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Abstract: Public awareness of preventing pathogenic microorganisms has significantly increased.
Among numerous microbial prevention methods, the deep-ultraviolet (DUV) disinfection technology
has received wide attention by using the nitride-based light-emitting diode (LED). However, the light
extraction efficiency of DUV LEDs and the utilization rate of emitted DUV light are relatively low
at the current stage. In this study, a light distribution design (referred to as the reflective system)
was explored to enhance the utilization of emitted DUV from LEDs, leading to successful and
efficient surface and air disinfection. Optical power measurements and microbial inactivation tests
demonstrated an approximately 79% improvement in average radiation power density achieved
by the reflective system when measured at a 5 cm distance from the irradiation surface. Moreover,
a statistically significant enhancement in local surface disinfection was observed with low electric
power consumption. The reflective system was integrated into an air purifier and underwent air
disinfection testing, effectively disinfecting a 3 m3 space within ten minutes. Additionally, a fluorine
resin film at the nanolevel was developed to protect the light module from oxidation, validated
through a 1200 h accelerated aging test under humid conditions. This research offers valuable
guidance for efficient and energy-saving DUV disinfection applications.

Keywords: LED application; optical design; nitride-based semiconductor; UVC; microbial prevention

1. Introduction

Over the last two decades, there have been several instances of Public Health Emer-
gency of International Concern (PHEIC) caused by viral infections, such as H1N1 influenza
virus, Zaire Ebola virus, Zika virus, and the severe acute respiratory syn-drome coronavirus
2 (SARS-CoV-2) [1–4]. The majority of these viruses were transmitted by aerosols or direct
inoculation from contact with infected surfaces, and they caused severe damage to the
global economy and healthcare. To effectively reduce viral spread and bacterial reproduc-
tion, various disinfection approaches have been used, including ozone, chemical reagents,
and ultraviolet (UV) [5]. While these approaches have proven effective in reducing micro-
bial activity, it is crucial to acknowledge the potential drawbacks associated with certain
disinfection agents. Notably, the approaches of ozone and chloric reagents might result in
by-products and thus potential risks for the environment and human health. Consequently,
it becomes imperative to strike a balance between the efficacy of the disinfection process
and the potential adverse impacts on our surroundings and well-being. Striking this bal-
ance is essential to ensure that our endeavors to combat viral and bacterial threats do not
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inadvertently contribute to broader challenges in environmental sustainability and public
health. Encouragingly, UV technology could be more eco-friendly thanks to the absence
of by-products [6]. It has been reported that deep-ultraviolet (DUV), with a wavelength
ranging from 200 nm to 280 nm, can be absorbed by microbial DNA and RNA. DUV
radiation plays an important role in the disruption of genetic material. It can excite two
adjacent thymine molecules in DNA or uracil molecules in RNA, causing the breakage of
the hydrogen bonds between their original base pairs. This process results in the formation
of thymine dimers or uracil dimers, respectively. The accumulation of such dimers can dis-
rupt DNA/RNA replication, ultimately resulting in the inactivation of microorganisms [7].
It is reported that the DNA and RNA of microorganisms have an obvious peak absorption
for UV ranging from 255 nm to 285 nm [8], making them more sensitive to absorbing UV
photons. The DUV radiation dose for different microbial inactivation levels was widely
investigated. In the case of SARS-CoV-2, it has been reported that ≥16.9 mJ/cm2 could
completely inactivate the wildtype of SARS-CoV-2 at a multiplicity of infection (MOI) of
1000 [9]. Moreover, the mutations of SARS-CoV-2 (that is, Omicron) have significantly
higher UV resistance and therefore require a higher UV radiation dose compared to the
wildtype [10,11]. For effective and rapid disinfection against microorganisms, a DUV light
source with high light output power, uniformity, and virucidal efficacy is indispensable.
Currently, the light sources in the field of microbial inactivation include mercury lamps,
excimer lamps, cathodoluminescent (CL) chips, and DUV light-emitting diodes (LEDs) [12].
Compared to traditional mercury lamps, DUV LEDs are chip-scale and have the advantages
of narrow-band wavelength, eco-friendliness, high-speed switching capabilities, etc. [13].
It would be the trend in the future for a UV light source with outstanding scientific and
practical values.

