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Abstract: The local corrosion resistance of forging and selective laser melting (SLM) 304 steels was
explored by intergranular corrosion analysis, double-loop electrochemical potentiodynamic reactiva-
tion, dynamic polarization experimentation, structural analysis, and passivation film characteristics
analysis. The ability to resist sensitization of SLM 304 steel is greater than that of forging 304 steel at
a temperature of 650 ◦C for 9 h. Moreover, the pit corrosion resistance of forging and SLM 304 steels
is weakened by sensitization, while the pit corrosion resistance of SLM 304 steel is much greater than
that of forging steel. Therefore, SLM technology can improve the ability to resist sensitization and pit
corrosion of 304 steel. Analysis showed that the ability to resist corrosion of the passivation film of
SLM 304 steel is greater than that of forging steel. In addition, corrosion pits are easier to generate
at the interface of forging steel and SLM 304 steel. The grain boundary corrosion of SLM 304 steel
intensified while the corrosion of the melt pool boundaries weakened after the sensitization treatment,
resulting in a decrease in pit corrosion resistance. The coupling effect of these different structures and
passivation films decides the pit and sensitization resistance of forging and SLM 304 steels. Clarifying
the corrosion mechanism of forging and SLM steels is of great significance for scientific research and
the widespread use of SLM technology.
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1. Introduction

Additive manufacturing (AM) technology has become a widely used and important
forming technology in various industries in recent years, including in the aviation, automo-
tive, medical, construction, and many other fields [1–3]. The benefits of AM technology
compared with previous forming methods are obvious, especially in the production of
complex and high-precision components. AM technology can produce a variety of styles of
products in a shorter time, significantly improving production efficiency. The impact of
AM poses challenges to traditional design and maintenance methods. AM typically uses
high-energy lasers or electron beams in a layer-by-layer manner, cyclically increasing and
decreasing temperatures over a wide temperature range in a short period time, which is
very different from traditional processing techniques. This approach leads to a complicated
thermal history, directly affecting the final microstructure and macroscopic properties [4–6].
Therefore, understanding the aforementioned effects of AM special forming technology is
necessary to ensure its effective, safe, and long-term use. In AM technology, the selective
laser melting (SLM) method is a commonly applied technique in the forming of alloy
materials. According to reports [7–9], SLM steel typically has a higher strength, higher
tensile ductility, and higher hardness compared to traditional stainless steel. In addition,
SLM technology is not only convenient for manufacturing complex metal parts but is also
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cost-effective. However, more work is needed to study the microstructure and macroscopic
performances of SLM materials to meet their widespread applications.

Stainless steel plays an important role in production and daily life due to its rich variety,
stable structure, excellent performance, reasonable price, and environmental friendliness.
Therefore, stainless-steel materials are also one of the key alloys of concern in AM alloys.
In general, the corrosion properties of metal parts are inevitably considered during their
wide application, especially in terms of local corrosion. Among these corrosion behaviors,
sensitization and pit corrosion behaviors have always been a hot issue of stainless steel
and are an inevitable problem in the application of stainless steel. Traditional forging
stainless steel will be damaged by sensitization and pit corrosion in certain environments,
which will deteriorate its performance. At present, sensitization and pit corrosion have
also attracted wide attention in the additive manufacturing of stainless steel. Macatangay
et al. [10] found that the melt pool boundaries (MPBs) in SLM 316L steel were difficult
to corrode and accelerated ring breaking, and heat treatment at 675 ◦C for 1 h can cause
the sensitization of grain boundaries (GBs). However, for forging 316L stainless steel,
it was not found that the microscopic interface would accelerate the corrosion damage,
and the grain size could only undergo sensitization after heating at 675 degrees for 24 h.
Therefore, the interface between AM 316L and forging 316L steels has wide variations in
terms of the effects on corrosion and sensitization phenomena. Research [11] found that
traditional 316L steel has poorer resistance to intergranular corrosion compared to 316L
steel manufactured by SLM. Through the study of SLM 316L steel, it was found that after
sensitization treatment, numerous special grain boundaries and other structures with no
Cr enrichment appeared in the SLM sample, thus avoiding local Cr depletion. On the other
hand, related studies [12] suggest that the difference in the microstructure can promote the
generation of a better passivation film for SLM 316L steel compared to forging stainless
steel in a corrosion solution. The absence of sulfides and micro defect entanglement near the
impurities in SLM 316L steel results in a significantly greater corrosion resistance of SLM
316L stainless steel than forging samples. In addition, when SLM 316L steel was heated at
lower temperatures (below 650 ◦C), the grain size increased, and more MnCr2O4 inclusions
were formed when treated at higher temperatures (1100 ◦C) [13]. For the SLM steel, the
lower-temperature heat treatment improved the polarization resistance and did not change
the pit corrosion mechanism, while the higher-temperature heat treatment reduced the
polarization resistance but altered the corrosion resistance mechanism. It can be seen that a
considerable amount of work has been carried out in the research of AM materials.

