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Abstract: Machine learning methods were employed to predict the phase structures of high-entropy
alloys (HEAs). These alloys were classified into four categories: bcc (body-centered cubic), fcc
(face-centered cubic), bcc+fcc (body-centered cubic and face-centered cubic) and others (containing
intermetallic compounds and other structural alloys). The utilized algorithm was a Pattern Recogni-
tion Network (PRN) utilizing cross-entropy as the loss function, enabling the prediction of HEAs’
phase formation probability. The PRN algorithm demonstrated an accuracy exceeding 87% based on
the test data. The PRN algorithm successfully predicted the transformation from fcc to fcc+bcc and
subsequently to a bcc structure with the increase in Al content in AlxCoCu6Ni6Fe6 and AlxCoCrCu-
NiFe HEAs. In addition, AlxCoCu6Ni6Fe6 (x = 1, 3, 6, 9) HEAs were prepared using a vacuum arc
furnace, and the microstructure of the as-cast alloy was tested by means of XRD, SEM, and EBSD,
confirming the high consistency between the predicted and observed phase structures. This study
showcases the efficacy of the PRN algorithm in predicting both single- and multiphase-structure
high-entropy alloys, offering valuable insights into alloy design and development.

Keywords: machine learning; high-entropy alloys; phase structure; model prediction

1. Introduction

High-entropy alloys (HEAs) have garnered increasing attention due to their excep-
tional mechanical and functional properties, encompassing high wear resistance, strength,
hardness, radiation resistance, and biocompatibility [1]. Originally, HEAs were devel-
oped to craft multi-principal simple solid solution alloys with high mixed entropy, aiming
to achieve multiphase structures capable of meeting diverse performance requirements
through the adjustment of each principal element’s composition ratios [2,3]. The vast
elemental and compositional space of HEAs poses challenges in identifying novel al-
loys with distinct phases [3]. Recent reports highlighted CoCrFeMnNi HEAs with an fcc
structure, showcasing outstanding damage tolerance with fracture toughness exceeding
200 MPa m1/2, surpassing that of pure metals, polymers, and metallic glasses. Additionally,
these alloys exhibit enhanced mechanical properties at cryogenic temperatures. Investi-
gations by Senkov et al. [4] explored the microstructure evolution and compressive flow
behavior of refractory HEAs with a bcc structure, illustrating alloy yield stress stabilization
above 600 ◦C, indicative of superior thermal stability compared to conventional superalloys.
Wani et al. [5] synthesized AlCoCrNiFe2.1 eutectic HEAs with dual-phase structures of
fcc (L12) and bcc (B2), showcasing satisfactory strength–ductility combinations. Recent
research underscores the significance of identifying bcc, fcc, bcc+fcc, and other phases for
future HEA applications, such as hydrogen storage, metallic biomaterials, and structural
materials [4–10]. Hence, rational alloying element selection and crystal structure design
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are imperative to cater to diverse property requirements. Determining the composition
space of HEAs with different structures (bcc, fcc, bcc+fcc, etc.) is challenging due to the
complex interactions among multi-principle elements, often resulting in crystal structures
differing from individual elements [1]. Recent studies have employed thermodynamic
empirical parameters, pseudo-binary strategies, first-principle density functional theory,
and CALPHAD-aided predictions to forecast HEA phase formation, albeit at significant
experimental and computational costs [11–14].

