was from the dust collector ash hopper of the Qin-
huangdao Chenlong coal-fired power plant. The shell pressure resistance of the wet
electrostatic precipitator was 0.5 MPa, the operating voltage was 40 kV, the wind speed of
the electric field was 1 m/s, the flue gas temperature was 18 ◦C~25 ◦C, and the relative
humidity was 20%~50%. The chemical agglomeration agents and surfactants shown in
Table 1 are used to improve collection efficiency under the additive effect of humidification.

Table 1. Experimental materials.

Species Name Molecular Weight Characteristics Manufacturer

Chemical agglomerates

XTG (xanthan gum) 1 × 106~3 × 106 [24]
Natural polymer
polysaccharides

Tianjin Guangfu Fine
Chemical Research

Institute, Tianjin, China

SG (sesbania gum) 2.3 × 105~3.4 × 105

[25]
Natural polymer
polysaccharides

Guangdong Xinrui
Biotechnology Co., Ltd.,

China

KGM (konjac
glucomannan) 5 × 105~2 × 106 [26]

Natural polymer
polysaccharides

Henan Wanbang
Chemical Technology

Co., Ltd., China

PAM (Polyacrylamide) 4 × 106~1.5 × 107 [27]
Organic polymer

flocculant

Tianjin Kemio
Chemical Reagent Co.,

Ltd., Tianjin, China

PFS (poly ferric sulfate) 2000–5000 [28] Inorganic polymer
flocculent

Tianjin Kemio
Chemical Reagent Co.,

Ltd., Tianjin, China

surfactant

SDBS (Sodium
dodecylbenzene

sulfonate)
348.48 [29] Anionic surfactants

Tianjin Kaitong
Chemical Reagent Co.,

Ltd., Tianjin, China

CTAB
(Hexadecyltrimethy-

lammonium bromide)
364.45 [29] Cationic Surfactant

Tianjin Huasheng
Chemical Reagent Co.,

Ltd., Tianjin, China

TX-100 (Octylphenyl
polyoxyethylene ether) 625 [30] nonionic surfactant

Tianjin Guangfu Fine
Chemical Research

Institute, Tianjin, China
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3. Analysis and Discussion
3.1. Analysis of Coal Dust Particle Size

D10, D50, and D90 represent the volume average diameter of particles, whose cumu-
lative frequency distribution is 10%, 50%, and 90%, respectively. The median diameter
D50 is a typical value representing the size of the particle diameter. The particle size
analysis diagram is shown in Figure 3. It was observed that the proportion of particles
with a diameter less than 4.563 µm in the dust was 10%, the proportion of particles with a
diameter less than 22.62 µm was 50%, and the proportion of particles with a diameter less
than 66.88 µm was 90%. The particle size of dust in coal-fired power plants is small and has
a wide distribution range, mainly distributed between 0.4 µm and 170 µm. Particles with a
diameter of less than 2 µm account for 3.81%, and particles with a diameter of less than
10 µm account for 29.36%. These particles entering the atmosphere can cause harm to the
environment and human health. Therefore, this study introduces chemical agglomeration
and humidification agglomeration to increase the agglomeration efficiency of fine particles,
thereby improving the removal efficiency of fine particles by electrostatic precipitators.
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3.2. Morphological Analysis

Figure 4a is a SEM image of the original coal-fired power plant dust. It can be seen that
the coal-fired power plant dust particles do not have a fixed shape, and the dust particles
are relatively dispersed, mostly irregular block particles with different sizes. As shown in
Figure 4b, after the particles were collected by electrostatic precipitator when sprayed in the
water vapor, some small-sized particles were adsorbed onto the large-sized dust particles,
and loose-structured particle agglomerates began to appear. In Figure 4c, after adding SG
to the electrostatic precipitator, the particles showed a significant clumping phenomenon
and were more tightly bonded. In Figure 4d, after adding SG and CTAB while injecting
water vapor into the electrostatic precipitator, the surface of large particle agglomerates is
smoother than that of particles under the above two conditions, and the irregularly shaped
dispersed small particles decrease.
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3.3. Influence of Chemical Coagulation Agents on Dust Agglomeration
3.3.1. Influence of Chemical Coagulation Agents Types

