Effect of Annealing on Stress, Microstructure, and Interfaces of NiV/B4C Multilayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Change in Stress under Different Annealing Conditions
3.2. Post-Deposition Annealing with Different Temperature (First Group)
3.3. Post-Deposition Annealing for Different Durations (Second Group)
3.4. Microstructure Analysis before and after Annealing
3.5. Grazing-Incidence X-ray Diffraction (GIXRD)
3.6. GISAXS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Q.; Medvedev, V.; van de Kruijs, R.; Yakshin, A.; Louis, E.; Bijkerk, F. Spectral tailoring of nanoscale EUV and soft X-ray multilayer optics. Appl. Phys. Rev. 2017, 4, 14. [Google Scholar] [CrossRef]
- Barrett, R.; Baker, R.; Cloetens, P.; Morawe, C.; Tucoulou, R.; Vivo, A. Reflective Optics for Hard X-ray Nanofocusing Applications at the ESRF. Synchrotron Radiat. News 2016, 29, 10–15. [Google Scholar] [CrossRef]
- Windt, D.L. Advancements in Hard X-ray Multilayers for X-ray Astronomy. In Proceedings of the Conference on Optics for EUV, San Diego, CA, USA, 10–13 August 2015. [Google Scholar] [CrossRef]
- Feng, Y.F.; Qi, R.Z.; Jiang, L.; Huang, Q.S.; Li, T.Z.; Liu, G.C.; Li, W.B.; Yan, W.S.; Zhang, Z.; Wang, Z.S. Chemical Modification of B4C Films and B4C/Pd Layers Stored in Different Environments. Materials 2021, 14, 1319. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnikov, R.; Polkovnikov, V.; Garakhin, S.; Vainer, Y.; Chkhalo, N.; Smertin, R.; Durov, K.; Glushkov, E.; Yakunin, S.; Borisov, M. Investigation of structural and reflective characteristics of short-period Mo/B4C multilayer X-ray mirrors. J. Synchrotron Radiat. 2024, 31, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, H.; Koyama, T.; Suzuki, A.; Joti, Y.; Niida, Y.; Tono, K.; Bessho, Y.; Yabashi, M.; Nishino, Y.; Ohashi, H. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging. Nat. Commun. 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.P.; Madsen, K.K.; Christensen, F.E. Investigation of new material combinations for hard x-ray telescope designs. In Proceedings of the Conference on Space Telescopes and Instrumentation II—Ultraviolet to Gamma Ray, Orlando, FL, USA, 24–31 May 2006. [Google Scholar] [CrossRef]
- Carau, D.; Peffen, J.C.; Morawe, C. Thickness uniformity study on the ESRF multilayer deposition system. In Proceedings of the Conference on Advances in X-ray/EUV Optics and Components XII held as part of the SPIE Optics + Photonics Symposium, San Diego, CA, USA, 8–9 August 2017. [Google Scholar] [CrossRef]
- Leake, S.J.; Chahine, G.A.; Djazouli, H.; Zhou, T.; Richter, C.; Hilhorst, J.; Petit, L.; Richard, M.I.; Morawe, C.; Barrett, R.; et al. The Nanodiffraction beamline ID01/ESRF: A microscope for imaging strain and structure. J. Synchrot. Radiat. 2019, 26, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, G.B.M.; Baker, R.; Barret, R.; Bonnefoy, J.; Buslaps, T.; Checchia, S.; Duran, D.; Fihman, F.; Got, P.; Kieffer, J.; et al. ID15A at the ESRF—A beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrot. Radiat. 2020, 27, 515–528. [Google Scholar] [CrossRef]