In the articles mentioned above, it has been proposed that the microstructures, such
as fabricating-induced defects, GBs, and MPBs, in SLM steel influence the local corrosion
behavior. However, due to the diversity of AM alloys, there are still many differences in the
study of their local corrosion performance. In addition, the correlation in the local corrosion
behavior between forging steel and SLM steel has not been fully explained. Currently, few
studies have revealed the relationship between intergranular corrosion and pit corrosion,
and further in-depth research is needed. Hence, in order to widely apply forging and SLM
steels, it is extremely important to reveal their local corrosion behavior theory.

In this paper, the local corrosion behavior of forging and SLM 304 stainless steels was
investigated by electrochemical tests. Intergranular corrosion and double-loop electro-
chemical potentiodynamic reactivation (DL-EPR) experiments were performed to study the
sensitization behavior; also, a dynamic polarization test was conducted to investigate the
pit corrosion. The degree of sensitization (DOS) and pit corrosion behavior of the forging
and SLM steels were compared, and the relationship between the intergranular and pit
corrosion was analyzed based on structural characterization and passivation film analysis.

2. Experiments and Details

The elemental compositions of the forging and SLM 304 steels involved are shown
in Table 1. Before all the experiments, the forging 304 steel was subjected to 1 h of heat
annealing treatment at 1050 ◦C and then quenched in water. The SLM 304 steel plate
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was printed by an EOS M290 metal 3D printing device produced in Germany. As shown
in Figure 1a, the size of the printed 304 steel metal powder ranged from 20 to 40 µm.
When printing the sheet, the sheet was built vertically, and the laser scanning direction
rotated approximately 67◦ between two consecutive layers. SLM operates in a powder
bed, building components layer-by-layer by rastering a high-powered laser directed by a
computer-aided design model. After each intermediate layer was completed, the printing
stage was gradually lowered, and then another metal powder layer was added through the
working arm [14]. The scanning speed of the laser was 6.7–8.3 mm/s, and the laser power
was 2.8–3.0 kW. To prevent or reduce oxidation, the printing process was carried out under
an inert gas atmosphere of argon while keeping the printing chamber under a positive
pressure [15,16]. The printing method sketch map is displayed in Figure 1b. Finally, a
printed board was obtained through the printing equipment (length 85 mm, width 25 mm,
thickness 6 mm). The test sample was cut from the printed board, and the test surface of
the sample is shown in Figure 1b. To sensitize the stainless steels, the forging and SLM
304 steels were heated at 650 ◦C for 9 h in an atmosphere furnace and then cooled in the
furnace. This study included four types of samples: forging 304 steel, sensitized forging
304 steel, SLM 304 steel, and sensitized SLM 304 steel, represented as forging, forging + ST,
SLM, and SLM + ST.

Table 1. Elemental constituents of the forging and SLM 304 steels (wt.%).

