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Abstract: The deposition of thin uniform dielectric layers on graphene is important for its success-
ful integration into electronic devices. We report on the atomic layer deposition (ALD) of Al2O3

nanofilms onto graphene grown by chemical vapor deposition onto copper foil. A pretreatment
with deionized water (DI H2O) for graphene functionalization was carried out, and, subsequently,
trimethylaluminum and DI H2O were used as precursors for the Al2O3 deposition process. The
proper temperature regime for this process was adjusted by means of the ALD temperature window
for Al2O3 deposition onto a Si substrate. The obtained Al2O3/graphene heterostructures were charac-
terized by Raman and X-ray photoelectron spectroscopy, ellipsometry and atomic force and scanning
electron microscopy. Samples of these heterostructures were transferred onto glass substrates by
standard methods, with the Al2O3 coating serving as a protective layer during the transfer. Raman
monitoring at every stage of the sample preparation and after the transfer enabled us to characterize
the influence of the Al2O3 coating on the graphene film.

Keywords: Al2O3–graphene heterostructure; Raman spectroscopy; X-ray photoelectron spectroscopy;
scanning electron microscopy; atomic force microscopy

1. Introduction

Graphene, a single sheet of honeycomb-like arranged carbon atoms, has been in
the spotlight of scientific interest for almost two decades due to its excellent physical
properties [1–5]. This is a genuine two-dimensional material with high carrier mobil-
ity [6], extraordinary ballistic-transport distances [7] and over 97% transparency for visible
light [8], which make it applicable to novel electronic and optoelectronic devices. The im-
plementation of graphene in such integrated devices requires a technology for wafer-scale
synthesis with a controllable number of layers. The experience from recent years shows that
chemical vapor deposition (CVD) onto a copper catalyst is the most promising synthesis
approach that yields large-area and high-quality graphene with a low density of structural
defects [9]. Furthermore, this method is scalable without worsening the quality of the
produced graphene [10]. Despite the problems arising from the surface morphology and
the different grain orientations of the Cu foil [11,12] most commonly used as the CVD sub-
strate/catalyst, it seems that this production technology may be able to satisfy the complex
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requirements for industrial applications of graphene. However, many of these applications
require the graphene sheet to be coated with a conformal and ultrathin dielectric layer,
which is a technological challenge due to the chemical inertness of graphene [13].

In many instances, atomic layer deposition (ALD) is the preferred technique for
growing ultrathin metal oxide layers [14] as it exhibits a number of advantages, such as
high-precision thickness control and excellent conformal covering of complex surfaces.
However, ALD is a surface-reaction-limited process and the lack of out-of-plane functional
groups in sp2-bonded graphene prevents its receptivity to an ALD reaction. For instance,
combined theoretical and experimental investigations [15] showed that the adsorption of
the ALD alumina precursor onto pristine graphene was kinetically and thermodynamically
unfavorable, leading to nucleation, mainly at defect sites and grain boundaries, and an over-
all nonuniform coverage. To overcome this obstacle, various graphene pretreatment and
functionalization methods have been applied [16], and intensive research has been carried
out to optimize the ALD process parameters [17]. Such methods can include the chemical
functionalization of graphene with NO2 and O3 [18,19], or the deposition of an additional
seed [20] or interfacial protective [21] layer. Such pretreatments may have undesirable side
effects, such as problems with scaling the dielectric thickness, unintentional doping or the
creation of defects in the graphene lattice [22,23]. Therefore, it is important to find a way
to increase the wetting of ALD dielectrics on the graphene surface without using a seed
layer and without disrupting the graphene lattice. Recently, water-dipping pretreatment of
graphene was suggested as such an approach [24]. According to ref. [24], the physisorbed
water molecules act as nucleation sites for the metal precursor trimethylaluminum (TMA)
to form continuous Al2O3 dielectric films. The use of water pretreatment as a preliminary
step in the ALD process was studied in detail by Zheng et al. [25], who concluded that it
generally improves Al2O3 ALD growth on graphene. The importance of physisorbed H2O
molecules for the subsequent ALD Al2O3 growth was also highlighted by the results of
Zhang et al. [26]. On the other hand, in ref [13], it was shown that a metal catalyst substrate
of as-grown graphene can also facilitate the deposition of conformal and continuous ALD
dielectric coatings. This effect was attributed to better wettability and the presence of polar
sites in graphene when it is in intimate contact with its metallic substrate [13]. Recently, an
improvement of graphene’s Young modulus upon deposition of an ultrathin ALD Al2O3
layer at room temperature [27] was reported.

