Improved Ability to Resist Corrosion of Selective-Laser-Melted Stainless Steel Based on Microstructure and Passivation Film Characteristics
Abstract
:1. Introduction
2. Experiments and Details
3. Results and Discussion
3.1. Structure Characteristics
3.2. Passivation Film Characteristic Tests
3.3. Intergranular Corrosion Tests
3.4. Double-Loop Electrochemical Potentiodynamic Reactivation
3.5. Dynamic Polarization Experiments
4. Conclusions
- (1)
- The ability to resist sensitization of the SLM 304 steel was greater than that of the forging 304 steel at a temperature of 650 °C for 9 h. SLM technology improves the ability to resist sensitization of 304 steel.
- (2)
- The pit corrosion resistance of the forging and SLM 304 steels was weakened by the sensitization treatment, while the pit corrosion resistance of the SLM 304 steel was greater than that of the forging steel. SLM technology optimizes the ability to resist pit corrosion of 304 steel.
- (3)
- The ability to resist corrosion of the passivation film of the SLM 304 steel was greater than that of the forging 304 steel, which affected its corrosion resistance.
- (4)
- Corrosion pits were more easily generated at the interface of the forging and SLM 304 steels. The grain boundary corrosion of the SLM 304 steel intensified, while the melt pool boundary corrosion weakened after the sensitization treatment, resulting in a decrease in pit corrosion resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanko, J.A.; Sibley, A.P.; Fraser, J.M. In situ morphology based defect detection of selective laser melting through inline coherent imaging. J. Mater. Process. Technol. 2016, 231, 488–500. [Google Scholar] [CrossRef]
- Qi, K.; Chang, T.; Shi, Z.; Gu, J.; Li, T.; Li, R. Investigation on electron beam welding of dissimilar wrought/selective laser melting aisi 304 stainless steel plates. Int. J. Mod. Phys. B 2022, 9, 36. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, S.; Zhou, S.W.; Martin, L.; Peter, C.; Qian, M.; Mlian, B.; Xie, Y.M. Topological design and additive manufacturing of porous metals for bone. Biomaterials 2016, 83, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Song, X.P.; Huang, J.K.; Fan, D. Review of functionally graded materials processed by additive manufacturing. China Weld. 2023, 32, 41–50. [Google Scholar]
- Wang, R.; Wang, J.; Lei, L.M.; Yu, S.; Hu, T.; Shuai, S.S.; Xu, S.Z.; Cao, Z.H.; Li, X.P.; Chen, C.Y.; et al. Laser additive manufacturing of strong and ductile Al-12Si alloy under static magnetic field. Mate. Sci. Technol. 2023, 163, 101–112. [Google Scholar] [CrossRef]
- Reichardt, A.; Shapiro, A.A.; Otis, R.; Dillon, P.R.; Borgonia, J.P.; McEnerney, B.W.; Hosemann, P.; Beese, A.M. Advances in additive manufacturing of metal-based functionally graded materials. Int. Mater. Rev. 2020, 66, 1–29. [Google Scholar] [CrossRef]
- Bertocco, A.; Esposito, L.; Aurino, A.; Borrelli, D.; Caraviello, A. Influence of SLM parameters on the compressive behaviour of lattice structures in 17-4PH stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1038, 012035. [Google Scholar] [CrossRef]