Cr Ni Mn Si N S P C Fe

Forging 18.09 8.06 1.13 0.33 0.05 0.02 0.04 0.07 Bal.
SLM 18.19 8.61 1.12 0.36 0.06 0.02 0.02 0.08 Bal.
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When conducting the electrochemical experiments, the back of the stainless-steel
material obtained was welded with an insulated copper line and embedded in a plastic
tube using epoxy jaffaite to make a sample with a testing area of 1 cm2. Then, the surface
of the sample was gradually polished using SiC sandpaper with a particle size of 180–2000,
and, finally, a 1 µ diamond slurry was used at a certain scale to grind to obtain a smooth-
surfaced sample. Before conducting the electrochemical experiment, the sample was
cleaned using ultrasound and blow-dried with air. During the intergranular corrosion test,
the sample was subjected to a 10% oxalic acid solution at 25 ± 1 ◦C, and the experimental
current was about 1 Acm−2 for 2 min (anode: the test sample; cathode: the steel plate).
After the corrosion was completed, the sample was cleaned with flowing water, dried with
a hair dryer, and then observed under an optical microscope (OM). In addition, DL-EPR and
dynamic polarization experiments were conducted using an IviumStat electrochemistry
device to investigate the DOS and pitting behavior of the forging and SLM stainless steels,
respectively. The electrochemical workstation had three electrodes, where the stainless-
steel sample was the working electrode, the platinum sheet was the counter electrode, and
the 232 saturated calomel electrode (SCE) was the reference electrode (0.244 V relative to
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standard hydrogen electrodes at 25 ◦C). All the potentials obtained from the experiment
were based on SCE as the standard. The experiment used a constant-temperature circulating
water bath to maintain a temperature of 25 ± 1 ◦C. Meanwhile, before the experiment, the
stainless-steel sample was placed in the solution for about 10 min to make the experiment
more stable. In the DL-EPR experiment, the solution medium was obtained by dissolving
0.5 M H2SO4 and 0.01 M KSCN chemical reagents in distilled water. The potential was
scanned from (−0.400) VSCE to (+0.400) VSCE at a scanning rate of +0.2 mV/s and then
scanned in reverse to the initial potential. Then, the DOS value was obtained by calculating
the percentage (Ir/Ia) of the peak reactivation current (Ir) and peak activation current (Ia).
In addition, the dynamic polarization experiment was conducted in a 0.9% NaCl electrolyte
solution at 25 ±1 ◦C, and the experiment scanned from (−1.0) VSCE to (+1.0) VSCE at a rate
of (+0.2) mV/s, obtaining the dynamic polarization curve. Each experiment was repeated
at least ten times to ensure its reliability.

Furthermore, the microstructure, element content, sample surface, and oxide film of the
304 steel were analyzed and studied employing OM, scanning electron microscopy (SEM),
electron backscatter diffraction (EBSD), SEM-EDS (energy dispersive X-ray spectroscopy),
and X-ray photoelectron spectroscopy (XPS). The acceleration voltage for the EBSD testing
was 20 kV, the scanning speed was 636.24 Hz, and each step length was 0.75 µm. The
electron energy of the XPS test electron source was 2000 eV, with an energy half width
of 0.4 eV. The minimum beam spot diameter was about 1 mm, and the maximum output
current was about 64 µA.

3. Results and Discussion
3.1. Structure Characteristics

The microstructure test samples of the forging 304 stainless steel were taken from
smooth annealed sheets, which are displayed in Figure 2. The metallographic phase of the
forging material was observed by electrochemical corrosion, as shown in Figure 2b. The
grains of the forging 304 steel had an irregular polygon morphology, and the GBs were
straight, which is a typical morphology of traditional stainless steel. In addition, some
twinning crystals were generated between the grains. The EBSD inverse-pole figure (IPF)
of the forging 304 steel showed that the grain orientation was uniformly distributed in the
traditional 304 steel, and no preferred orientation was observed (Figure 2c). As shown
in Figure 2, the grains of the forging 304 samples were irregular polygons in the IPF, and
their size was about 45~60 µm. Moreover, the GB distribution of the forging and SLM 304
stainless steels was observed by EBSD, and the results are shown in Figures 2d and 3d. In
the GB distribution pictures, a high-angle GB (HAGB) with an orientation difference of
greater than 15◦ is displayed using black color, while a lower-angle GB (LAGB) with an
orientation difference of less than 15◦ is displayed by using color. Figure 2d displays the
distribution and number of HAGBs and LAGBs of the forging 304 steel. The low density
of the LAGBs was not uniformly distributed around the HAGBs in the forging 304 steel,
which occupied 61.1% of all the GBs. The calculated average misorientation angle for the
forging 304 steel was 35.21◦.

