Chemical Vapor Deposition of Tantalum Carbide in the TaBr5–CCl4–Cd System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Deposition Equipment
2.2. Sample Preparation and Coating Conditions
2.3. Methods of Coating Analysis
3. Results and Discussion
3.1. Features of Tantalum Carbide Deposition at Early Stages (Up to 30 min)
3.2. Deposition of Tantalum Carbide Coatings over 30 min
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frisk, K.; Fernández Guillermet, A. Gibbs energy coupling of the phase diagram and thermo-chemistry in the tantalum-carbon system. J. Alloys Compd. 1996, 238, 167–179. [Google Scholar] [CrossRef]
- Weisenberger, H.; Lengauer, W.; Ettmayer, P. Reactive diffusion and phase equilibria in the V-C, Nb-C, Ta-C and Ta-N systems. Acta Mater. 1998, 46, 651–666. [Google Scholar] [CrossRef]
- Gusev, A.I.; Kurlov, A.S.; Lipatnikov, V.N. Atomic and vacancy ordering in carbide ζ-Ta4C3−x (0.28 ≤ x ≤ 0.40) and phase equilibria in the Ta–C system. J. Solid State Chem. 2007, 180, 3234–3246. [Google Scholar] [CrossRef]
- Shabalin, I.L. Tantalum Carbides. In Ultra-High Temperature Materials II; Springer: Dordrecht, The Netherlands, 2019; pp. 9–144. [Google Scholar] [CrossRef]
- Weinberger, R.C.; Thompson, G.B. A computational search for the zeta phase in the tantalum carbides. J. Am. Ceram. Soc. 2019, 102, 1454–1462. [Google Scholar] [CrossRef]
- Shvab, S.A.; Egorov, F.F. Structure and Some Properties of Sintered Tantalum Carbide. Powder Metall. Met. Ceram. 1982, 21, 894–897. [Google Scholar] [CrossRef]
- Li, G.D.; Xiong, X.; Huang, K.L. Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites. Trans. Nonferrous Met. Soc. China 2009, 19, 689–695. [Google Scholar] [CrossRef]
- Chen, Z.K.; Wu, Y.; Chen, Y.H.; Wang, H.R.; Zeng, Y.; Xiong, X. Preparation and oxidation behavior of Cf/C–TaC composites. Mater. Chem. Phys. 2020, 254, 123428. [Google Scholar] [CrossRef]
- Liu, H.; Liu, L.; Ye, F.; Zhang, Z.; Zhou, Y. Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: Effects of sintering temperatures. J. Eur. Ceram. Soc. 2012, 32, 3617–3625. [Google Scholar] [CrossRef]
- Hong, T.E.; Kim, T.-H.; Jung, J.-H.; Kim, S.-H.; Kim, H. TaCx Thin Films Prepared by Atomic Layer Deposition as Diffusion Barriers for Cu Metallization. J. Am. Ceram. Soc. 2014, 97, 127–134. [Google Scholar] [CrossRef]
- Wang, Z.; DelaCruz, S.; Tsai, D.-S.; Maboudian, R. W/TaC/SiC sandwich stack for high temperature applications. Ceram. Int. 2019, 45, 22292–22297. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, J.; Peng, S. Synthesis and evaluation of TaC nanocrystalline coating with excellent wear resistance, corrosion resistance, and biocompatibility. Ceram. Int. 2021, 47, 20032–20044. [Google Scholar] [CrossRef]
- Lv, D.; Chen, Z.; Xiong, X.; Wang, Y.; Sun, W.; Li, Z. Microstructure and tribological property of C-TaC coatings on graphite prepared by chemical vapor deposition. Chin. J. Mater. Res. 2016, 30, 690–696. [Google Scholar]
- Desmaison-Brut, M.; Alexandre, N.; Desmaison, J. Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C). Mater. J. Eur. Ceram. Soc. 1997, 17, 1325–1334. [Google Scholar] [CrossRef]
- Leon, N.D.; Wang, B.; Weinberger, C.R.; Thompson, G.B. Elevated Temperature Deformation Mechanisms in Ta2C. Microc. Microanal. 2011, 17, 1898–1899. [Google Scholar] [CrossRef]
- Hackett, K.; Verhoef, S.; Cutler, R.A.; Shetty, D.K. Phase constitution and mechanical properties of carbides in the Ta-C system. J. Am. Ceram. Soc. 2009, 92, 2404–2407. [Google Scholar] [CrossRef]
- Sygnatowicz, M.; Cutler, R.A.; Shetty, D.K. ζ-Ta4C3−x: A High Fracture Toughness Carbide with Rising-Crack-Growth-Resistance (R-Curve) Behavior. J. Am. Ceram. Soc. 2015, 98, 2601–2608. [Google Scholar] [CrossRef]