- Wu, B.H.; Chung, C.K.; Shih, T.R.; Peng, C.C.; Mohanty, U.S. Effect of residual stress on nanoindented property of Si/C/Si multilayers. J. Micro-Nanolithogr. Mems. Moems. 2009, 8, 5. [Google Scholar] [CrossRef]
- Meyer, D.C.; Klingner, A.; Leisegang, T.; Holz, T.; Dietsch, R.; Paufler, P. Stressed states and self-organized structuring of W/C multilayers. MRS Online Proc. Libr. 2001, 695, 459–464. [Google Scholar] [CrossRef]
- Asadipour, H.; Ashrafizadeh, F.; Alizadeh, M. Graphene Layer Morphology and Oxidation Behavior Induced by Step Bunches Created on Copper Substrate. J. Mater. Eng. Perform. 2023, 32, 9735–9744. [Google Scholar] [CrossRef]
- Turjeman, I.; Dotan, T.; Berg, Y.; Kotler, Z.; Sherman, D.; Shacham-Diamand, Y. Mechanical modeling of metal thin films on elastomers for femtosecond laser patterned interconnects. Microelectron. Eng. 2021, 241, 7. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Gronsky, R.; Kortright, J.B. Microstructure and Stability Comparison of Nanometer Period W/C, WC/C, and Ru/C Multilayer Structures. Mat. Res. Soc. Symp. Proc. 1990, 187, 95–100. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Gronsky, R.; Kortright, J.B. Microstructure roughness interrelation in Ru/C and Ru/B4C X-ray multilayers. Mater. Res. Soc. Symp. Proc. 1992, 280, 161–166. [Google Scholar] [CrossRef]
- Geisz, J.F.; Kuech, T.F.; Lagally, M.G.; Cardone, F.; Potemski, R.M. Film stress of sputtered W/C multilayers and strain relaxation upon annealing. J. Appl. Phys. 1994, 75, 1530–1533. [Google Scholar] [CrossRef]
- Barthelmess, M.; Bajt, S. Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength. Appl. Optics 2011, 50, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, J.; Qi, R.; Yang, Y.; Wang, F.; Zhu, J.; Zhang, Z.; Wang, Z. Structure and stress studies of low temperature annealed W/Si multilayers for the X-ray telescope. Opt. Express 2016, 24, 15620–15630. [Google Scholar] [CrossRef] [PubMed]
- Platonov, Y.; Broadway, D.; DeGroot, B.; Mao, P.; Harrison, F.; Gutman, G.; Rodriguez, J. X-ray reflectivity and mechanical stress in W/Si multilayers deposited on thin substrates of glass, epoxy-replicated aluminum foil, and Si wafer. In Proceedings of the Optical Science, Engineering and Instrumentation ’97, San Diego, CA, USA, 11 July 1997. [Google Scholar] [CrossRef]
- Salditt, T.; Metzger, T.H.; Peisl, J. Kinetic roughness of amorphous multilayers studied by diffuse X-ray scattering. Phys. Rev. Lett. 1995, 74, 1890. [Google Scholar] [CrossRef]
- Sinha, S.K.; Sirota, E.B.; Garoff, S.; Stanley, H.B. X-ray and neutron scattering from rough surface. Phys. Rev. B 1988, 38, 2297–2311. [Google Scholar] [CrossRef] [PubMed]
- Deboer, D.K.G. X-ray reflection and transmission by rough surfaces. Phys. Rev. B 1995, 51, 5297–5305. [Google Scholar] [CrossRef]
- Pape, I.; Hase, T.P.A.; Tanner, B.K.; Wormington, M. Analysis of grazing incidence X-ray diffuse scatter from Co-Cu multilayers. Physica B 1998, 253, 278–289. [Google Scholar] [CrossRef]