Machine learning (ML) has emerged as an efficient data processing method capa-
ble of uncovering underlying data patterns and reducing experimental and simulation
expenses. The abundance of experimental HEA data enables ML algorithms to predict
phase formation across wide composition spaces. Zhang Lei et al. [15] employed three
algorithms—multilayer perceptron, support vector machine, and gradient boosting decision
tree—to predict HEA phase formation based on a dataset of 407 alloys. Jaiswal et al. [16]
utilized seven algorithms, including logistic regression, support vector machine, and arti-
ficial neural networks, for HEA phase formation prediction. Jiang et al. [17] established
a property-oriented artificial neural network model to rapidly discover novel aluminum
alloys with comprehensive mechanical properties. Krishna et al. [18] utilized six machine
learning algorithms to predict solid solutions and intermetallic multi-phase mixtures, with
artificial neural networks yielding the highest prediction accuracy of 80.5%. Although
various ML algorithms have been applied, the differences in accuracy are minimal, sug-
gesting insignificant variation in HEA phase prediction. Furthermore, there is a lack of ML
algorithms predicting HEA phase formation probability [15,16,18]. Hence, the adoption
of the Pattern Recognition Network (PRN) with high prediction accuracy and probabil-
ity is warranted. Based on phase formation criteria from the literature, thermodynamic
empirical parameters—such as enthalpy of mixing (∆Hmix) [19], valence electronic con-
centration (VEC) [20], entropy of mixing (∆Smix) [21], difference in atomic sizes (δ) [21],
Ω parameter [21], and Φ parameter [22]—along with their value ranges are proposed for
HEA formation prediction.

In this study, we aimed to predict HEA phase structures utilizing the PRN algorithm
with cross-entropy as the loss function, facilitating phase formation probability prediction.
The algorithm’s predictive performance for new compositions was experimentally vali-
dated. HEA data from various groups (bcc, fcc, bcc+fcc, and other alloys) were analyzed by
combining parameters like VEC, Tm, δ, ∆Hmix, and ∆Smix.

2. Materials and Methods

The PRN algorithm consists of an input layer, a hidden layer, an output layer, and a
softmax layer, and each layer is fully connected. The PRN algorithm is given as follows:

Oj = φ(x)
(
∑n

i=1 wixi + θj

)
(1)

y =
eoi

∑n
j=1 eoj

(2)

where xi is the input, wi is the weights, θj is the thresholds, and Oj is the output. φ(x) is
the active function; for the hidden layer, φ(x) = 2

1+e−2∗x − 1, and φ(x) = x for the output
layer. Formula (2) is the active function of the softmax layer, which converts the network
output into probability results.

The calculated design parameters and collected phase structure data [23–25] under-
went statistical analysis utilizing the Pandas module [16,18]. Figure 1a illustrates the
pairwise correlation of design parameters, with the diagonal line representing the density
plot of all parameters in the study. The diagonal depicts the distribution density of design
parameters, highlighting the need to consider all parameters for the PRN algorithm. A heat
map, generated using the Pearson correlation coefficient, illustrates the interdependence of
design parameters across different phase structures. The heat map, depicted in Figure 1b,
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displays both negative and positive correlations between parameters, with values ranging
from −0.69 to 0.35, indicating varying degrees of correlation. For instance, ∆Hmix and
δ exhibit a positive correlation, indicating that an increase in ∆Hmix results in a larger
δ. Conversely, the negative correlation coefficient between Tm and VEC suggests that an
increase in Tm leads to a decrease in VEC, consistent with observations from the paired plot.
Figure 1c, plotted using Plotly in Python, presents a parallel coordinate diagram of phase
formation, showcasing the variation in design parameters and confirming the overlapping
boundary between bcc, fcc, bcc+fcc, and other phases.

The prediction of HEAs with bcc, fcc, bcc+fcc, and other phase structures was con-
ducted using the PRN algorithm, formulated and implemented in MATLAB. The model
utilized training data to predict phase formation for new alloy groups, leveraging insights
gained through the training algorithm. In this study, 70% of the dataset was randomly
allocated for training, while 15% was used for validation and 15% was used for testing
purposes. Experimental validation was conducted to verify the predictive performance of
the algorithm for new compositions.
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3. Results and Discussion