It has different agglomeration effects on dust when changing the type of chemical
coagulation agent. Five chemical coagulation agents were selected for the experiment:
xanthan gum (XTG), sesbania gum (SG), konjac glucomannan (KGM), polyacrylamide
(PAM), and polymeric ferric sulfate (PFS). The chemical coagulation agents were added
to the circulating water tank to prepare an aggregating solution with a concentration of
10 mg/L. At this concentration, only about 21 g/h consumption of chemical agglomerant
is needed to treat 10,000 m3/h flow of flue gas, and the cost of the agglomerant is very
low. The dust collected after the experiment was measured for its particle size distribution,
and the results are shown in Figure 5. It can be seen that when SG is added, the D10 is
12.73 µm and the D50 is 48.22 µm, which is greater than that of other agglomeration agents.
Compared to D90, the D90 of KGM, PAM, and PFS are 106.3 µm, 98.15 µm, and 82.5 µm,
respectively. The D90 of XTG and SG are much larger than these three agglomerants, at
147.2 µm and 153.2 µm, respectively. The reason is that SG is a non-ionic polymer with
a main chain and side chains composed of mannose and galactose. Due to the presence
of a large number of hydroxyl groups in the molecule, it can form hydrogen bonds with
ions in the system, resulting in good hydrophilicity. Compared to XTG and KGM, both
of which are also natural polymeric polysaccharides, SG has better solubility in cold
water. After dissolution, the polar groups of the large molecular chains are relatively
evenly distributed in the agglomerated droplets. They further form the high-viscous
network structure, which greatly increases the probability of fine particles being trapped
by the agglomerated droplets. PAM is an organic polymeric flocculant whose functional
groups on the carbon chain adsorb onto the surface of fine particles to form flocs, which
achieve particle aggregation through the interconnection between flocs. PFS is an inorganic
polymeric flocculant, and there are polynuclear hydroxyl complexes in the dissolved
solution. These complexes can adsorb and neutralize the electric charges of colloidal
particles; they play a certain role in agglomeration. However, the agglomeration effect
of PAM and PFS is significantly inferior to that of the adsorption-bridging effect of the
polymer chain on fine particles.
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3.3.2. Influence of Surfactant Types

Surfactants have wettability and permeability and can significantly reduce the surface
tension of water. To investigate the agglomeration effect of surfactants on coal-fired power
plant dust, this experiment selected three surfactants, namely sodium dodecylbenzene
sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB), and Triton X-100 (TX-100),
and added them to the circulating water tank at a concentration of 5 mg/L. The results are
shown in Figure 6. The agglomeration effect after adding TX-100 is very small; the dust
particle size of D10 is 9.899 µm, D50 is 28.92 µm, and D90 is 69.69 µm. After adding CTAB,
the D10 is 12.12 µm, the D50 is 34.19 µm, and the D90 is 82.29 µm. After adding SDBS, the
D10 is 11.65 µm, the D50 is 32.72 µm, and the D90 is 78.23 µm. Among them, CTAB has the
largest median diameter and the best agglomeration effect. This is because surfactants can
reduce the surface tension of water due to their wetting effect [31–33] and can also reduce
the surface free energy of wet dust particles. In addition, the fly ash from the coal-fired
power plant used in the experiment carries a negative charge, while CTAB is a cationic
surfactant. The positively charged groups that dissociate from it can neutralize the surface
charge of particles, reduce the potential at the interface of the adsorption layer and diffusion
layer, thereby reducing the repulsive energy and zeta potential between dust particles,
enable the particles to reach a destabilized state and promote their agglomeration [34]. On
the contrary, there are a large number of anions in SDBS solution, which leads to energy
barriers between particles and is not conducive to the formation of agglomerates. As a
nonionic surfactant, TX-100 has less effect on the stability of particles, so its agglomeration
effect is better than SDBS.
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3.3.3. Additive Effect of Chemical Coagulation Agent and Surfactants