The utilization of the outstanding electronic and optical properties of graphene in-
cludes its integration with other isolating and semiconducting layers or 3D phases, which
requires refined and precise transfer procedures. Despite advancements in transfer methods
for lattice disruptions, doping from contamination impurities and wrinkles are the most
often occurring transfer-induced defects [28]. If deposited onto Cu-supported as-grown
graphene, an ALD oxide layer could also be potentially helpful as a protective interface
and support layer during the transfer process [29]. This approach avoids transfer-polymer
contamination of the graphene, thus protecting it also from possible doping, which could
worsen the subsequent performance of this graphene in integrated devices [29,30].

In this work, the deposition of dielectric Al2O3 thin films by ALD onto CVD-grown
graphene is investigated. We deposited the Al2O3 coating with water pretreatment or di-
rectly onto the Cu-supported graphene prior to its transfer to a dielectric substrate. Besides
characterization of the specimens with structural and imaging methods, we performed an
on-spot Raman investigation of the graphene interaction with the Cu substrate and the
impact of the ALD process.

2. Materials and Methods
2.1. Synthesis of the Al2O3/Graphene Heterostructure

The graphene film (predominantly single-layer or double-layer graphene) was de-
posited onto commercially obtained copper foil (99.8%, Alfa Aesar, Haverhill, MA, USA,
25 µm thick) that was electropolished prior to the CVD process. Electropolishing was
performed in 85% concentrated H3PO4 solution with the polished copper foil as the anode
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and a copper plate as the counter electrode at a polarization voltage of 1.98–2.02 V at room
temperature. Thus, two Cu foil substrates were prepared, which will hereafter be referred
to as samples S1 and S2.

The graphene was grown in a cold-wall Plasmalab System 100 research reactor from
Oxford Instruments (Abingdon, Oxfordshire, UK) using low-pressure chemical vapor de-
position in a high-purity hydrogen (99.9999%) and methane (99.9995%) gas flow. Prior to
the growth stage, the Cu foil underwent annealing in an argon/hydrogen atmosphere at a
temperature near its melting point to activate its surface catalytic properties. Subsequently,
a mixture of reaction and carrier gases CH4/H2/Ar was introduced into the reaction cham-
ber according to the corresponding recipes for single-layer graphene (applied to sample
S1) and bilayer graphene (applied to sample S2). Details are given in the Supplementary
Materials. Afterwards, the sample was quenched to 300 ◦C at 15 ◦C/min in a hydro-
gen/argon atmosphere. Cooling to room temperature was performed in a high-purity
argon atmosphere. The grown graphene layers were checked by Raman spectroscopy,
and representative spectra are shown in Figure S1 (Supplementary Material), indicating
predominantly single-layer graphene for sample S1 and predominantly bilayer graphene
for sample S2.

The deposition of Al2O3 was performed in a Beneq TFS-200 ALD system (Beneq Oy,
Espoo, Finland) onto the graphene coating of the as-obtained samples S1 and S2 and an
accompanying Si wafer with native oxide as the reference substrate. The ALD temper-
ature window for the deposition of Al2O3 onto a Si substrate with TMA and deionized
water (DI H2O) precursors was examined, and deposition at 200 ◦C was selected as the
optimal thermal regime [31]. Deposition at lower temperatures leads to non-uniform,
opaque and non-transparent Al2O3 films, while higher deposition temperatures create non-
stoichiometric films and, particularly, increases the amount of chemisorbed oxygen [31].