Artificial neutral networks are the most widely used models to predict material proper-
ties and structures, accelerating the discovery of new materials with excellent performance.
Lee et al. [26] identified phase information of HEAs using a deep neural network (multilayer
neural network). Zheng et al. [27] utilized an artificial neural model to predict the γ′ phase
volume fraction and yield strength of HEAs. Dixit et al. [28] used an artificial neutral model
to predict eight coexisting phases in HEAs. Mi et al. [29] developed high-performance
and low-cost magnesium alloys using an artificial neutral network model. Wu et al. [30]
employed an artificial neutral network model to develop an affordable new Ti alloy with
bone-like modulus. The PRN algorithm employed in this study is a supervised learning
algorithm utilizing cross-entropy as the loss function. Each data point utilized for training
possesses a target label, with weights and thresholds optimized through the backpropa-
gation algorithm to achieve the required training set accuracy for accurate classification
of new components. It has been demonstrated that a single hidden layer can effectively
approximate most non-linear functions [31,32]. Hence, a single hidden layer is adopted in
the PRN algorithm, with the number of nodes in the hidden layer significantly impacting
PRN accuracy. A small number of nodes in the hidden layer may compromise generaliza-
tion ability, while an excessive number can prolong training time and increase the risk of
overfitting. To determine the optimal hyperparameter of the PRN algorithm, the number
of nodes in the hidden layer was varied from 2 to 10, and the prediction accuracy of the
test data was assessed, as depicted in Figure 2. The results reveal that the PRN algorithm
achieves optimal prediction accuracy with eight nodes in the hidden layer. The training
process of the PRN algorithm is illustrated in Figure 3a, showing that after 40 epochs, the
validation performance reached its peak value of 0.090554. Figure 3b displays the error
instances during the training process.
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The confusion matrix serves as a metric for assessing the performance of the PRN
algorithm by comparing predicted and experimental results [26]. Each column of the
confusion matrix represents predicted outcomes, while each row represents experimental
outcomes. Higher values along the diagonal indicate greater prediction accuracy. Figure 3c
illustrates the confusion matrix generated by the PRN algorithm for classifying bcc, fcc,
bcc+fcc, and other categories. The matrix encompasses data from 634 compositions, com-
prising 444 training samples, 95 validation samples, and 95 testing samples. The graph
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presents normalized actual and predicted phase values, with correct classifications depicted
along the diagonal. Notably, the PRN achieves prediction accuracies exceeding 85% for
the training, validation, testing, and overall datasets, surpassing values reported in the
literature [15,16,18,23]. Specifically, the PRN algorithm achieves 93.3% accuracy for bcc
data, 84.6% for fcc data, 75% for bcc+fcc data, and 90.6% for other data. The PRN algorithm
demonstrates a high accuracy of 87.4% based on the test dataset. Furthermore, varying the
number of hidden layer neurons can enhance PRN prediction accuracy on the test data,
underscoring its potential to expedite the discovery of new components.
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AlxCoCu6Ni6Fe6 HEAs were prepared using a vacuum arc furnace, with melting
repeated five times to ensure chemical homogeneity. Rigaku Ultima IV X-ray diffraction
(XRD) analysis employing Cu Kα radiation was utilized to verify the phase structure.
Samples were scanned over a 2θ range from 20◦ to 90◦ at a scan speed of 5◦ min−1. The
microstructure of specimens was characterized using the Crossbeam 350 SEM equipped
with an EBSD probe running at 20 kV, and the EBSD samples were prepared using vibration
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polishing. Figure 4 presents the XRD patterns of the newly developed alloys. From
Figure 4, it can be seen that the Al6CoCu6Ni6Fe6 alloy has diffraction peaks with both bcc
and fcc structures. The Al1CoCu6Ni6Fe6 and Al3CoCu6Ni6Fe6 alloys only have diffraction
peaks with fcc structures, while Al9CoCu6Ni6Fe6 only has diffraction peaks with bcc
structures. Among them, peaks of a partially ordered bcc phase (B2) were also observed
in the Al6CoCu6Ni6 and Al9CoCu6Ni6 alloys [33,34]. Considering that the ordered bcc
phase and disordered bcc phase belong to the body-centered-cubic system, the datasets
used for the training pattern network (PRN) pre-classified both the ordered bcc structure
and disordered bcc structure into the bcc category. It can be further observed from Figure 4
that the Al6CoCu6Ni6Fe6 HEA has (100) diffraction peaks at 32 degrees, indicating that the
bcc structure of Al6CoCu6Ni6Fe6 is composed of an ordered B2 phase and a disordered
bcc phase. The same applies to the Al9CoCu6Ni6Fe6 alloy.