- Xiao, Q.; Chen, J.; Lee, H.B.; Jang, C.; Jang, K. Effect of heat treatment on corrosion behaviour of additively manufactured 316L stainless steel in high-temperature water. Corros. Sci. 2023, 210, 110830. [Google Scholar] [CrossRef]
- Yang, J.J.; Wang, Y.; Li, F.Z.; Huang, W.P.; Jing, G.Y.; Wang, Z.M.; Zeng, X.Y. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints. Mater. Sci. Technol. 2019, 35, 1817–1824. [Google Scholar] [CrossRef]
- Macatangay, D.A.; Thomas, S.; Birbilis, N.; Kelly, R.G. Unexpected interface corrosion and sensitization susceptibility in additively manufactured austenitic stainless steel. J. Sc. Eng. 2018, 74, 153–157. [Google Scholar] [CrossRef]
- Laleha, M.; Hughes, A.E.; Xua, W.; Haghdadi, N.; Wang, K.; Cizek, P.; Gibson, I.; Tan, M.Y. On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting. Corros. Sci. 2019, 161, 108189. [Google Scholar] [CrossRef]
- Man, C.; Dong, C.F.; Liu, T.T.; Kong, D.C.; Wang, D.K.; Li, X.G. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl. Surf. Sci. 2019, 467, 193–205. [Google Scholar] [CrossRef]
- Bedmar, J.; Garcia-Rodriguez, S.; Roldan, M.; Torres, B.; Rams, J. Effects of the heat treatment on the microstructure and corrosion behavior of 316 L stainless steel manufactured by laser powder bed fusion. Corros. Sci. 2022, 209, 110777. [Google Scholar] [CrossRef]
- Shipley, H.; McDonnell, D.; Culleton, M.; Coull, R.; Lupoi, R.; O’Donnell, G.; Trimble, D. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int. J. Mach. Tools. Manuf. 2018, 128, 1–20. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting selection guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef]
- Bhavar, V.; Kattire, P.; Patil, V.; Khot, S.; Gujar, K.; Singh, R. A review on powder bed fusion technology of metal additive manufacturing. In Additive Manufacturing Handbook, Proceedings of the 4th International Conference and Exhibition on Additive Manufacturing Technologies-AM-2014, Banglore, India, 1–2 September 2014; CRC Press: Boca Raton, FL, USA, 2017; pp. 251–261. [Google Scholar]
- Hooper, P.A. Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf. 2018, 22, 548–559. [Google Scholar] [CrossRef]
- Calta, N.P.; Wang, J.; Kiss, A.M.; Martin, A.A.; Depond, P.J.; Guss, G.M.; Thampy, V.; Fong, A.Y.; Weker, J.N.; Stone, K.H.; et al. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Rev. Sci. Instrum. 2018, 89, 055101. [Google Scholar] [CrossRef]
- Bidare, P.; Bitharas, I.; Ward, R.M.; Attallah, M.M.; Moore, A.J. Fluid and particle dynamics in laser powder bed fusion. Acta Mater. 2018, 142, 107–120. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, C.; Fang, R.; Zhang, H.; Zhou, H.; Deng, N.; Guo, Z.; Gu, L. Microstructure evolution and corrosion behavior of the novel maraging stainless steel manufactured by selective laser melting. Mater. Charact. 2022, 190, 112078–112090. [Google Scholar] [CrossRef]
- Casati, R.; Lemke, J.; Vedani, M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 2016, 32, 738–744. [Google Scholar] [CrossRef]
- Lu, H.F.; Wang, Z.; Cai, J.; Xu, X.; Luo, K.Y.; Wu, L.J.; Lu, L.Z. Effects of laser shock peening on the hot corrosion behaviour of the selective laser melted Ti6Al4V titanium alloy. Corros. Sci. 2021, 188, 109558. [Google Scholar] [CrossRef]