Compared to the forging 304 stainless steel, the surface of the SLM material was very
rough, which was caused by the melting of the powder, as shown in Figure 3a. During
SLM molding, a high-energy laser interacts with the powder bed to form multiple molten
pools, and the local peak temperature can reach several thousand degrees [17–19]. The
solidification trajectory and melt pool perpendicular to the construction direction in the
SLM steel are shown in the metallographic phase in Figure 3b, and the average size of the
fan-shaped melt pool was about 100 µm. SLM forming uses high-energy laser beams to
selectively melt pre-laid thin layers of metal powder and then allowing them to solidify
and form, and after layer-by-layer stacking, the material is obtained. The incremental
layer-by-layer melting and solidification construction process of the metal powder causes
the formation of typical fan-shaped melt pools [20]. The alternating direction of the melt
pool is caused by continuously turning the high-energy laser during printing [21]. The
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re-melting that occurs during the printing process can cause many overlapping printing
trajectories and melt pools in the material.
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As shown in Figure 3c, which shows the IPF of the SLM 304 steel, it can be seen
that there was no preferred orientation phenomenon in the original printed SLM steel.
The grains of the SLM steel had a unique ripple shape, which was significantly different
from the facet shape in the traditional steel. The GBs diagram in Figure 3d shows that
the morphology of the SLM steel grains was irregular and curved, which made the IPF
present a strip shape. In the traditional 304 steel, the grain size and orientation were very
uneven, but the distribution was relatively regular. The statistics show that the average
grain size of the SLM 304 steel was about 58.6 µm. The above characteristics of the SLM
304 steel were caused by the unique scanning strategy in the SLM process. Figure 3d shows
the distribution and number of HAGBs and LAGBs of the SLM 304 steel. The calculated
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average misorientation angle was 13.83◦ for the SLM 304 steel. The high density of LAGBs
was not uniformly distributed in the SLM 304 steel, which occupied 49.6% of the total.
LAGBs with an orientation difference between 2◦ and 15◦ are considered to be composed
of dislocations. Research has shown that the interface structure in SLM samples seriously
affects their corrosion properties [22].

3.2. Passivation Film Characteristic Tests

The ability to resist corrosion of a material has a close relationship with the charac-
teristics of its surface facial film [23]. In order to investigate the ability to resist corrosion
of the forging and SLM 304 steels in depth, the film on the surface of the forging and
SLM 304 steels was studied through XPS experiments. The results of the XPS test analysis
are displayed in Figure 4, showing the peaks of the Cr, Fe, Ni, and O chemical elements
detected. Among them, only the metallic element Ni was identified in the passivation film,
with a binding energy of 853.0 eV, and no oxidized Ni element was identified. For the Fe,
Cr, and O elements in the membrane, this article is based on Shirley’s principle [24,25]
and deconvolutes the spectrum based on the binding energy of the chemical element
background subtraction. Further referring to the elemental spectra in the relevant litera-
ture [26,27], the elements tested in this study were subjected to peak separation to obtain
their different component compositions. Meanwhile, the possible components obtained
from the passivation film complied with the standards in the XPS manual [28,29].
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Figure 5 displays the XPS results of Fe 2p3/2, Cr 2p3/2, and O 1s of the facial films of
the forging and SLM 304 steels. More information about the composition of the facial films
is shown in Table 2. As shown in Figure 5a, Fe 2p3/2 can be considered to be composed
of four components: Femet (metallic form), Fe3O4, FeO, and FeOOH. The details of the
positions of these components are displayed in Table 2. Observing the intensity of the
four components, it is thus clear that the intensity of Femet was significantly higher than
the peak intensity of the other three components. In addition, Cr 2p3/2 can be considered
to be composed of Crmet, Cr2O3, and Cr(OH)3 components, as shown in Figure 5b, and the
details of their component positions are shown in Table 2. According to relevant research
results [30], the generation of more chromium oxides in the passivation film will optimize
the stability and reduce the passive current of the material. The content fraction of the
Cr2O3 composition within the passivation film of the forging and SLM 304 steels was
34.14% and 35.09% according to calculations, respectively. Moreover, the ratio of Cr/Fe
in the facial film composition of stainless steel can reflect its passivation ability. Generally,
the larger the ratio, the higher the ability to resist corrosion of the facial film [31]. The
Cr/Fe ratio of the SLM 304 steel was 0.21, which was higher than that of the forging 304
steel by 0.18, indicating that the passivation ability of the SLM 304 was greater than that
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of the forging 304 steel. On the other hand, O2− or OH− on the surface of steel plays a
role in connecting metal ions, and compared with hydroxides, oxides are more conducive
to increasing the ability to resist corrosion of the material [32]. As shown in Figure 5c,
the O 1s compositions of the facial films of the forging and SLM 304 steels were analyzed.
O 1s consists of three constituents, namely O2−, OH −, and H2O, and their positions are
shown in Table 2. In addition, O2− is related to the components of Cr203, Fe3O4, and FeO,
while OH− is related to the components of Cr(OH)3 and FeOOH. Simultaneously, it can be
observed that the strength of O2− is much higher than that of OH−. The oxide proportion of
the passivation film of the SLM 304 steel was larger than that of the forging 304 steel, which
would cause the SLM 304 steel to have a higher ability to resist corrosion. To summarize,
the ability to resist corrosion of the passivation film of the SLM 304 steel was greater than
that of the forging steel, which may affect its corrosion resistance.
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Table 2. XPS analysis of the properties of the passivation films of forging and SLM 304 steels.