The ALD process is schematically depicted in Figure 1. First, the graphene surface was
pretreated in situ at 200 ◦C by 10 cycles of DI H2O with a 200 ms pulse duration separated
by a pure nitrogen purge of 2 s. This preliminary step is needed to create hydroxyl groups
(-OH) on the sp2-hybridizated graphene surface. This is assumed to be accomplished by
the massive adsorption of water molecules onto the graphene surface facilitated by the
Cu-induced polar traps [13]. The predominant bonding type of these water molecules is
assumed to be physisorption [24], with a small amount of covalently bonded -OH groups.
Estimates of the rates of these bonding types will be made in the next section.
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Thereafter, a TMA and DI H2O ALD with durations of 180 ms each and separated by
a 3 s nitrogen purge was performed. The nitrogen flow used as the purging and carrier gas
was kept at 300 sccm during the whole deposition process. The TMA/DI H2O ALD cycle
was repeated 352 times on sample S1 and 950 times on sample S2, leading to approximately
40 and 100 nm thick Al2O3 films, respectively. The growth rate of Al2O3 deposited at 200 ◦C
with water pretreatment was estimated to be around 1.1–1.2 Å/s [31]. The thicker Al2O3
coating for sample S2 was chosen to prevent poorer ALD coverage due to the screened
Cu-substrate effect upon increasing the graphene layer number [32].

2.2. Characterization

The Raman spectra were measured by backscattering geometry in the range of
100–3000 cm−1 in a HORIBA Jobin Yvon Labram HR visible spectrometer (HORIBA Scien-
tific, Kyoto, Japan) [33] with a Peltier-cooled CCD detector and entrance slits set to 1.5 cm−1

spectral width. The 632.8 nm line of a He–Ne laser was used for the excitation using a
600 grooves/mm grating, the absolute accuracy being about 1 cm−1. The laser beam was
focused on a spot of about 2 µm in diameter on the sample surface, using microscope optics
with an objective of 50× magnification. The measured frequencies were calibrated using
a Si standard and the line corresponding to the stretching vibrations of air nitrogen [34]
at 2331 cm−1, which is contained in the spectra of Cu-supported graphene samples. In
addition, the N2 line provides an internal standard for the intensity of the graphene peaks,
because in the same focusing conditions, its intensity is more or less the same in all spectra
of the examined Cu-supported graphene samples.

The X-ray photoelectron spectroscopy (XPS) studies were performed in a Kratos
AXIS Supra spectrometer (Kratos Analytical Ltd., Manchester, UK) using achromatic AlKα

radiation with an energy of 1486.6 eV. The binding energies (BEs) were determined utilizing
the C 1s line with an energy of 285.0 eV as a reference. The accuracy of the measured BE
was 0.1 eV. The photoelectron lines of constituent elements on the surface were recorded
and corrected by subtracting a Shirley-type background and quantified using the peak area
and Scofield’s photoionization cross-sections. Spectral deconvolution was performed with
the XPSPEAK 4.1 software [35].

XRD measurements were performed using an Empyrean system manufactured by
PANalytical, Almelo, The Netherlands. The diffractometer was configured with a Cu Ka
tube, a parallel-beam mirror and a PIXcel3D detector (PANalytical, Almelo, The Nether-
lands). Obtained diffraction data were processed using the HighScore Plus 4.5 software
and the ICSD database (Inorganic Crystal Structure Database).

The ellipsometry measurements were performed using a Woollam M2000D rotating
compensator spectroscopic ellipsometer (J. A.Woollam Co. Inc., Lincoln, NE, USA) with a
wavelength range from 193 nm to 1000 nm in the reflection mode. The data acquisition and
analysis software involved was CompleteEASE 5.10 J. A.Woollam Co. Inc. (Lincoln, NE,
USA). The spectroscopic ellipsometry data of Y and D were taken at room temperature at
an angle of incidence of 60◦.