- Ma, W.; Wang, H.; Wang, Y.; Neville, A. Hua Y Experimental and simulation studies of the effect of surface roughness on corrosion behaviour of x65 carbon steel under intermittent oil/water wetting. Corros. Sci. 2022, 195, 109947. [Google Scholar] [CrossRef]
- Liu, C.T.; Wu, J.K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5% NaCl solution. Carros. Sci. 2007, 49, 2198–2209. [Google Scholar] [CrossRef]
- Shirley, D.A. High-resolution x-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef]
- Haupt, S.; Calinsk, C.; Collisi, I.U.; Hoppe, H.W.; Speckmann, D.; Strehblow, H.H.S. XPS and ISS examinations of electrode surface and passive layers with a specimen transfer in a closed system. Surf. Lnterf. Anal. 1986, 9, 357–365. [Google Scholar] [CrossRef]
- Yang, J.; Zou, H.; Li, X.; Chen, J.; Liu, Y. Effects of Cr content on the corrosion behavior of porous Ni–Cr–Mo–Cu alloys in H3PO4 solution. Mater. Res. Express 2021, 8, 096522. [Google Scholar] [CrossRef]
- Bhattarai, J. The corrosion behavior of sputter-deposited ternary Zr-(12-18) Cr-W alloys in 12M HCl solution. Nepal. J. Sci. Technol. 2010, 26, 103–108. [Google Scholar]
- Hollander, J.M.; Jolly, W.L. X-ray Photoelectron spectroscopy. Handbook of applied solid state spectroscopy. Acc. Chem. Res. 1970, 3, 193–200. [Google Scholar] [CrossRef]
- Wang, X.; Mercier, D.; Zanna, S.; Seyeux, A.; Perrière, L.; Laurent-Brocq, M. XPS study of the thermal stability of passivated NiCrFeCoMo multi-principal element alloy surfaces. Surf. Interface Anal. 2023, 55, 457–465. [Google Scholar] [CrossRef]
- Malladi, S.B.A.; Tam, P.L.; Cao, Y.; Guo, S.; Nyborg, L. Corrosion behaviour of additively manufactured 316L and CoCrNi. Surf. Interface Anal. 2023, 55, 404–410. [Google Scholar] [CrossRef]
- Wang, X.Z.; Luo, H.; Luo, J.L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment. Electrochim. Acta 2019, 293, 60–77. [Google Scholar] [CrossRef]
- Vukkum, V.B.; Delvecchio, E.; Christudasjustus, J.; Storck, S.; Gupta, P.K. Intergranular corrosion of feedstock modified-additively manufactured stainless steel after sensitization corrosion. J. Sci. Eng. 2023, 79, 624–636. [Google Scholar] [CrossRef]
- Shimada, M.; Kokawa, H.; Wang, Z.J.; Sato, Y.S. Arrest of intergranular corrosion in austenitic stainless steel by twin-induced grain boundary engineering. In Proceedings of the Asian Pacific Conference on Fracture and Strength and International Conference on Advanced Technology in Experimental Mechanics; The Japan Society of Mechanical Engineers: Tokyo, Japan, 2017; Volume 2, pp. 1036–1040. [Google Scholar]
- Wang, J.X.; Shi, W.; Xiang, S.; Ballinger, R.G. Study of the corrosion behaviour of sensitized 904l austenitic stainless steel in Cl-solution. Corros. Sci. 2021, 181, 109234. [Google Scholar] [CrossRef]
- Weng, K.C.; Chi, T.K.; Kin, H.L.; Cheng, Z.C. Desensitization of Austenitic and Duplex Stainless Steels by Laser Surface Melting, Proceedings of the 4th Pacific International Conference on Applications of Lasers and Optics, Wuhan, China, 24 March 2010; Laser Institute of America: Orlando, FL, USA; Volume 806, pp. 23–25.