Element Component Position
eV

Component Proportion

Forging 304 SLM 304

Fe

FeOOH 711.5 20.01 22.14
FeO 709.6 23.64 24.13

Fe3O4 708.2 26.52 26.16
Femet 706.7 29.83 27.57

Cr
Cr(OH)3 577.0 29.65 30.02

Cr2O3 576.1 34.14 35.09
Crmet 574.2 36.21 34.89

O
H2O 533.5 31.38 32.19
OH− 532.1 32.67 33.38
O2− 530.4 35.95 34.43

Cr/Fe 0.18 0.21
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3.3. Intergranular Corrosion Tests

The surface morphologies of the forging and SLM 304 steels with and without sensiti-
zation treatment after the intergranular corrosion measurements are presented in Figure 6.
As can be seen, the intergranular corrosion characteristics of the 304 steels with or without
sensitization treatment were very different under the same test conditions. As can be seen
in Figure 6a,a1, the GB of the forging sample was slightly corroded, and the outlines of
some grains were fuzzy. However, significant deep and wide corrosion grooves appeared in
the sensitized sample of the forging + ST sample. The GBs of the forging + ST sample were
seriously corroded compared with the forging sample. There is no doubt that the degree
of GB corrosion of the forging 304 steel was seriously aggravated after the sensitization
treatment. On the other hand, regular melt pool boundaries appeared in the SLM sample
after the intergranular corrosion, but GBs did not, as shown in Figure 6c. Also, the melt pool
boundaries were slightly corroded, as presented in a locally enlarged view in Figure 6c1.
After the sensitization treatment, many irregular grains were found in the SLM + ST sample,
as shown in Figure 6d. The GBs of the SLM + ST sample were seriously corroded, while
the melt pool boundaries were not. In addition, the intergranular structure of the SLM + ST
sample was more severely corroded compared with the forging + ST sample, as shown in
Figure 6a1,d1. These results indicate that SLM technology can improve the sensitization of
304 stainless steel.
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The element Cr is an important element that affects the sensitization properties of
metal materials [33]. The Cr content in the materials near the GBs of the forging and SLM
304 steels after the sensitization treatment was studied by SEM-EDS, and the results are
shown in Figure 7. It is clear that the Cr element content of the forging + ST sample near the
GBs (about 15.82%) was less than in the SLM + ST sample (about 20.16%). This conclusion
may affect the sensitivity resistance of the GBs of the two types of steel. Research has
shown that the carbon in austenitic stainless steel is generally completely dissolved at
high temperatures [34]. When it is cooled to room temperature, the carbon exists in the
matrix in a supersaturated state. When it is reheated to an appropriate temperature, i.e., the
sensitization temperature, and maintained for sufficient time, the carbon will precipitate in
the form of carbide. Common types of carbide include MC, M6C, and especially M23C6,
which usually form at the phase boundary and GBs of stainless steel. In other words, a lot
of carbides will be produced in stainless steel when it is sensitized in a specific temperature
range. The precipitation of M23C6 rich in Cr will lead to a decrease in the Cr content in
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its vicinity. Due to the extremely slow diffusion of Cr, the Cr in this area cannot be fully
supplemented, forming a Cr-poor area, which reduces the ability to resist corrosion of
the materials [35]. Here, the forging and SLM 304 steels were treated with sensitization,
which caused an impoverishment of the Cr near the GBs, resulting in a poor ability to
resist corrosion of the GBs. The above conclusions indicated that the Cr percentage of the
forging + ST sample near the GBs was less than that of the SLM + ST sample; therefore, the
sensitivity resistance of the GB of the forging + ST 304 steel was worse than that of the SLM
+ ST 304 steel.
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3.4. Double-Loop Electrochemical Potentiodynamic Reactivation