Although surfactants can agglomerate dust, the effect is not obvious. Therefore, the
additive effects of surfactants and chemical coagulation agents are explored. The chemical
coagulation agents SG and surfactant CTAB were selected in the synergetic coagulation
experiment based on the above results. Experiments were conducted by varying the
concentrations of SG and CTAB, with SG concentrations being 0 mg/L, 5 mg/L, 10 mg/L,
and 15 mg/L, and CTAB concentrations being 0 mg/L, 2.5 mg/L, 5 mg/L, and 7.5 mg/L.
The results are shown in Figure 7. It can be seen that the additive coacervation effects of SG
and CTAB are significantly enhanced compared to the addition of each substance alone.
When SG and CTAB are added simultaneously, the content of fine particles is lower than
when they are added separately. When CTAB is added alone, there are still fine particles
with a particle size of less than 1 µm and a content of 0.2%. After adding SG, fine particles
below 1 µm are removed. When the additional concentration of SG is 15 mg/L and the
content of particles below 2 µm is the lowest. The reason is that dust and agglomerant
droplets in flue gas collide with each other in the electric field. Liquid bridges are formed
between the particles, and the aggregates gradually reach a critical state. Subsequently,
the pores between the particles are filled, forming new agglomerated particles. With
the continuous action of the agglomeration liquid, the large particles repeat this process.
Therefore, the fine particles form large particle agglomerates under the action of chemical
agglomeration agents, and the capture effect on fine particles is better as the concentration
of SG increases to 15 mg/L. The content of particles above 100 µm is the highest, accounting
for 31.32%. In addition, CTAB is a cationic surfactant with more polarizable counterions.
When agglomerated droplets collide with negatively charged dust particles, they can bind
to the dust particles to a greater extent [35], resulting in relatively less entropy loss during
the agglomeration process of particulate matter, which is more conducive to the adsorption
of particulate matter.
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3.4. Influence of Humidification on Dust Agglomeration Performance
3.4.1. Influence of Water Vapor Humidification

As the steam phase transition can promote fine particle condensation and growth,
water vapor was introduced to humidify the flue gas and investigate its effect on the
agglomeration of dust from coal-fired power plants. Change the spray rate of water vapor
at 0 kg/h, 1.5 kg/h, 2.2 kg/h, 2.9 kg/h, and 3.6 kg/h at the ESP inlet, as shown in Figure 8.
When the water vapor spray rate is 0 kg/h, the proportion of particles with a diameter less
than 1 µm is 0.25%, and the proportion of particles with a diameter greater than 100 µm is
2.65%. As the spray rate increases, the content of particles with a diameter less than 1 µm
gradually decreases. When the spray rate increases to 3.6 kg/h, the content of particles
with diameter less than 1 µm will decrease to zero. and the content of particles with
diameter greater than 100 µm will be the highest, accounting for 10.63%. The reasons for
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this are analyzed as follows: on the one hand, due to the injection of water vapor, the water
mist condenses on the surface of dust particles, enhancing the adhesion of fine particles.
With the Brownian motion of particles, the fine particles wrapped in water mist and small
droplets adhere to larger particles together, increasing the size of dust-containing droplets.
On the other hand, under the action of water vapor, the humidity of flue gas increases,
reducing the inception voltage and increasing the ionization coefficient, thus promoting
the improvement of corona discharge performance and facilitating particle collision and
agglomeration. However, due to the limitation of particle concentration, when the injection
of water vapor increases to 3.6 kg/h, the number of droplet embryos cannot continue to
increase, thus limiting the agglomeration effect.
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3.4.2. Additive Effect of Water Vapor and Chemical Coagulation Agent