- Sevastyanov, V.G.; Simonenko, E.P.; Ignatov, N.A.; Ezhov, Y.S.; Kuznetsov, N.T. Low-temperature synthesis of TaC through transparent tantalum-carbon containing gel. Inorg. Mater. 2010, 46, 495–500. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, S.M.; Yoon, S.G.; Woo, C.H.; Kim, J.I.; Lee, H.-G.; Park, J.Y.; Kim, W.-J. Chemical vapor deposition of tantalum carbide from TaCl5-C3H6-Ar-H2 system. J. Korean Ceram. Soc. 2016, 53, 597–603. [Google Scholar] [CrossRef]
- Nakamura, D.; Suzumura, A.; Shigetoh, K. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth. Appl. Phys. Lett. 2015, 106, 082108. [Google Scholar] [CrossRef]
- Nakamura, D.; Shigetoh, K.; Suzumura, A. Tantalum carbide coating via wet powder process: From slurry design to practical process tests. J. Eur. Ceram. Soc. 2017, 37, 1175–1185. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, J.; Chang, P.; Chiu, H. Chemical vapor deposition of tantalum carbide and carbonitride thin films from Me3CE=Ta(CH2CMe3)3 (E = CH, N). J. Mater. Chem. 2003, 13, 365–369. [Google Scholar] [CrossRef]
- Lee, Y.; Kang, P.; Jung, S.; Bae, S.; Kim, J.; Lee, M.; Shin, D. Effect of carbon on the growth of TaC crystal derived from organometallic precursors. J. Korean Ceram. Soc. 2021, 58, 62–68. [Google Scholar] [CrossRef]
- Ishizaka, T. Method of Plasma Enhanced Atomic Layer Deposition of TaC and TaCN Films Having Good Adhesion to Copper. US7407876B2, 5 August 2008. Available online: https://patents.google.com/patent/US7407876 (accessed on 20 April 2024).
- Powell, C.F.; Campbell, I.E.; Gonser, B.W. The Deposition of Tantalum and Columbium from their Volatilized Halides. J. Electrochem. Soc. 1948, 93, 258–265. [Google Scholar] [CrossRef]
- Kumar, S.; Mondal, S.; Kumar, A.; Ranjan, A.; Prasad, N.E. Chemical Vapor Deposition of TaC/SiC on Graphite Tube and Its Ablation and Microstructure Studies. Coatings 2017, 7, 101. [Google Scholar] [CrossRef]
- Kondo, M. Tantalum Carbide-Coated Carbon Material and Manufacturing Method for Same. EP2520691A1, 7 November 2012. Available online: https://patents.google.com/patent/EP2520691A1 (accessed on 20 April 2024).
- Levy, R.A. Investigation of Chemically Vapor Deposited Tantalum for Medium Caliber Gun Barrel Protection. SERDP Project WP-1425. 2008. Available online: https://www.serdp-estcp.org/Program-Areas/Weapons-Systems-and-Platforms/Surface-Engineering-and-Structural-Materials/Coatings/WP-1425/WP-1425#factsheet-5002-result (accessed on 20 April 2024).
- Hoshino, Y.; Takeda, O.; Hoshi, M.; Sato, Y. Production of Tantalum Fine Powder by Reduction of Tantalum Chloride with Zinc Vapor. ECS Trans. 2009, 33, 247–253. [Google Scholar] [CrossRef]
- Park, I.; Okabe, T.H.; Lee, O.; Lee, C.R.; Waseda, Y. Semi-Continuous Production of Tantalum Powder by Electronically Mediated Reaction (EMR). Mater. Trans. 2002, 43, 2080–2086. [Google Scholar] [CrossRef]
- Goncharov, O.Y.; Treshchev, S.Y.; Ladyanov, V.I.; Faizullin, R.R.; Guskov, V.N.; Baldaev, L.K. Tantalum chemical vapor deposition on substrates from various materials. Inorg. Mater. 2017, 53, 1064–1068. [Google Scholar] [CrossRef]
- Goncharov, O.Y.; Sapegina, I.V.; Faizullin, R.R.; Baldaev, L.K. Tantalum chemical vapor deposition on steel and tungsten substrates in the TaBr5-Cd-He system. Surf. Coat. Technol. 2019, 377, 124893. [Google Scholar] [CrossRef]
- Kalandarishvili, A.G.; Mikheev, V.K.; Chilingarishvili, P.D. Experimental Determination of the Saturated Vapor Pressure of Magnesium and Cadmium. TVT 1988, 26, 1016–1018. [Google Scholar]
- Goncharov, O.Y. Thermodynamics of the Chemical Vapor Deposition of Carbides in the System TaBr5–CCl4–Cd. Inorg. Mater. 2001, 37, 237–242. [Google Scholar] [CrossRef]
- Goncharov, O.Y.; Faizullin, R.R.; Guskov, V.N.; Baldaev, L.K. Equipment for chemical hydrogen-free gas-phase deposition of oxygen-free refractory materials. News Acad. Eng. Sci. A. M. Prokhorov 2015, 4, 3–9. Available online: https://elibrary.ru/item.asp?id=25051153 (accessed on 20 April 2024).