The DUV LEDs are mostly fabricated by aluminum gallium nitride (AlGaN) materials
with quantum structure, and their performance could be evaluated by external quantum
efficiency (EQE), light extraction efficiency (LEE), and wall-plug efficiency (WPE). However,
the EQE and WPE of DUV LEDs still remain ≤10% due to current fabrication technology
(around 40% for traditional blue light-emitting diodes) [14,15]. These parameters are closely
related to the sealing material and electrode material. Meanwhile, the high aluminum
composition in AlGaN quantum wells would result in a significant optical anisotropy and
the subsequent high-portion transverse magnetic (TM) of the emitted light. This part of
light tends to propagate laterally within the quantum wells and is hard to extract effectively
for practical usage. Therefore, the low efficiency is mainly due to this part of lateral light
loss [14]. Thus, related technological breakthroughs are required to face the challenges men-
tioned for improving the efficiency of DUV LED. Attempts such as the high-temperature
annealing method in the material growth process and solid–liquid hybrid-state organic
lenses in the packaging process have been investigated [16,17]. Nevertheless, the current
performance of a single DUV LED chip on the irradiation area and uniformity still need a
huge enhancement to meet the requirements in the practical application of disinfection.

Multi-LED chip integration with light distribution design is an expeditious method
to form a large irradiation area with high uniformity. Liu et al. integrated DUV LEDs
into an array to form a light module instead of a single chip, and this light module had
an efficient inactivation result on SARS-CoV-2 [6]. With the integration of DUV LEDs, the
electric energy consumption would increase. At the same time, the lateral light loss from
each single LED chip would converge, resulting in much more optical power loss from the
light module. Additionally, arranging LED chips together would not directly cause even
DUV irradiation. For instance, the emission of LEDs follows a Lambertian emission pattern.
The light output power (LOP) might be different between the central and edge of LED
chips, thus requiring a light distribution design to optimize uniformity. The integration of
multiple LEDs has not changed the irradiation distribution trend of the LEDs. A significant
portion of ultraviolet energy fails to concentrate in the direct irradiation area of the light
source. Therefore, optimized DUV disinfection by light distribution design is vital for
improving optical efficiency and saving energy [18].
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In this work, an optimized reflective system for a multi-chip DUV light module was
designed. Comprehensive optical simulations and optical power tests were conducted to
evaluate the efficiency and reliability of the optimized reflective system compared to those
without the system. Subsequently, DUV disinfection tests for two different microorganisms
were carried out on the local surface and in the air. Ultimately, a protective film was
involved to extend the life span of the optimized reflective system, and its protection ability
was confirmed by accelerated aging.

2. Materials and Methods

The optical simulations were conducted using the Monte Carlo ray-tracing method [19].
The DUV LED light module was constructed with 64 DUV LEDs with a 275 nm wavelength,
arranged in an 8 × 8 matrix with an arrangement period of 13.5 mm (Figure 1). The LED
chips (3.5 mm × 3.5 mm × 1.47 mm for length, width, and height, respectively) comprised
n-AlGaN, multi-quantum wells, p-AlGaN, and sapphire substrates. A reflective system
(12 cm × 12 cm for length and width, made of aluminum) was studied and designed to
enhance the light efficiency. There were 64 designed structures in the reflective system,
and the internal sidewall of each designed structure could have an influence on light
efficiency enhancement. Before the optical simulations, a preliminary test was conducted to
determine the basic structural parameters of the reflective system. The surface reflectance
of the sidewall was set to 90% at the 275 nm wavelength, corresponding to the reflectance
of aluminum [20]. A 10 cm × 10 cm planar surface was used to receive the UV irradiation,
and the distance between the light module and this surface was set to 10 cm. The optical
power of each LED was set to 50 mW, and the combinations between different incline
angles and radii were investigated. Then, the light attenuation at different distances was
investigated. The light module without the designed reflective system was defined as
‘Control’ in this study.
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To assess the optical performance of the fabricated DUV light module with and without
the designed reflective system, optical power and far-field distribution were measured by
an optoelectronic analyzer (THORLABS PM100D). The aluminum reflective system was
manufactured by precision machining. The internal sidewalls of the designed structures in
the reflective system were mechanically polished to achieve high reflectivity. Additionally,
DUV LEDs with a typical flip–chip structure would cause uneven thermal conduction,
resulting in a poor thermal dissipation effect [21]. A thermal dissipation structure (such
as air or water cooling) could be a solution to address this issue. Thus, a water-cooling
system was installed to improve the thermal dissipation, and this cooling system started to
work when the temperature of the module was above 28 ◦C, preventing the damage from
overheating (Figure 2a). The material of the connection between the LED chip board and
the water-cooling system was silicon grease, thanks to its great thermal conductivity. The
optical power of the DUV light module was regulated by changing the electrical power.
During the measurement, the distance between the light module and the optoelectronic
analyzer was set to 5 cm based on the optical simulation result, and an irradiation area of
10 cm × 10 cm was monitored.
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Figure 2. (a) Schematic diagram of the DUV light module, including the power supply, cooling
system, DUV LED, and reflective system. (b) Light efficiencies changed with different incline angles
(that is, the θ in Figure 1). (c) Schematic illustration of the optimization of the DUV light module
by the reflective system. (d) Simulated far-field diagram with and without the reflective system.
(e) Simulated UV irradiation distribution at different action distances (10 cm, 5 cm, and 3 cm).
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The microbial-inactivation experiments were carried out by the Guangdong Institute
of Microbiology (Guangzhou, China), and the inactivation effect of the DUV light module
has been evaluated subsequently. The standards and methods of testing were based
on the Technical Standard for Disinfection (Ministry of Health, Edition 2002), Section 2
(2.1.5.4) [22]. The test temperature was 23 ◦C, and the distance between the light module
and microorganisms was 5 cm. Staphylococcus aureus (ATCC 6538) was used as the test
microorganism under different test conditions (20, 40, 60, 80, and 100% of the electrical
power of the light module). The DUV irradiation time could be precisely controlled by
a digital timer (one or two seconds were set in this study). The average colony-forming
units (CFU) of positive controls and testing groups were recorded, and the killing log
value and killing rate of organisms were calculated. The killing log refers to the difference
in the 10-based logarithmic count of colonies after disinfection compared to that of the
untreated group.