The surface morphology quality was characterized by scanning electron microscopy (SEM).
We used the state-of-the-art scanning electron microscope JEOL IT800SHL (Kyoto, Japan), with
both in-chamber and in-lens detectors for secondary and backscattered electrons.

The microscope used for the atomic force microscopy (AFM) studies was Asylum
Research’s MFP-3D Origin. The scan was run in the AC repulsion mode. The topographic
images were taken on an area of 2 × 2 µm, with a line scan rate of 1Hz and a resolution
of 256 × 256 points. The probes used are made of silicon (Opus-160AC-NA, OPUS by
µmasch, Innovative Solutions Bulgaria Ltd., Sofia, Bulgaria), with an aluminum reflective
coating and a cantilever length of 160 µm. The cantilever has a typical resonant frequency
of 300 kHz, a force constant of 26 N/m, and a tip radius of 7 nm. Gwyddion 2.59 software
was used for image analysis.



Coatings 2024, 14, 662 5 of 13

3. Results and Discussion
3.1. Surface Chemical Composition (XPS Analysis)

To examine the formation of the Al2O3 coating, the two samples, S1 and S2, were
checked by XPS. Fitted Al2p and O1s spectral bands are displayed in Figure 2. C1s spectra
were recorded; however, they do not stem from the underlying graphene film, as the XPS
signal is collected from the first 10 nm beneath the surface, but from a thin surface layer of
adventitious carbon instead. This C1s signal was utilized as a reference with an energy of
285.0 eV for the determination of the binding energies (BEs). From the relative intensity of
the fitting components, the chemical composition of the surface region of the Al2O3 layers
was also determined, and the content of the constituent elements are given in Table 1.
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Figure 2. Detailed XPS spectra depicting the surface state of samples S1 and S2 in the O1s (a) and
Al2p (b) regions.

Table 1. Chemical composition at the surface of the two Al2O3/graphene/Cu samples.

Sample C, at. % O, at. % Cu, at. % Al, at. % Al/O Ratio

S1 15.4 49.0 - 35.6 0.7
S2 29.8 40.5 0.4 29.3 0.7

The O1s photoelectron spectra (Figure 2a) contain one main peak with binding energy
at around 531.5 eV, typical for Al2O3, and an additional one (at 532.5 eV) appearing as
a result of hydroxide and other adsorbed species on the surface of the studied samples.
The Al2p photoelectron spectra (Figure 2b) are also found to have two peaks, associated
with aluminum oxide and hydroxide. The main peak at around 74.5 eV is assigned to
Al2O3 and the second one to adsorbed OH or other type oxygen-containing groups over the
surface. Trace quantities of Cu are detected near the surface of sample S2 with the thicker
Al2O3 layer. This could be due to a penetration of Cu atoms through the layer due to the
occasional presence of cracks in the thicker layer. Correspondingly, in the Cu2p region, a
faint peak is detected for sample S2, and a trace feature of Cu3p is also barely visible in the
energy region of its Al2p band.
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The binding energy separation between the O1s and Al2p core levels is 456.80 eV,
in agreement with reported values for fully oxidized amorphous aluminum oxide [36,37].
Indeed, thermal ALD is known to yield amorphous Al2O3 layers for deposition temper-
atures up to 250 ◦C [38]. To verify this, we performed a structural characterization of
sample S1 by X-ray diffraction, and Figure 3 presents the obtained diffraction pattern.
Besides the copper substrate peak at ≈ 43◦ (2θ), it contains a very broad halo in the range of
13–36◦ (2θ) due to diffuse scattering from amorphous Al2O3. In addition, a weak signal is
registered at ≈45◦ (2θ), which most likely arises from a trace quantity (1%–2%) of γ-Al2O3,
considering the difference in intensities. The obtained spectrum in Figure 3 thus confirms
the amorphous state of the Al2O3 layer, which is valid for both samples S1 and S2 due to
the same growth conditions.
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which the γ-Al2O3 peaks (111) and (002) normally appear.