- Goncharov, O.Y.; Faizullin, R.R.; Guskov, V.N.; Baldaev, L.K. Dispenser-Mixer. RU2640369, 22 December 2016. Available online: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2640369&TypeFile=html (accessed on 20 April 2024).
- Goncharov, O.Y.; Faizullin, R.R.; Guskov, V.N.; Baldaev, L.K. Dosing Saturator. RU158289, 22 May 2015. Available online: https://www1.fips.ru/fips_servl/fips_servlet?DB=RUPM&DocNumber=158289&TypeFile=html (accessed on 20 April 2024).
- Goncharov, O.Y.; Faizullin, R.R.; Guskov, V.N.; Baldaev, L.K. Cassette Sample Feeder. RU173040, 8 August 2017. Available online: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPM&DocNumber=173040&TypeFile=html (accessed on 20 April 2024).
- Nefedov, V.I. X-ray Photoelectron Spectroscopy of Chemical Compounds; Khimiya: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Morgan, D.J. Comments on the XPS Analysis of Carbon Materials. C 2021, 7, 51. [Google Scholar] [CrossRef]
- Briggs, D.; Grant, J.T. (Eds.) Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; IMPublications: Chichester, UK; SurfaceSpectra: Manchester, UK, 2003. [Google Scholar] [CrossRef]
- Kim, H.M.; Shim, K.B.; Lee, J.M.; Lee, H.I.; Choi, K. Thermodynamic analysis on the chemical vapor deposition process of Ta-C-H-Cl system. J. Ceram. Proces. Res. 2018, 19, 519–524. [Google Scholar] [CrossRef]
- Barna, P.B.; Adamik, M. Fundamental Structure Forming Phenomena of Polycrystalline Films and the Structure Zone Models. Thin Solid Films 1998, 317, 27–33. [Google Scholar] [CrossRef]
- Fries, R.J.; Wahman, L.A. Effect of Stoichiometry on the Thermal Expansion of TaCx. J. Am. Ceram. Soc. 1967, 50, 475–477. [Google Scholar] [CrossRef]
- Kumar, S.; Shekar, K.C.; Jana, B.; Manocha, L.M.; Prasad, N.E. C/C and C/SiC Composites for Aerospace Applications. In Aerospace Materials and Material Technologies; Part of the series Indian Institute of Metals Series; Springer: Singapore, 2016; pp. 343–369. [Google Scholar]
- Loennberg, B. Thermal-expansion studies on the subcarbides of group V and VI transition metals. J. Less-Comm. Met. 1986, 120, 135–146. [Google Scholar] [CrossRef]
- Shabalin, I.L. Molybdenum. In Ultra-High Temperature Materials Vol 1; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Yu, R.K.; Kablov, E.N.; Kozlov, E.V.; Koneva, N.A.; Povarova, K.B.; Grabovetskaya, G.P.; Buntushkin, V.P.; Bazyleva, O.A.; Muboyadzhyan, S.A.; Budinovskii, S.A. Struktura i Svoystva Intermetallidnykh Materialov s Nanofaznym Uprochneniyem (Structure and Properties of Intermetallic Materials with Nanophase Hardening); MISiS Publishing House: Moscow, Russia, 2008; 328p. (In Russian) [Google Scholar]
- Kruglov, A.B.; Kruglov, V.B.; Osintsev, A.V. Measurement of the thermal coefficient of linear expansion on a speckle-interferometric dilatometer. Instrum. Exp. Tech. 2016, 59, 156–158. [Google Scholar] [CrossRef]
- American Iron and Steel Institute. High-Temperature Characteristics of Stainless Steel. A Designers’ Handbook Series No 9004; Toronto, Ont. Nickel Institute. 2020. Available online: https://nickelinstitute.org/media/4657/ni_aisi_9004_hightemperaturecharacteristics.pdf (accessed on 20 April 2024).
- Miettinen, J. Thermodynamic assessment of Fe-Cr-Ni system with emphasis on the iron-rich corner. Calphad 1999, 23, 231–248. [Google Scholar] [CrossRef]
- Clouet, E. Modeling of Nucleation Processes. In ASM Handbook: Fundamentals of Modeling for Metals Processing; ASM International 22A: Materials Park, OH, USA, 2009; pp. 203–219. Available online: http://emmanuel.clouet.free.fr/Articles/Clouet2009_ASM.pdf (accessed on 20 April 2024).