Furthermore, an air fan and the light module, along with the reflective system, were
used to form an air purifier with a flowing rate of 200 m3 per hour. Subsequently, an air
disinfection test at room temperature was carried out by the Xiamen Intelligent Health
Research Institute. A three-cubic-meter test room (about 1.25 m × 1.25 m × 2 m for the
length, width, and height, respectively) was used to examine the treatments. E. coli was
used and cultivated in the Luria Broth nutrient agar. Before the DUV disinfection, the E.
coli solution was sprayed by the TK-3 microbial aerogel generator at a concentration of
about 106 CFU/mL, followed by a 5 min circulation and a 5 min settle down. During the
DUV disinfection of air, 40% of the electrical power of the light module was set, and a
series of irradiation times (5, 10, 15, 20, and 30 min, respectively) was investigated. After
that, the purified air was collected by a six-stage sieve impact air microbiological sampler
(FA-1) placed at the center of the test room with a one-meter height. This air collection was
conducted at a flow rate of 28.3 L/min for 3 min for each treatment. Then, the collected
samples were subsequently incubated at 37 ◦C for 24 h prior to the CFU calculation. The
calculation results eliminated the influence of natural death factors on microorganisms in
the air. It could be demonstrated by the following formula:

Nt(%) =
Vo − Vt

Vo
× 100 (1)

where Nt is the natural death rate, Vo is the bacterial content of the air before the test of the
control group, and Vt is the bacterial content of the air after the test of the control group.
The microbial disinfection rate could be calculated using the following formula:

Kt(%) =
V1 × (1 − Nt)− V2

V1 × (1 − Nt)
× 100 (2)

where V1 is the bacterial content of the air before the test of the experimental group and V2 is
the bacterial content of the air after the test of the experimental group. All DUV disinfection
tests for surface and air were performed in triplicate, and the significant differences were
analyzed by t-tests using GraphPad Prism.

The material aluminum was used to construct the reflective system, but this material
is easy to oxidize and corrode in an atmospheric environment. Thus, a fluorine resin (T6,
provided by Shanghai FluoroLuster Materials Co., Ltd. (Shanghai, China), with a refractive
index of 1.34 under the DUV region) was selected to make a protective film protecting
potential oxidation and corrosion of aluminum material, and an accelerated aging test was
conducted to examine its ability subsequently.

Before the accelerated aging test, two groups (protected and non-protected) with six
pieces of quartz sheet (the size of each quartz sheet was 2.0 cm × 2.0 cm × 0.1 cm) were
set, and one side of each piece was coated with a 200 nm aluminum layer by magnetron
sputtering. The fluorine resin was dissolved in the ether solution and coated on the
aluminum-containing surface of each quartz sheet by spinning coating. Then, the ether
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solution was volatilized by heating at 120 ◦C for one hour, resulting in a protective film
with a thickness of about 200~500 nm. All samples were placed at a humidity of 88%
and a temperature of 297 K for the accelerated aging test. The reflectivity of each sample
was measured by a spectrometer (Lambda 850) provided by PerkinElmer Inc. (Waltham,
MA, United States), and all measurements were calibrated with the standard aluminum
mirror (Φ38 mm, provided by Guangzhou Jingyi Optoelectronic Technology Co., Ltd.
(Guangzhou, China)).

