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Abstract: Intelligent materials for monitoring the condition of the packaged food or its surroundings
are highly desired to ensure food safety. In this paper, UV-curable silicone-modified materials
for monitoring the freshness of high-protein food such as shrimp and pork were prepared from
polyurethane acrylates with covalent-grafted neutral red groups and thiol silicone resin. The UV-
curable materials exhibited visible pH-sensitive performance and long-term color stability because
their color did not change when they were immersed in aqueous solutions with different pH values
for 20 min, and the color remained even when they were immersed for over 5 h. The distinctive
color variation in the UV coatings makes them suitable as potential pH-sensitive sensors. These
pH-sensitive intelligent materials can be applied to monitor the freshness of high-protein food such
as shrimp and pork. Additionally, the thermal stability and adhesive properties of the UV-curable
materials were also studied. A conclusion can be drawn that the covalent bonding of neutral red
groups onto a silicone-modified polymer matrix is an ideal strategy for developing pH-sensitive
intelligent materials with good pH stability for monitoring the freshness of high-protein food.

Keywords: pH-sensitive intelligent materials; food freshness monitoring; UV curable; silicone-modified
materials

1. Introduction

Animal-derived foods such as shrimp and pork are widely consumed because of their
superior nutritional composition. However, in the fabrication and sale chain, these foods
can produce some substances that are harmful to human beings such as aldehydes, acids,
amines, ammonia, hydrogen sulfide, phenol, mercaptans, etc. [1,2]. So, intelligent materials
are highly desired for monitoring quality information to ensure food safety [3–7]. Recently,
Sangeetha et al. prepared an intelligent packaging material from coconut husk-lignin-
derived carbon dots and carrageenan [8]. Yue et al. prepared an intelligent packaging film
with antibacterial performance using cellulose fibers, cellulose nanofibers, ZnO nanoparti-
cles, and polydiacetylene [9]. Ronte et al. developed intelligent packaging material using
chitosan grafted with phenol red to monitor shrimp freshness by pH changes [10]. The pH
change in food attributed to amino acids and glucose metabolization is one of the important
and effective parameters for identifying food spoilage [11]. Low molecular synthetic pH
indicators are not suitable for monitoring food spoilage because of their toxic, carcinogenic,
and mutagenic properties. Natural dyes such as anthocyanins, curcumin, alizarin, and
betalains, with safe, non-toxicity, and renewability properties, are ideal sources of pH
indicator materials [12–14]. However, the poor stability and insensitivity to minor changes
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in pH for natural pH indicators exposed to different environmental conditions seriously
limit their applications [15,16].

To reduce toxicity and improve the stability of pH-sensitive intelligent materials, the
covalent bonding of pH indicator groups onto a polymer matrix is a reliable strategy be-
cause the release probability of the dyes is greatly reduced. For example, a membrane with
a visible color change at different pH conditions of 2–12 was developed by immobilizing
pH-sensitive dyes onto ethyl cellulose nanofibers, which exhibited good stability for up
to 7 days at room temperature [17]. A pH-sensitive material for monitoring the freshness
of pork for 12 days was also fabricated by the covalent grafting of oregano essential oil
and black rice bran anthocyanin onto a chitosan matrix [18]. Neutral red (NR), an easily
available water-soluble, pH-sensitive dye in the pH value range of 4–6 with relatively low
toxicity, has been widely used [19]. Khanjanzadeh et al. [20] developed pH-sensitive films
with visible color variation at a pH value of 2–10 by covalent bonding NR onto cellulose
nanofibrils. Their work revealed that NR is a good candidate for covalent bonding onto a
polymer matrix to develop pH-sensitive intelligent materials.

UV-cured technology has gained much attention in the coating industry because of its
high efficiency, environmentally friendly, and energy-saving merits [21]. The outstanding
performance of UV-curable silicone-modified materials such as non-toxicity and excellent
chemical and thermal stability makes them broadly used in electronics, sensors, and coat-
ings [22,23]. In this paper, UV-curable pH-sensitive intelligent silicone-modified coatings
for monitoring the freshness of high-protein food such as shrimp and pork were prepared.
The materials have a good pH-sensitive property and long-term color stability, which have
potential usages in monitoring the freshness of high-protein food.

2. Materials and Methods
2.1. Materials

Isophorone diisocyanate (IPDI, 98%, mixture of isomers) and acetone (A. R.) were
supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Poly(ethylene
glycol) (average Mn ~600, PEG–600), N–hydroxy succinimide (NHS, A. R.), and 1–(3–
dimethylaminopropyl)–3–ethylcarbodiimide hydrochloride (EDC, A. R.) were bought from
Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, China). Neutral red (NR,
A. R.) was purchased from Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China).
Dimethyldimethoxysilane (A. R.) and methyltrimethoxysilane (A. R.) were supplied by
Shanghai Jiancheng Industry and Trade Co., Ltd. (Shanghai, China). Mercaptopropy-
ltrimethoxysilane (A. R.), 2–hydroxy–1–methylethyl acrylate (HMA, A. R.), dibutyltin
dilaurate (DBTDL, A. R.), dimethylolbutanoic acid (DMBA, A. R.), and trimethylolpropane
(TMP, A. R.) were bought from Beijing HWRK Chem Co., Ltd. (Beijing, China). Hydrochlo-
ric acid (A. R., 36.5%) and toluene (A. R.) were bought from Hangzhou Shuanglin Chemical
Reagent Co., Ltd. (Hangzhou, China). 2–Hydroxy–2–methyl–1–phenylacetone (HMPP,
99.0%, AR) was obtained from Shanghai Qitai Chemical Technology Co., Ltd. (Shanghai,
China). Except for thiol silicone resin with a thiol content of 4 mmol g−1, which was
prepared according to references [22–24], the other chemical reagents were purchased and
used as received.