Adding water vapor and SG simultaneously to investigate the additive effect on the
dust agglomeration. The concentration of SG was 10 mg/L, and the spray rate of water
vapor was varied sequentially. The results are shown in Figure 9. Under the additive
effect of SG and water vapor, fine particles below 1 µm have been removed, but fine
particles below 2 µm still exist. When SG and 2.9 k/h water vapor are additively applied,
the proportion of fine particles below 2 µm is 0.21%. When only SG is added, particles
with a diameter of 2 µm–10 µm account for 6.09%, and particles with a diameter greater
than 100 µm account for 22.34%. Under the additive action of 2.9 kg/h Water Vapor
and SG, the proportion of particles with a diameter of 2 µm–10 µm decreases to 3.87%,
and the proportion of particles with a diameter greater than 100 µm increases to 31.52%.
Due to the effective thickening of fine particles under the action of the polymer chain of
the agglomeration agent, and the addition of water vapor at the same time, based on the
heterogeneous nucleation theory proposed by Fletcher [36], when the particle size increases,
the supersaturation of water vapor can be reduced to achieve nucleation conditions, which
is more conducive to stimulating nucleation. Therefore, the agglomeration effect under the
additive action of water vapor and SG is better. Due to the condensation of water vapor
on the surface of particulate matter into small droplets, when spraying 3.6 kg/h of water
vapor, there are too many droplets attached to the surface of dust particles, which reduces
the binding force of dust, causing the dust to break up again under the action of airflow,
and the agglomeration performance no longer improves.
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3.4.3. Water Vapor, Chemical Coagulant and Surfactant on the Coagulation Process

Adding water vapor and SG and CTAB simultaneously to investigate the additive
effect on dust agglomeration. The concentrations of SG and CTAB were 10 mg/L and
5 mg/L, respectively. The spray rate of water vapor was varied in turn, and the results are
shown in Figure 10. When only SG and CTAB are added, the proportion of fine particles
below 2 µm is 0.3%. After spraying water vapor, the proportion of particles below 2 µm
began to decrease, reaching a minimum of 0.03% when the spray rate increased to 2.9 kg/h.
Compared with agglomerated particles above 100 µm, the proportion is 29.6% when only
SG and CTAB are added, and it reaches 40.43% after 2.9 kg/h of water vapor is sprayed.
This indicates that the addition of water vapor can effectively reduce the content of fine
particles. This is because the Brownian motion of small-sized particles is more pronounced,
so fine particles can come into contact and collide with other particles more quickly, forming
dust-containing droplets under the action of water vapor. At the same time, the wetting
effect of SG and CTAB enhances the hydrophilicity of dust. Under the action of liquid
bridging force, fine particles are more easily adsorbed on large particles and aggregate,
enhancing the agglomeration effect between particles.
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3.5. The Influence of Humidifying Chemical Coagulation Agent on Dust Removal Efficiency

In order to explore the impact of humidifying chemical agglomeration on the coal
dust removal performance of WESP, the dust content at the inlet and outlet under different
operating conditions was tested, and the dust removal efficiency was calculated.

3.5.1. Influence of Chemical Coagulation Agent on Dust Removal Efficiency

The types of chemical agglomeration agents vary, and the dust removal efficiency also
varies. When the concentration of the chemical agglomeration agent was 10 mg/L, the
dust content at the inlet and outlet was measured in order to calculate the dust removal
efficiency. The results are shown in Figure 11. It can be seen that the removal efficiency
of WESP for coal dust without any agglomeration agent is 92.8%, and the addition of five
types of chemical agglomeration agents can all improve the dust removal efficiency. The
dust removal efficiency after adding SG was the highest; it was about 96.57%. The dust
removal efficiency of the other four coagulants is ranked from high to low as XTG, KGM,
PAM, PFS. This is consistent with the coagulation effect of various coagulants on particulate
matter, once again demonstrating that the addition of SG can effectively reduce the content
of fine particulate matter. The reason behind this is that chemical agglomerants cause fine
particles to aggregate into large clusters, and the driving speed of dust increases with the
increase in particle size, making it easier for dust particles to be captured by WESP, thereby
improving dust removal efficiency.
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3.5.2. Influence of the Additive Effect of Water Vapor and Chemical Coagulant