The data from the disinfection on local surfaces were analyzed by the t-test method.
The data from the disinfection on air were analyzed by a one-way analysis of variance
(ANOVA) at an alpha level (α) of 5%, and significantly different parameters were further
analyzed with Fisher’s least significant difference (LSD).

3. Results
3.1. Preliminary Test

The structures of the DUV light module and the reflective system are shown in Figure 1.
The designed structure in the reflective system was intended to modify the pathway of
the laterally emitted DUV, and the incline angle of the designed structure had a significant
influence on this modification. Thus, the degrees of the incline angle (that is, the θ in
Figure 1) ranging from 0◦ to 75◦ were investigated in a preliminary test. The schematic
diagram of the DUV light module used for the preliminary test and subsequent optical
simulations is shown in Figure 2a. A huge enhancement of the light efficiency (defined
as the ratio of the UV radiation intensity over the module’s projection area to the total
radiation intensity of the light source) for the DUV module was obtained on the receiving
surface when the angle ranged from 60◦ to 75◦ (Figure 2b). Therefore, the bottom radius of
the designed structure was set to 2.6 mm, and the top radius was set to 6 mm with a height
of 7 mm (this resulted in θ = 64.09◦, and this angle was applied in the reflective system
shown in Figure 2c). Additionally, the emitted light from the module could be dramatically
concentrated from both the intensity and divergence angle aspects (Figure 2d). This might
minimize the lateral power loss, ultimately leading to an enhancement in efficiency.

3.2. Optical Simulation and Measurement

In the optical simulation, a significant enhancement in optical power density and
uniformity was obtained thanks to the light distribution design. The enhanced optical
power density was able to reach averages of 21.50, 19.02, and 13.43 mW/cm2 at different
distances of 3, 5, and 10 cm, respectively, in comparison with 17.36, 12.52, and 6.15 mW/cm2

for the control structure (Figure 2e). At a distance of 5 cm, the average radiation power
density of the DUV light module with reflective system was 51.2% higher than the control.
Similarly, at a 3 cm distance, the DUV light module with a reflection system demonstrated
an average radiation power density 23.7% higher than the control. This indicated that
at the irradiation distance commonly used for conventional sterilization applications,
the reflective system significantly enhanced the utilization of the DUV energy, thereby
improving the efficiency and reliability of the sterilization process.

The actual optical power and divergence angle of the fabricated light module were
measured (Figure 3). Thanks to the optimization of the reflective system, the average
optical power was improved from 7.87 mW/cm2 to 14.07 mW/cm2, and the peak intensity
increased from 11 mW/cm2 to 18.8 mW/cm2. The average radiation power density had
approximately a 79% improvement by optical measurement at a distance of 5 cm. In
addition, the divergence angle was reduced from 120◦ to approximately 60◦, resulting in a
substantial reduction in lateral optical power loss. This indicated that the reflective system
could effectively optimize the DUV light module and thus contribute to a high optical
power density, and it might positively contribute to microbial inactivation. In addition, an
irradiance intensity and relative driving power comparison was conducted to verify the
profitability of the reflective system (Table 1). The findings indicate that the UV irradiance
intensity of the reflective system doubled while maintaining the same electrical power
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as the control system. The control system, on the other hand, required an extra 50 W of
electrical power to achieve the equivalent UV irradiance as the reflective system, effectively
doubling the overall electrical power required.
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Table 1. Irradiance intensity and relative driving power tests of the DUV light modules without and
with reflective systems.

Group Distance
(cm)

Irradiance
(mW/cm2)

Current
(A)

Voltage
(V)

Electrical
Power (W)

Control 10 1.7765 0.996 41.823 42
With reflective system 10 3.8535 0.996 41.825 42

Control 10 3.8508 2.122 43.319 92

3.3. Microbial Inactivation Test

The inactivation result (the reduction of ATCC 6538) on the local surface is shown in
Figure 4. The average killing rate improved from approximately 95.8% to 97.3% when the
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test condition was 20% of the electric power, and the killing rate was over 99.99% when the
electric power was greater than 40% of full power. There was no statistically significant
difference between the positive control and the testing group. In addition, a killing log
of approximately 4.9 was obtained under the condition of full electric power after 2 s of
radiation, and the average CFU was reduced to below 40%. It could be demonstrated
that the reflective system-optimized DUV light module could significantly and rapidly
inactivate microorganisms on local surfaces with great reliability.
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Figure 4. The killing rate of ATCC 6538 on the local surface is caused by different DUV irradia-
tions at different electric powers of the light module. Symbol * denotes for a p-value < 0.05 from
the t-test analysis (comparing killing rates with and without the reflective system), and ns means
no significance.