- Zhao, B.; Dai, Q.; Zhao, Z.J.; He, M.; Wang, L.X.; Zhang, G.H. Study on grain boundary sensitization in heat affected zone of austenitic stainless steel and its evaluation method. Mater. Sci. Forum 2022, 1066, 65–69. [Google Scholar] [CrossRef]
- Ni, X.Q.; Kong, D.C.; Wen, Y.; Zhang, L.; Wu, W.H.; He, B.B.; Lu, L.; Zhu, D.Z. Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int. J. Min. Met. Mater. 2019, 26, 319–328. [Google Scholar] [CrossRef]
- Mantisi, B.; Sator, N.; Guillot, B. Structure and transport at grain boundaries in polycrystalline olivine an atomic-scale perspective. Geochim. Cosmochim. Acta 2017, 219, 160–176. [Google Scholar] [CrossRef]
- Shi, F.; Gao, R.H.; Guan, X.J.; Liu, C.M.; Li, X.W. Application of grain boundary engineering to improve intergranular corrosion resistance in a Fe-Cr-Mn-Mo-N high-nitrogen and nickel-free austenitic stainless steel. Acta Metall. Sin. 2020, 33, 10. [Google Scholar] [CrossRef]
Cr | Ni | Mn | Si | N | S | P | C | Fe | |
---|---|---|---|---|---|---|---|---|---|
Forging | 18.09 | 8.06 | 1.13 | 0.33 | 0.05 | 0.02 | 0.04 | 0.07 | Bal. |
SLM | 18.19 | 8.61 | 1.12 | 0.36 | 0.06 | 0.02 | 0.02 | 0.08 | Bal. |
Element | Component | Position eV | Component Proportion | |
---|---|---|---|---|
Forging 304 | SLM 304 | |||
Fe | FeOOH | 711.5 | 20.01 | 22.14 |
FeO | 709.6 | 23.64 | 24.13 | |
Fe3O4 | 708.2 | 26.52 | 26.16 | |
Femet | 706.7 | 29.83 | 27.57 | |
Cr | Cr(OH)3 | 577.0 | 29.65 | 30.02 |
Cr2O3 | 576.1 | 34.14 | 35.09 | |
Crmet | 574.2 | 36.21 | 34.89 | |
O | H2O | 533.5 | 31.38 | 32.19 |
OH− | 532.1 | 32.67 | 33.38 | |
O2− | 530.4 | 35.95 | 34.43 | |
Cr/Fe | 0.18 | 0.21 |
Samples | Ia (μm/cm2) | Ir (μm/cm2) | %DOS (Ir/Ia) |
---|---|---|---|
Forging | 223.78 ± 8.4 | No reactivation peak | No |
Forging + ST | 328.43 ± 10.23 | 88.37 ± 2.73 | 26.91 ± 1.72 |
SLM | 111.40 ± 3.26 | No reactivation peak | No |
SLM + ST | 174.23 ± 2.92 | 6.17 ± 0.24 | 2.51 ± 0.29 |
Samples | Ep (VSCE) | Ip (μA cm−2) | Ec (VSCE) | Ic (nA cm−2) |
---|---|---|---|---|
Forging | 0.176 ± 0.003 | 2.565 ± 0.014 | −0.165 ± 0.004 | 23.147 ± 0.115 |
Forging + ST | −0.038 ± 0.001 | 7.462 ± 0.023 | −0.372 ± 0.005 | 83.625 ± 0.127 |
SLM | 0.434 ± 0.008 | 2.363 ± 0.019 | −0.085 ± 0.001 | 8.696 ± 0.014 |
SLM + ST | 0.147 ± 0.001 | 2.567 ± 0.016 | −0.328 ± 0.003 | 42.118 ± 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Cai, Y.; Tong, Z.; Huang, Y.; Ding, M. Improved Ability to Resist Corrosion of Selective-Laser-Melted Stainless Steel Based on Microstructure and Passivation Film Characteristics. Coatings 2024, 14, 589. https://doi.org/10.3390/coatings14050589
Tao H, Cai Y, Tong Z, Huang Y, Ding M. Improved Ability to Resist Corrosion of Selective-Laser-Melted Stainless Steel Based on Microstructure and Passivation Film Characteristics. Coatings. 2024; 14(5):589. https://doi.org/10.3390/coatings14050589
Chicago/Turabian StyleTao, Huimin, Yafang Cai, Zeqi Tong, Yong Huang, and Mingming Ding. 2024. "Improved Ability to Resist Corrosion of Selective-Laser-Melted Stainless Steel Based on Microstructure and Passivation Film Characteristics" Coatings 14, no. 5: 589. https://doi.org/10.3390/coatings14050589
APA StyleTao, H., Cai, Y., Tong, Z., Huang, Y., & Ding, M. (2024). Improved Ability to Resist Corrosion of Selective-Laser-Melted Stainless Steel Based on Microstructure and Passivation Film Characteristics. Coatings, 14(5), 589. https://doi.org/10.3390/coatings14050589