- Holy, V.; Baumbach, T. Nonspecular X-ray reflection from rough multilayers. Phys. Rev. B 1994, 49, 10668–10676. [Google Scholar] [CrossRef]
- Asadchikov, V.E.; Kozhevnikov, I.V.; Krivonosov, Y.S.; Mercier, R.; Metzger, T.H.; Morawe, C.; Ziegler, E. Application of X-ray scattering technique to the study of supersmooth surfaces. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2004, 530, 575–595. [Google Scholar] [CrossRef]
- Li, H.C.; Zhu, J.T.; Wang, Z.S.; Chen, H.; Wang, Y.Z.; Wang, J. Integration method for directly analyzing interface statistics of periodic multilayers from X-ray scattering. J. Synchrot. Radiat. 2014, 21, 97–103. [Google Scholar] [CrossRef]
- Jiang, H.; Hua, W.Q.; Tian, N.X.; Li, A.G.; Li, X.H.; He, Y.M.; Zhang, Z.Y. In situ GISAXS study on the temperature-dependent performance of multilayer monochromators from the liquid nitrogen cooling temperature to 600 °C. Appl. Surf. Sci. 2020, 508, 8. [Google Scholar] [CrossRef]
- Payne, A.P.; Clemens, B.M. Influence of roughness distributions and correlations on X-ray diffraction from superlattices. Phys. Rev. B 1993, 47, 2289–2300. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, W.T.; Gao, L.J.; Wei, L.; Guo, W.; Bai, Y.B.; Fei, W.D.; Meng, S.H.; He, X.D.; Han, J.C. Surface morphology and dynamic scaling in growth of iron nitride thin films deposited by dc magnetron sputtering. J. Vac. Sci. Technol. A 2003, 21, 983–987. [Google Scholar] [CrossRef]
- Kardar, M.; Parisi, G.; Zhang, Y. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 1986, 56, 889–892. [Google Scholar] [CrossRef]
- Montcalm, C. Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments. Opt. Eng. 2001, 40, 469–477. [Google Scholar] [CrossRef]
- Windt, D.L. IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 1998, 12, 360–370. [Google Scholar] [CrossRef]
- Rao, P.N.; Rai, S.K.; Sinha, A.K.; Singh, M.N.; Lodha, G.S. Thermally induced interface changes in W/B4C multilayers. Thin Solid Films 2015, 589, 268–271. [Google Scholar] [CrossRef]
- Naujok, P.; Murray, K.; Yulin, S.; Patzig, C.; Kaiser, N.; Tünnermann, A. Thermal stability of B-based multilayer mirrors for next generation lithography. Thin Solid Films 2017, 642, 252–257. [Google Scholar] [CrossRef]
- Caravaggio, G.A.; Detellier, C.; Wronski, Z. Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. J. Mater. Chem. 2001, 11, 912–921. [Google Scholar] [CrossRef]
- Siffalovic, P.; Majkova, E.; Chitu, L.; Jergel, M.; Luby, S.; Keckes, J.; Maier, G.; Timmann, A.; Roth, S.V.; Tsuru, T.; et al. Characterization of Mo/Si soft X-ray multilayer mirrors by grazing-incidence small-angle X-ray scattering. Vacuum 2009, 84, 19–25. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Stepanov, S.A.; Kohler, R. Effect of roughness correlations in multilayers on Bragg peaks in X-ray diffuse scattering. Physica B 1996, 221, 34–43. [Google Scholar] [CrossRef]
- Medvedev, R.V.; Nikolaev, K.V.; Zameshin, A.A.; Ijpes, D.; Makhotkin, I.A.; Yakunin, S.N.; Yakshin, A.E.; Bijkerk, F. Low-energy ion polishing of Si in W/Si soft X-ray multilayer structures. J. Appl. Phys. 2019, 126, 10. [Google Scholar] [CrossRef]