For all the experimental curves, the higher Ia value was caused by the dissipating
of chemical elements in the material. Then, the Ia value dropped to a lower passivation
current density before running to the presupposed reverse potential of +400 mV. The surface
passivation film can be seen as a barrier between metals and the environment, reducing the
dissolution rate of metals. During the reverse scanning process, an incomplete passivation
behavior during the forward scanning process can cause intergranular corrosion behavior,
which can reflect the degree of Cr element loss caused by chromium carbide precipitation
in steel materials. In the experiment of the 304 steel, corrosion occurred at the grain
boundaries and interdendritic boundaries in the steel material during the forward scanning
of the δ-ferrite or σ areas with less Cr element in the vicinity. During the reverse scanning
process, corrosion damage occurred due to incomplete passivation during the forward
scanning process, which revealed the formation of chromium carbide precipitates near
the grain boundaries of the steel materials [36]. In addition, the Ir value revealed in the
DL-EPR experiment that the material was passivated due to the consumption of Cr element,
resulting in a lower value of Ir than the value of Ia [37].

As shown in Figure 8, the forging and SLM 304 steels did not reflect the sensitization
behavior, a large arc appeared in the curve when scanning in reverse in the solution, and the
Ir and Ia values were similar. However, the forging + ST and SLM + ST samples presented
an increase in Ir, especially the SLM + ST sample. This indicated that the forging + ST
sample experienced serious sensitization; also, the SLM + ST sample was slightly sensitized.
Table 3 displays the detailed values extracted from the DL-EPR results of the forging and
SLM 304 steels. The forging and SLM 304 steels did not show a reactivation peak; therefore,
there was no DOS value. The DOS value of the forging + ST sample (26.91%) was somewhat
larger than that of the SLM + ST sample (2.51%), revealing severe intergranular corrosion
in the forging + ST sample. That is to say, severe grain boundary corrosion occurred in the
forging 304 steel during the heat treatment at a temperature of 650 ◦C for 8 h, while there
was a slight presence of it in the SLM 304 steel. This conclusion was also confirmed by
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the SEM-EDS results shown in Figure 5. It is obvious that the forging 304 steel had a high
degree of sensitization caused by the heat treatment, while the SLM 304 steel was slightly
sensitized. Therefore, SLM 304 steel has a stronger ability to resist sensitization compared
with forging 304 steel. Thus, SLM technology can improve the ability of 304 steel to resist
intergranular corrosion.
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Table 3. DOS values and details of the DL-EPR curves.

Samples Ia
(µm/cm2)

Ir
(µm/cm2)

%DOS
(Ir/Ia)

Forging 223.78 ± 8.4 No reactivation peak No
Forging + ST 328.43 ± 10.23 88.37 ± 2.73 26.91 ± 1.72

SLM 111.40 ± 3.26 No reactivation peak No
SLM + ST 174.23 ± 2.92 6.17 ± 0.24 2.51 ± 0.29

3.5. Dynamic Polarization Experiments

The dynamic polarization results of the forging and SLM 304 steels with and without
sensitization treatment are displayed in Figure 9. The details of the relevant electrochemical
parameters of the polarization results are shown in Table 4 (Ic: corrosion current density,
Ec: corrosion potential, Ep: pit corrosion potential, Ip: passivation current density). The
Ep value was determined as the potential at which the current obviously increased and
continued to rise, and the Ip value was obtained from the middle of the passive region.