- Mattsson, T.R.; Sandberg, N.; Armiento, R.; Mattsson, A.E. Quantifying the anomalous self-diffusion in molybdenum with first-principles simulations. Phys. Rev. B 2009, 80, 224104. [Google Scholar] [CrossRef]
- Jena, A.K.; Chaturvedi, M.C. The role of alloying elements in the design of nickel-base superalloys. J. Mater. Sci. 1984, 19, 3121–3139. [Google Scholar] [CrossRef]
- Maksimkin, O.P. Phase diffusionless γ-α transformations and their effect on physical, mechanical and corrosion properties of austenitic stainless steels irradiated with neutrons and charged particles. IOP Conf. Ser. Mater. Sci. Eng. 2016, 130, 012002. [Google Scholar] [CrossRef]
- Kopas, P.; Blatnicky, M.; Sága, M.; Vasko, M. Identification of Mechanical Properties of Weld Joints of AlMgSi07.F25 Aluminium Alloy. Metalurgija 2017, 56, 99–102. [Google Scholar]
- Rempel, A.A. Atomic and vacancy ordering in nonstoichiometric carbides. Physics-Uspekhi 1996, 39, 31–56. [Google Scholar] [CrossRef]
Deposition Parameters 1 | Reagents | ||
---|---|---|---|
TaBr5 | Cd | CCl4 | |
pi, Pa | 533–933 | 1066–1600 | 1466–1866 |
Gi, ml/s | 2–5 | 3–8 | 0.3–1 |
Ci × 10−3, mol/h | 1.7–2.5 | 2.4–4.6 | 0.6–3.1 |
t, h | 0.5–4 | ||
Ta/Cd/C | 1/(1 ÷ 2)/(0.5 ÷ 1.2) |
Sample/Deposition Time (min) | Ta, at.% | C, at.% | Cr, at.% | Fe, at.% | Ni, at.% | O, at.% |
---|---|---|---|---|---|---|
Mo/30 | 26 (43) | 53 (45) | 21 (12) | |||
12Kh18N10T/30 | 18 (36) | 74 (54) | 0 (2) | 8 (8) | ||
ZhC6/30 | 18 (35) | 61 (45) | 2 (4) | 19 (16) | ||
Mo/60 | 39 (44) | 47 (48) | 3 (4) | 3 (1) | 7 (3) | |
ZhC6/60 | 43 (51) | 44 (39) | 5 (6) | 8 (3) | ||
ZhC6/240 | 30 (46) | 57 (46) | 2 (2) | 1 (1) | 1 (1) | 8 (4) |
Substrate | a, Å | Non-Stoichiometry Degree | Ta/C GDA Estimation |
---|---|---|---|
12Kh18N10T/30 | 4.408 | TaC0.72 | 1/0.33 |
Mo/30 | 4.414 | TaC0.74 | 1/0.5 |
Mo/60 | 4.409 | TaC0.72 | 1/0.52 |
ZhC6/30 | 4.438 | TaC0.87 | 1/0.52 |
ZhC6/60 | 4.414 | TaC0.74 | 1/0.54 |
ZhC6/240 | 4.435 | TaC0.86 | 1/0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krenicky, T.; Goncharov, O.Y.; Kuchar, J.; Sapegina, I.V.; Kudlacek, J.; Faizullin, R.R.; Korshunov, A.I.; Cerny, D. Chemical Vapor Deposition of Tantalum Carbide in the TaBr5–CCl4–Cd System. Coatings 2024, 14, 547. https://doi.org/10.3390/coatings14050547
Krenicky T, Goncharov OY, Kuchar J, Sapegina IV, Kudlacek J, Faizullin RR, Korshunov AI, Cerny D. Chemical Vapor Deposition of Tantalum Carbide in the TaBr5–CCl4–Cd System. Coatings. 2024; 14(5):547. https://doi.org/10.3390/coatings14050547
Chicago/Turabian StyleKrenicky, Tibor, Oleg Y. Goncharov, Jiri Kuchar, Irina V. Sapegina, Jan Kudlacek, Ravil R. Faizullin, Alexander I. Korshunov, and Daniel Cerny. 2024. "Chemical Vapor Deposition of Tantalum Carbide in the TaBr5–CCl4–Cd System" Coatings 14, no. 5: 547. https://doi.org/10.3390/coatings14050547
APA StyleKrenicky, T., Goncharov, O. Y., Kuchar, J., Sapegina, I. V., Kudlacek, J., Faizullin, R. R., Korshunov, A. I., & Cerny, D. (2024). Chemical Vapor Deposition of Tantalum Carbide in the TaBr5–CCl4–Cd System. Coatings, 14(5), 547. https://doi.org/10.3390/coatings14050547