- Geer, R.E.; Qadri, S.B.; Shashidhar, R.; Thibodeaux, A.F.; Duran, R.S. Off-specular x-ray scattering in Langmuir-Blodgett multilayers of a liquid-crystalline polymer. Phys. Rev. E 1995, 52, 671–680. [Google Scholar] [CrossRef]
Temperature (°C) | Period Thickness d (nm) | ΔdNiV(nm) | ΔdB4C (nm) | ΔσNiV-on-B4C (nm) | ΔσB4C-on-NiV (nm) | |
---|---|---|---|---|---|---|
As-Deposited | Annealed | |||||
70 | 3.0483 | 3.0565 | 0.0031 | 0.0051 | −0.0049 | −0.0032 |
140 | 3.0796 | 3.0954 | 0.0066 | 0.0092 | −0.0089 | −0.0067 |
220 | 3.0816 | 3.1068 | 0.0108 | 0.0143 | −0.0130 | −0.0109 |
290 | 3.0593 | 3.0930 | 0.0146 | 0.0191 | −0.0163 | −0.0143 |
340 | 3.0664 | 3.1219 | 0.0250 | 0.0306 | −0.0214 | −0.0186 |
Time (min) | Period Thickness d (nm) | ΔdNiV (nm) | ΔdB4C (nm) | ΔσNiV-on-B4C (nm) | ΔσB4C-on-NiV (nm) | |
---|---|---|---|---|---|---|
As-Deposited | Annealed | |||||
10 | 3.0613 | 3.1125 | 0.0228 | 0.0284 | −0.0045 | −0.0033 |
30 | 3.0448 | 3.0978 | 0.0237 | 0.0293 | −0.0113 | −0.0092 |
60 | 3.0664 | 3.1219 | 0.0250 | 0.0306 | −0.0214 | −0.0186 |
120 | 3.0838 | 3.1445 | 0.0276 | 0.0331 | −0.0415 | −0.0381 |
Sample | Grain Size (nm) |
---|---|
340 °C for 10 min | 1.0834 |
340 °C for 30 min | 1.4159 |
340 °C for 60 min | 1.4961 |
340 °C for 120 min | 2.5909 |
Annealing Conditions | ξ//-IMD (nm) | ξ//-GISAXS (nm) | Δξ// (nm) |
---|---|---|---|
70 °C for 60 min | 14.7924 | 14.7247 | −0.0677 |
140 °C for 60 min | 14.5756 | 14.5321 | −0.0435 |
220 °C for 60 min | 14.3405 | 14.2961 | −0.0444 |
290 °C for 60 min | 14.0536 | 14.0190 | −0.0346 |
340 °C for 60 min | 12.7641 | 12.3337 | −0.4304 |
340 °C for 10 min | 14.1477 | 14.0571 | −0.0906 |
340 °C for 30 min | 13.8127 | 13.6325 | −0.1802 |
340 °C for 60 min | 12.7641 | 12.3337 | −0.4304 |
340 °C for 120 min | 10.6655 | 10.3728 | −0.2927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.; Wei, Z.; Jiang, H.; Ni, H.; Song, W.; He, J.; Xiang, S.; Wang, Z.; Zhang, Z.; Zhang, Z. Effect of Annealing on Stress, Microstructure, and Interfaces of NiV/B4C Multilayers. Coatings 2024, 14, 513. https://doi.org/10.3390/coatings14040513
Chang C, Wei Z, Jiang H, Ni H, Song W, He J, Xiang S, Wang Z, Zhang Z, Zhang Z. Effect of Annealing on Stress, Microstructure, and Interfaces of NiV/B4C Multilayers. Coatings. 2024; 14(4):513. https://doi.org/10.3390/coatings14040513
Chicago/Turabian StyleChang, Chenyuan, Zhenbo Wei, Hui Jiang, Hangjian Ni, Wentao Song, Jialian He, Simeng Xiang, Zhanshan Wang, Zhe Zhang, and Zhong Zhang. 2024. "Effect of Annealing on Stress, Microstructure, and Interfaces of NiV/B4C Multilayers" Coatings 14, no. 4: 513. https://doi.org/10.3390/coatings14040513
APA StyleChang, C., Wei, Z., Jiang, H., Ni, H., Song, W., He, J., Xiang, S., Wang, Z., Zhang, Z., & Zhang, Z. (2024). Effect of Annealing on Stress, Microstructure, and Interfaces of NiV/B4C Multilayers. Coatings, 14(4), 513. https://doi.org/10.3390/coatings14040513