The schematic diagram of the air disinfecting test room is shown in Figure 5a. The DUV
light module effectively inactivated the E. coli in the air flow passing through the purifier
(Figure 5b). A disinfecting rate over 90% was obtained after ten-minute treatment of the
DUV light module, and the disinfecting killing log was able to reach 1.4. The disinfecting
rate became saturated when the irradiation time was extended to thirty minutes. In other
words, a space of three cubic meters could be effectively disinfected within ten minutes
(0.3 cubic-meter effective disinfection per minute) (Figure 5c). It demonstrated that the
optimized DUV light module was efficient in the inactivation of bacteria. Thus, it could play
a significant role in air disinfection, and it could effectively save electric energy or minimize
the time needed for inactivation compared to the traditional DUV light module to achieve
the same inactivation performance. This is of significant importance for improving the
efficiency of preventing the spread of pathogenic microorganisms in indoor environments,
and it could ultimately create a healthier living environment.

3.4. Fabrication and Verification of the Protective Film

The reflective system was made of aluminum, and this material is easy to oxidize
and corrode in an atmospheric environment. Therefore, a nanolevel fluorine resin film
was created in this study. Fluorine resin was selected because it has a relatively high
transmittance within the entire DUV region and great thermal and UV resistance [23]. The
chemical structure of the fluorine resin and the preparation of the protective film are shown
in Figure 6a. The protective film would cause interference phenomena due to its thin
thickness, resulting in either constructive interference or destructive interference. Thus, the
thickness of the films was measured before the accelerated aging test, and the interference
effect was observed by the reflectivity test (Figure 6b). It is expected that the reflected UV
would be enhanced or, at the very least, stay unchanged when it passed through the film.
It depends on the refractive index of this fluorine resin and the thickness of the film. For
simplicity, only the case of a light incident perpendicular to the film was considered. Thus,
a protective film was constructed following the equation below:
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2 × n2 × d +
λ

2
= i × λ (i = 0, 1, 2 · · ·) (3)

where n2 is the refractive index of the fluorine resin, d is the thickness of the film, and λ is
the wavelength of the incident light. Thus, a protective film with a thickness of 154 nm,
256 nm, 359 nm, 461 nm, and 564 nm, respectively, was theoretically ideal for avoiding UV
absorption. In fact, the reflection and transmission of light between two media must be
determined by the Fresnel equations:

r =
n1 − n2

n1 + n2
(4)

t =
2n1

n1 + n2
(5)

R = |r|2 (6)

T =
n2

n1
|t|2 (7)

where r is the reflection coefficient, t is the transmission coefficient, R is the reflectance, and
T is the transmittance.
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DUV irradiation times (all tests were conducted under 40% of the electric power). The symbol ***
denotes a p-value < 0.001 from the ANOVA analysis, and ns means no significance.
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In the accelerated aging test, the reflectivity of the aluminum surface of the non-
protected group decreased dramatically compared to the protected group at a wavelength
of 275 nm (Figure 6c). It decreased approximately 30% compared to its initial condition
after around 1200 h, while the protected group stayed unchanged. Therefore, the fluorine
resin demonstrated a great performance on anti-oxidation, and thus it could contribute to
the aluminum-made reflective system’s ability to work in a humid environment with an
extended lifespan.

4. Conclusions

This work developed a light-field optimization for DUV LEDs and its nanolevel
fluorine resin protective film. This optimization was achieved by a reflective system
and verified by optical measurements and multiple disinfection tests against pathogenic
microorganisms in local surface and air scenarios. An approximately 79% improvement in
the DUV power density was achieved by this reflective system measured at a distance of
5 cm. Subsequently, a high disinfection rate was achieved with local surface disinfection
with low electric power consumption. It demonstrated that the same disinfecting effect
could be obtained with less electric energy and time consumption, resulting in a significant
improvement in efficiency. The reflective system was installed to make an air purifier
to conduct an air disinfection, and a disinfecting rate of up to 95.9% was reached after
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ten minutes when using 40% of full electric power. It demonstrated that the reflective
system-optimized UV light module could have great performance in both local surface
and air disinfection with low electric energy consumption. Furthermore, a fluorine resin
film was fabricated to protect the reflective system from being oxidized, and it was verified
through an acceleration aging test. It prevented about 30% degradation of the reflectivity
of aluminum material after around 1200 h. The optical design developed in this work
effectively improved the utilization rate and reliability of the DUV light emitted from LEDs
and therefore enhanced the disinfection performance in surface and air scenarios. This
work held the promise of contributing to human society by achieving better and more
energy-efficient effects in microbial prevention.
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