3.2. Study of the Al2O3/Graphene/Cu Heterostructures by Ellipsometry

To determine the thickness of the Al2O3 layer for the two samples, S1 and S2, spec-
troscopic ellipsometry (SE) measurements were carried out. The ellipsometric data for Ψ
and ∆ were fitted within a model consisting of three consecutive layers. The first layer is
a semi-infinite oblique copper substrate, whose optical constants were determined from
measurements on a freshly prepared two-component Cu/graphene system [39]. The second
layer is graphene, with the optical constants of graphite taken from Palik’s Handbook of
Optical Constants [40] (CompleteEASE 5.10 software). It participates in the model with
two different thicknesses: 0.35 nm for sample S1 and 0.7 nm for sample S2, according to
the initial Raman results for the two samples. The Al2O3 ALD layer was represented by
the Cauchy dispersion. The thickness of the third component—the Al2O3 layer—was thus
found to be 42 nm for sample S1 and 116 nm for sample S2. To corroborate our model, we
carried out SE measurements on analogous Al2O3 layers deposited onto accompanying
silicon substrates with 2.5 nm thick native oxide in the same ALD experiment. The same
Al2O3 thicknesses were found, which confirms the reliability of the obtained results. The
experimental Ψ and ∆ data for both the 42 and 116 nm thick Al2O3 layers are presented in
Figures 4a and 4b, respectively. The theoretical model is represented by a dotted line.
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Figure 4. Ψ and ∆ spectra (red and green lines respectively) acquired for (a) sample S1 with 42 nm
thick Al2O3 and (b) sample S2 with 116 nm thick Al2O3. Dotted lines represent the theoretical model.

3.3. AFM and SEM Analysis

The surface morphology of the obtained Al2O3 layers was studied by AFM and SEM.
AFM images of samples S1 and S2 are shown in Figures 5a–c and 5d, respectively. They
reveal relatively smooth Al2O3 surface for both thicknesses. Root mean square (RMS)
roughness was estimated by calculating the square root of the second central moment in
the data. The average RMS roughness for the three images displaying the morphology of
sample S1 (Figure 5a–c) is about 2.7 nm, while for the thicker Al2O3 layer of S2 (Figure 5d),
a roughness of ≈8.5 nm was found. More detailed AFM and SEM data for S2 are given in
the Supplementary Materials.
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Figure 5. AFM images of sample S1 with 42 nm Al2O3 (a–c) and S2 with 116 nm Al2O3 (d).

SEM images from the Al2O3-coated surfaces of the studied samples are displayed in
Figure 6. They show a complete and rather uniform coverage of the underlying graphene
by the oxide film without pinholes, consistent with the AFM data.



Coatings 2024, 14, 662 8 of 13
Coatings 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. SEM images of samples S1 with 42 nm Al2O3 (a) and S2 with 116 nm Al2O3 (b). The scale 
bars represent 500 nm. 

3.4. Raman Analysis 
Raman monitoring of both samples was carried out at every stage of the sample prep-

aration and after the transfer. On sample S1, we encountered a region containing a char-
acteristic defect that could be repeatedly located under an optical microscope. We were 
thus able to measure Raman spectra on the same selected spots with a spatial precision of 
about 5 µm after each processing step. Figure 7a contains such spectra measured at six 
smooth spots and a Cu grain boundary crossing point, which are shown in the optical 
micrographs in Figure 7b (before the ALD deposition) and Figure 7c (after the ALD dep-
osition). The spectra are grouped in couples to illustrate, for each examined spot, the 
change in the Raman response caused by the Al2O3 ALD deposition. Figure 7d presents 
Raman spectra illustrating this effect for sample S2. Further details of the Raman charac-
terization are given in the Supplementary Materials. 

 

Figure 6. SEM images of samples S1 with 42 nm Al2O3 (a) and S2 with 116 nm Al2O3 (b). The scale
bars represent 500 nm.