SG was selected as the agglomeration agent, and the SG solution concentration was
10 mg/L. The Spray rate of water vapor was changed to 0 kg/h, 1.5 kg/h, 2.2 kg/h,
2.9 kg/h, and 3.6 kg/h. The dust content at the inlet and outlet was measured, and the
dust removal efficiency was calculated, as shown in Figure 12. It can be seen that after
adding water vapor, the dust removal efficiency increases. When the spray rate of water
vapor is 2.9 kg/h, the dust removal efficiency reaches the highest level of 97.88%. After
the spraying rate of water vapor increases to 3.6 kg/h, the dust removal efficiency will
decrease. This is because fine particles have small inertia and obvious Brownian motion,
and the amount of condensed water vapor on the surface area of individual particles
rapidly increases, forming droplet embryos. However, the dust content at the inlet is fixed,
and the limited droplet embryos adsorb a large number of water molecules, gradually
reaching equilibrium. Therefore, when the water vapor content reaches a certain value,
the dust removal efficiency no longer increases, which is consistent with the content of the
particle size range mentioned in Section 3.4.2.
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3.5.3. Influence of Water Vapor, Chemical Coagulant and Surfactant on the Coagulation
Process

The concentration of the reunion agent SG was 10 mg/L, and the concentration of
the surfactant CTAB was 5 mg/L. The spray rate of water vapor was changed to 0 kg/h,
1.5 kg/h, 2.2 kg/h, 2.9 kg/h, and 3.6 kg/h. The dust content at the inlet and outlet of WESP
was measured, and the dust removal efficiency was calculated. The results are shown in
Figure 13. It can be seen that the addition of CTAB increases the removal efficiency of WESP
for fine particulate matter. When the spray rate of water vapor is 2.9 kg/h, the dust removal
efficiency is the highest; it is approximately 98.62%. The reason is that while adding CTAB
to promote chemical agglomeration, a large amount of cations are dissociated from the
solution, increasing the number of ions between the two poles, which enhances the corona
discharge performance. Combining these factors, the addition of CTAB in conjunction with
water vapor and SG further improves the dust removal efficiency.
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4. Conclusions

This study conducted humidification chemical agglomeration experiments and dust
removal efficiency experiments to determine the impact of humidification chemical ag-
glomeration on the dust removal efficiency of coal-fired power plants in WESP. It draws
the following conclusions:

1. Adding agglomeration agents can promote the coagulation of dust from coal-fired
power plants. Among the five chemical agglomeration agents, SG has the best effect
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on dust coagulation. When the concentration of SG is 10 mg/L, the dust removal
efficiency is 96.57%.

2. Spraying water vapor can promote the coagulation of dust. When no water vapor
is sprayed, the content of particles with a diameter less than 1 µm is 0.25%, and the
content of particles with a diameter greater than 100 µm is 2.65%. When the spray
rate of water vapor is 3.6 kg/h, the fine particles below 1 µm are removed, and the
content of particles with a diameter greater than 100 µm increases to 10.63%.

3. The additive effects of water vapor, chemical coagulant agents, and surfactants can
significantly enhance the agglomeration effect. When 2.9 kg/h of water vapor is
combined with 10 mg/L of SG and 5 mg/L of CTAB, the content of particles with a
diameter over 100 µm is 40.43%, and the dust removal efficiency reaches 98.62%.

In summary, the use of humidified chemical agglomeration in WESP can effectively
promote the coarsening of dust particles in coal-fired power plants and improve the removal
efficiency of fine particles by WESP.
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Nomenclature

d Particle diameter
D10 Diameter when the cumulative distribution of dust is 10%
D50 Diameter when the cumulative distribution of dust is 50%
D90 Diameter when the cumulative distribution of dust is 90%

PM2.5
Particulate matter with an aerodynamic diameter of less than or equal to 2.5 microns
in the atmosphere
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