Regarding the results, the Ep value of 0.434 VSCE for the SLM sample was much higher
than that of 0.176 VSCE for the forging sample. Thus, the ability to resist corrosion of the
SLM 304 steel was greater than that of the forging 304 steel. SLM technology can improve
the ability to resist pit corrosion of 304 steel, which is of great value in the application
of steel materials. Moreover, the Ep value of −0.038 VSCE for the forging + ST sample
was much lower than that of 0.176 VSCE for the forging sample. Hence, the ability to
resist pit corrosion of the forging 304 steel was obviously weakened after the sensitization.
The Ip value of the forging 304 steel increased from 2.565 µA cm−2 (forging sample) to
7.462 µA cm−2 (forging + ST sample) after the sensitization; the ∆E value decreased from
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0.341 VSCE (forging sample) to 0.334 VSCE (forging + ST sample). The Ip and ∆E values can
represent the characteristics of the passivation films of metals [17,37,38]. Generally, the
smaller the Ip value or the higher the ∆E value of steel materials, the slower the corrosion
rate and the better the quality of the passivation film on the material. It is thus clear that
the pit corrosion of the forging 304 steel was significantly deteriorated by the sensitization,
and the stabilization of the passivation film was weakened.
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Table 4. Electrochemical parameters of forging and SLM 304 steels with and without sensitization
treatment in 0.9% NaCl solution at 25 ± 1 ◦C.

Samples Ep
(VSCE)

Ip
(µA cm−2)

Ec
(VSCE)

Ic
(nA cm−2)

Forging 0.176 ± 0.003 2.565 ± 0.014 −0.165 ± 0.004 23.147 ± 0.115
Forging + ST −0.038 ± 0.001 7.462 ± 0.023 −0.372 ± 0.005 83.625 ± 0.127

SLM 0.434 ± 0.008 2.363 ± 0.019 −0.085 ± 0.001 8.696 ± 0.014
SLM + ST 0.147 ± 0.001 2.567 ± 0.016 −0.328 ± 0.003 42.118 ± 0.038

For the SLM 304 steel, the Ep value of 0.147 VSCE for the SLM + ST sample was
much lower than that of 0.434 VSCE for the SLM sample. Therefore, the ability to resist pit
corrosion of the SLM 304 steel also deteriorated after the sensitization. In addition, the Ip
value of the SLM sample (2.363 µA cm−2) was lower than that of the SLM + ST sample
(2.567 µA cm−2). Ultimately, the ability to resist pit corrosion of the SLM 304 steel was also
weakened by the sensitization, which was in agreement with the forging 304 steel.