3.4. Raman Analysis

Raman monitoring of both samples was carried out at every stage of the sample
preparation and after the transfer. On sample S1, we encountered a region containing a
characteristic defect that could be repeatedly located under an optical microscope. We were
thus able to measure Raman spectra on the same selected spots with a spatial precision
of about 5 µm after each processing step. Figure 7a contains such spectra measured
at six smooth spots and a Cu grain boundary crossing point, which are shown in the
optical micrographs in Figure 7b (before the ALD deposition) and Figure 7c (after the
ALD deposition). The spectra are grouped in couples to illustrate, for each examined
spot, the change in the Raman response caused by the Al2O3 ALD deposition. Figure 7d
presents Raman spectra illustrating this effect for sample S2. Further details of the Raman
characterization are given in the Supplementary Materials.

The spectra taken from the as-grown graphene reflect a uniform picture of strong
coupling to the Cu substrate [41], manifested by suppressed Raman intensity and a strong
blue shift of the G and the 2D bands (≈10 and ≈35 cm−1, respectively [39,42]). Multiple
enhancement of the intensity of all Raman bands of the graphene in sample S1 is observed
as an immediate consequence of the ALD process; however, the blue shift largely remains
the same. The same effect is established also for sample S2; however, the ALD-induced
intensity enhancement there is much weaker and only reaches, at most, 50%. We attribute
these effects to the complex interplay of interactions to which graphene is subjected in the
obtained sandwich structure. The intimate contact with copper creates polar traps [13],
making graphene more susceptible to the adsorption of H2O and, probably, TMA molecules.
The massive adsorption of such species during ALD, in turn, slightly modifies the graphene–
Cu coupling but does not relax it. A further indication that the coupling is largely preserved
is the lack of Cu2O-related spectral bands in the region of 100–650 cm−1 [43] in the Raman
spectra measured after the ALD process (see Figures 7d and S4). Because this is a 200
◦C process with water pretreatment, we conclude that even the single-layer graphene
in sample S1 effectively prevents the penetration of ALD-related species toward the Cu
surface, in contrast to other oxide deposition processes that oxidize the substrate [44]. As
can be appreciated from the relatively symmetric shape of the 2D band in the spectra
of sample S2 in Figures S1 and 7d, its graphene layer consists mostly of twisted bilayer
graphene. In this case, the two monolayers do not strongly interact [45], and the coupling
to the Cu substrate may have a weaker impact on the upper layer. This may explain the
weaker Raman intensity enhancement in sample S2 after the ALD process.
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Now, we discuss the possible bonding types between graphene and the adsorbed
water molecules during the ALD pretreatment step. We consider the predominant bonding
type to be physisorption [24], with a small amount of covalently bonded -OH groups. A
covalent bond constitutes a zero-dimensional point-like defect, and the D peak provides
information on such defects in the graphene lattice. The ratio of its intensity to that of the G
peak, ID/IG, is typically used as measure for the defect density [46]. We found the increase
in this ratio caused only by the ALD process to be in the range 0.1–0.2 for the spectra in
Figure 7a. Using the defect quantification model proposed in ref. [46] and assuming that the
impact of the ALD process was the creation of a certain number of covalent C-OH bonds,
we estimate the average distance between two neighboring C-OH bonds to be 30–50 nm,
which yields a surface density of about 103 per µm2. On the other hand, the surface density
of all adsorbed H2O molecules can be assumed to be approximately equal to the surface
density of Cu-induced polar traps, which, according to ref. [13], reaches 105–106 per µm2.
Thus, the rate of covalent C-OH bonds can be roughly estimated to be ≈1%. However,
our Raman data from aged samples presented in the Supplementary Materials (Figure S4)
shows a broadening of the G peak and a sharp increase in ID/IG over larger timescales,
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which imply that oxidation reactions may slowly advance at the Al2O3/graphene interface
over time. This raises concerns about the long-term stability of such heterostructures and,
especially, the performance sustainability of devices into which they are integrated.