To further examine the microstructural morphology and phase structure of Alx-
CoCu6Ni6Fe6 HEAs, EBSD observation was conducted, as shown in Figure 5. Figure 5a–d
depict the EBSD band contrast maps of AlxCoCu6Ni6Fe6 (x = 1, 3, 6, 9) HEAs. It can be
seen from Figure 5e–h that the phase structures of AlxCoCu6Ni6Fe6 (x = 1, 3, 6, 9) were
fcc, fcc, bcc+fcc and bcc, respectively, which is consistent with the XRD results. Table 1
provides statistics on HEA composition, predicted results, and experimental results. The
PRN algorithm successfully predicts the transition from fcc to fcc+bcc and then to a bcc
structure with increasing Al content in AlxCoCu6Ni6Fe6 and AlxCoCrCuNiFe HEAs, with
exceptions noted for certain compositions, as shown in the bold font in the Table 1. This
discrepancy is attributed to overlapping design parameters of bcc and bcc+fcc, as depicted
in Figure 6. The PRN algorithm effectively elucidates the influence of aluminum on HEAs’
crystal structure and offers a probabilistic explanation for prediction errors. This study
offers valuable insights for the design of HEAs with desired phase structures.
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Al1CoCu6Ni6Fe6 0 0.96 0.04 0 fcc fcc This work 
Al3CoCu6Ni6Fe6 0 0.87 0.12 0.01 fcc fcc This work 
Al6CoCu6Ni6Fe6 0.01 0.42 0.56 0.01 bcc+fcc bcc+fcc This Work 
Al9CoCu6Ni6Fe6 0.01 0.13 0.86 0 bcc+fcc bcc This Work 
Al0CoCrCuNiFe 0.01 0.89 0.08 0.02 fcc fcc [35] 

Al0.3CoCrCuNiFe 0.02 0.58 0.33 0.07 fcc fcc [35] 
Al0.5CoCrCuNiFe 0.02 0.33 0.54 0.11 bcc+fcc fcc [35] 
Al0.8CoCrCuNiFe 0.02 0.11 0.73 0.13 bcc+fcc bcc+fcc [35] 
Al1CoCrCuNiFe 0.02 0.06 0.80 0.12 bcc+fcc bcc+fcc [35] 

Al1.3CoCrCuNiFe 0.02 0.02 0.86 0.10 bcc+fcc bcc+fcc [35] 
Al1.5CoCrCuNiFe 0.02 0.01 0.89 0.08 bcc+fcc bcc+fcc [35] 
Al1.8CoCrCuNiFe 0.02 0.01 0.91 0.06 bcc+fcc bcc+fcc [35] 
Al2CoCrCuNiFe 0.01 0.01 0.93 0.05 bcc+fcc bcc+fcc [35] 

Al2.3CoCrCuNiFe 0.01 0.01 0.94 0.04 bcc+fcc bcc+fcc [35] 
Al2.5CoCrCuNiFe 0.01 0.01 0.95 0.03 bcc+fcc bcc+fcc [35] 
Al2.8CoCrCuNiFe 0.01 0 0.96 0.03 bcc+fcc bcc [35] 
Al3CoCrCuNiFe 0.01 0.01 0.96 0.02 bcc+fcc bcc [35] 

 
Figure 6. Parallel coordinate plot of bcc- and bcc+fcc-structure high-entropy alloys. 

Figure 6. Parallel coordinate plot of bcc- and bcc+fcc-structure high-entropy alloys.
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4. Conclusions

In this study, AlxCoCu6Ni6Fe6 high-entropy alloys (HEAs) were formulated to inves-
tigate the influence of aluminum content on crystal structure, guided by predictions from
the PRN algorithm regarding HEAs’ phase structures. As the Al content increased, the
crystal structure transitioned from fcc to fcc+bcc and subsequently to bcc. Furthermore, the
PRN algorithm offered novel insights into predicting failures resulting from comparable
prediction probabilities associated with different structures. The data-driven approach
employed in this investigation holds promise for structural prediction in diverse material
systems, thus expediting the discovery of novel materials.
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