After the dynamic polarization tests, the corrosion pits of the forging and SLM 304
steel samples were recorded. The statistical ratio of the number of corrosion pits of the
samples after the same number of dynamic polarization experiments is shown in Figure 10.
Analyzing the above experiment, most of the corrosion pits occurred at the GBs in the
forging samples; the percentage of the corrosion pits that formed near the GBs in the
forging + ST sample was much more than in the forging sample. This reflects that the GBs
of the sensitized forging 304 steel were more likely to induce pit corrosion. For the SLM 304
steels, the percentage of corrosion pits that occurred at the melt pool boundaries was much
higher than the GBs for the SLM sample, while it was the opposite for the SLM + ST sample.
After the sensitization treatment, the ability to resist corrosion of the GBs of the SLM steel
was weakened, resulting in pit corrosion being more likely to be induced at the GBs.
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The surface morphologies of the forging and SLM 304 steels during the dynamic po-
larization experiments were observed, as shown in Figure 11. A large number of corrosion
pits formed near the GBs in the forging 304 steel, especially in the forging + ST sample
(Figure 9b). In the SLM sample, the melt pool boundaries were more seriously corroded,
and some corrosion pits occurred at them, while the GBs were slightly corroded (Figure 11c).
For the SLM + ST sample, the GB was seriously corroded, and plenty of corrosion pits
appeared at the GB, while the molten pool boundary was not (Figure 11d). Therefore, pit
corrosion easily occurred in the SLM 304 steel at the MPBs and GBs, while it occurred more
easily in the forging 304 steel at the GBs. The corrosion degree of the MPBs of the SLM steel
weakened, and the GB corrosion was more severe after the sensitization treatment, which
led to more severe pit corrosion at the GBs.
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According to the research results, the structures of the forging and SLM 304 steels were
significantly different, which affected the pit and sensitization resistance. The corrosion
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pits of the 304 steel were preferentially initiated at the interface. Chemical components
such as C, O, and Si near MPBs have a strong activity, which makes the MPBs sensitive
to corrosion [38]. When MPBs and GBs are present in SLM steels, the deepening of the
corrosion at the MPBs will reduce the corrosion at the GBs, making it easier for pitting
corrosion to form at the MPBs. When only GBs exist in steel materials, the sensitivity of the
GBs to corrosion varies greatly due to their structure and distribution. Compared to the
original matrix of the materials within grains, the GBs are easily damaged. The disordered
arrangement of the atomic structures at the GBs is a linear defect that is more susceptible to
corrosion and damage. On the other hand, the structure of GBs can lead to a decrease in
the conductivity of steel, resulting in a decrease in its passivation ability and ultimately a
decrease in its ability to resist corrosion [39,40]. The above research results, as shown in
Figure 6, confirm that GBs in steel materials have poor resistance to corrosion in corrosive
environments. Corrosion pits are more likely to form at grain boundaries, and the damaged
area of the corrosion pits gradually grows, ultimately leading to severe material damage.
After the sensitization treatment of the 304 steel, the ability of the GBs to resist corrosion
was significantly reduced, resulting in pitting corrosion more easily forming and growing
at the grain boundaries, which weakened the corrosion resistance of 304 steel.

Moreover, before the sensitization treatment of the SLM 304 steel, the corrosion at
the MPBs was more severe than at the GBs, and corrosion pits preferentially formed at
the MPBs; after the sensitization treatment, the corrosion at the GBs of the stainless steel
intensified, and pit corrosion preferentially formed at the GBs. The GB corrosion resistance
of the forging and SLM 304 steels significantly decreased after the sensitization treatment,
resulting in a significant decrease in the pit corrosion resistance of the 304 steel. However,
the unique MPB and GB structures of the SLM 304 stainless steel made its sensitivity
resistance significantly higher than that of the forging 304 stainless steel. Moreover, when
the SLM 304 steel was sensitized, its internal MPBs disappeared, the pit corrosion resistance
of the GBs decreased significantly, and a large number of pits easily formed at the GBs,
which reduced the corrosion resistance of the SLM 304 steel. Moreover, the resistance to
corrosion of the passivation film of the SLM 304 steel was greater than that of the forging
steel. The coupling effect of these different structures and the passivation film decides the
pit and sensitization resistance of forging and SLM 304 steels. Clarifying the corrosion
mechanism of forging and SLM steels is of great significance for scientific research and the
widespread use of SLM technology.

4. Conclusions

The sensitization characteristics and pit corrosion properties of forging and SLM 304
steels were studied and analyzed through electrochemical experiments, microstructure
observation, and an analysis of the passivation film characteristics. The conclusions are
as follows:

(1) The ability to resist sensitization of the SLM 304 steel was greater than that of the
forging 304 steel at a temperature of 650 ◦C for 9 h. SLM technology improves the
ability to resist sensitization of 304 steel.

(2) The pit corrosion resistance of the forging and SLM 304 steels was weakened by the
sensitization treatment, while the pit corrosion resistance of the SLM 304 steel was
greater than that of the forging steel. SLM technology optimizes the ability to resist
pit corrosion of 304 steel.

(3) The ability to resist corrosion of the passivation film of the SLM 304 steel was greater
than that of the forging 304 steel, which affected its corrosion resistance.

(4) Corrosion pits were more easily generated at the interface of the forging and SLM 304
steels. The grain boundary corrosion of the SLM 304 steel intensified, while the melt
pool boundary corrosion weakened after the sensitization treatment, resulting in a
decrease in pit corrosion resistance.
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