Parts of both samples were transferred to microscope glass slides using poly-methyl-
methacrylate (PMMA)-assisted wet transfer. The presence of nanoscale Al2O3 allows for
a much thinner PMMA film than typically used (about 150 nm). It further protects the
graphene from PMMA contamination and facilitates subsequent removal of the backbone
polymer [47]. The PMMA (2% in anisole) was spin coated at ~4000 rpm, resulting in about
a 50–70 nm layer. Then, the samples were cured for 2 min at 180 ◦C and floated on a
Fe(NO3)3•9H2O solution to etch the Cu foil. Finally, after a few cycles of rinsing in DI
water, the PMMA was dissolved in acetone at 80 ◦C for few hours.

Raman spectra from the two transferred Al2O3/graphene heterostructures are dis-
played in Figure 8. The values of the 2D-to-G peak intensity ratio I(2D)/I(G) obtained from
these spectra of about 1 for sample S2 and 2–3 for sample S1 confirm that they represent
bi- and monolayer graphene, respectively (see also Figure S1). For both transferred het-
erostructures, we found typical ID/IG values in the range between 0.05 and 0.1, indicating
that the ALD process used for Al2O3 growth does not damage the underlying graphene.
The full width at half-maximum (FWHM) of the 2D peak was found to be in the range
of 30–35 cm−1 for sample S1 and 35–38 cm−1 for S2, which is only insignificantly higher
than the typical values for CVD graphene. The FWHM of the 2D peak is informative for
the local strain variations in the graphene layer [48]. Furthermore, after transfer, the G
and 2D peak frequencies are around 1588 and 2650 cm−1, respectively, thus exhibiting a
slight residual blue shift, especially for the single-layer graphene sample. We attribute
this blue shift to a compressive strain imposed by the oxide layer [20], which, on the
other hand, indicates a strong and reliable adhesion of the Al2O3 layer on the underlying
graphene. The spectra are almost free of Raman signals from transfer residues, especially
those stemming from sample S1 with the thinner and smoother Al2O3 layer, thus confirm-
ing its protecting function during the transfer. Such a layer of 30–40 nm thickness, which is
still relatively smooth and crack-free, according to the XPS results, seems to be optimal for
wet-chemistry transfer.
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In summary, we performed ALD Al2O3 deposition with water pretreatment on as-
grown Cu-supported CVD graphene. After characterization of the specimens by structural
and imaging methods, we carried out a detailed on-spot Raman investigation of the
graphene interaction with the Cu substrate, the impact of the ALD process and the post-
ALD time evolution of the Al2O3/graphene/Cu system. Our results indicate possible
problems in the practical use of Al2O3/graphene heterostructures prepared by ALD with
water pretreatment.

4. Conclusions

We prepared Al2O3/graphene heterostructures by the chemical vapor deposition
of graphene onto copper foil and subsequent atomic layer deposition of Al2O3 onto the
Cu-supported graphene. Characterization of the obtained heterostructures by X-ray pho-
toelectron spectroscopy, ellipsometry and atomic force and scanning electron microscopy
revealed smooth Al2O3 coatings with complete coverage and controllable thickness. Sam-
ples of these heterostructures were transferred onto glass substrates by standard methods,
with the Al2O3 coating serving as a protective layer during the transfer. On-spot Raman
monitoring at every stage of the sample preparation and after the transfer confirmed that
graphene endures the Al2O3 ALD growth without significant defect formation and effec-
tively prevents the penetration of ALD-related species toward the Cu-substrate surface.
However, our results indicate that after ALD Al2O3 deposition with water pretreatment, oxi-
dation reactions may slowly advance at the Al2O3/graphene interface with time. Therefore,
special care should be taken to block these reactions when integrating such heterostructures
into electronic devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings14060662/s1, Details of CVD graphene growth process
parameters; Raman check and estimation of the thickness of the CVD grown graphene samples;
additional AFM and SEM results for Sample S2; study of the effects of aging of the Al2O3/graphene
heterostructure.
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