2.2. Preparation of NR Covalent-Grafted Polyurethane Acrylates (NR–PUAs)

Several polyurethane acrylates (PUAs) (Scheme 1) were prepared according to refer-
ence [19] by the formula shown in Table S1. For example, 0.3704 g DMBA, 28.5 g PEG–600,
0.4025 g TMP, 0.2168 g DBTDL, and 54.2 g acetone were mixed homogeneously, then
24.937 g IPDI was dropped in at 40 ◦C for 1 h, and the reaction was carried out at 60 ◦C for
about 2 h. After that, 14.185 g HPA was added, and the reaction was conducted for another
2 h at 60 ◦C. Finally, a transparent sticky liquid of PUA–1 was prepared after being distilled
at 130 mmHg/50 ◦C for about 1 h to remove acetone.
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Scheme 1. Procedure for the preparation of PUAs.

Consequently, several NR–PUAs were fabricated according to reference [18], following
the procedure shown in Scheme 2 and the formula shown in Table S2. For example, 0.0690 g
EDC·HCl in 0.0276 g THF and 0.1104 g ethanol was added into a mixture of 10.0 g PUA–1,
4.0 g THF, and 16.0 g ethanol at 55 ◦C for 1 h, and the reaction was carried out for another
2 h. Then, 0.0420 g NHS in 0.0168 g THF and 0.0672 g ethanol was added at 0–5 ◦C for 0.5 h.
The reaction was conducted for another 1 h. Later, 0.1050 g NR in 0.0420 g THF and 0.1680 g
ethanol was added, and the reaction was conducted for about 24 h. Before the NR–PUA–1
product was obtained, the mixture was filtered with medium-speed filter paper to remove
residual solid NR and distilled at 130 mmHg/60 ◦C for about 2 h to remove solvents.

Fourier transform infrared (FT–IR) spectrum analysis of NR–PUA–3 was adopted to
characterize the NR–PUAs (Figure 1). The sharp, moderate, single absorption peak at about
3335 cm−1, rather than a double absorption peak, is the characteristic stretching vibration of
N–H groups of NR [25]. The absorption peak at about 1703 cm−1 is attributed to the amide
bond resulting from the interaction between the carboxyl groups and the amino groups of
NR. The peaks at about 2932 cm−1 and 1621 cm−1 are the characteristic absorption of C=C
in acrylate groups. So, it can be concluded that NR was grafted onto the PUAs.
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2.3. Fabrication of UV-Curable Silicone-Modified Coatings (UV Coatings)

As exhibited in Scheme 3, UV coatings (thickness of about 0.3 mm) were prepared
from NR–PUAs, thiol silicone resin, and 3 wt% HMPP by UV (ZB1000, Changzhou Zibo
Electron Technology Co., Ltd., Changzhou, China; laser wavelength of 365 nm, radiation
intensity of 10.6 mW·cm−2, and a distance of the slides to the light of 20 cm).
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2.4. Characterization
1H NMR spectra were conducted on a Bruker AVANCE AV400 (400 MHz) spectrome-

ter (Bruker Corporation, Karlsruhe, Germany) in CDCl3. FT–IR analysis was carried out
using a Nicolet 700 spectrometer (Nicolet Co., Ltd., Madison, WI, USA). The pencil hard-
ness, gel–sol fraction, adhesion property, cross-linking density (SD), and thermogravimetric
analysis (TGA) of the UV coatings were measured according to reference [22,26]. Differ-
ential Scanning calorimeter (DSC) analysis was carried out on a DSC Q100 apparatus (TA
Instruments, New Castle, DE, USA) under N2 atmosphere with a flow rate of 10 mL min−1.
The coating samples were heated from room temperature to 80 ◦C and held for 2 min to
erase the thermal history, cooled to −30 ◦C at a rate of 10 ◦C min−1, and finally heated
again to 80 ◦C at a heating rate of 10 ◦C min−1. The color variation was recorded by Na He
using a mobile phone (iPhone XS Max, Apple, Cupertino, CA, USA) after the coatings on
the glass slides were immersed in the aqueous with different pH values for about 20 min.
Monitoring of the freshness of shrimp and pork was conducted as follows: The shrimp and
pork were put into separate culture dishes, and a piece of crimson film peeled off from the
UV-curable, silicone-modified coating was pasted inside the top cover of each culture dish.



Coatings 2024, 14, 728 6 of 14

Then, the experiment for monitoring the freshness of shrimp and pork was carried out at
25 ◦C.

3. Results and Discussion
3.1. Preparation of UV COATINGS
3.1.1. Impact of UV Curing Time

The impact of UV curing time is summarized in Table 1. The gel–sol fraction and the
pencil hardness of the UV coatings increased continuously from 57.3% to 89.4% and 6 B to
H, respectively. When the curing time was >50 s, both the curing content and the pencil
hardness were affected slightly by the prolongation of curing time. These coatings were
analyzed by FT–IR, as shown in Figure 2. It can be noticed that the characteristic peaks
of C=C in acrylate groups at 1610 cm−1 disappeared when the UV curing time was about
30–50 s. So, 50 s was selected as a suitable UV curing time.

Table 1. Impact of UV curing time on the performance of UV-curable coatings.

Curing Time/s Gel–Sol Fraction/wt% Pencil Hardness

20 57.3 6B
30 75.7 4B
40 80.3 B
50 89.4 H
60 89.8 H

Conditions: NR–PUA is NR–PUA–3. The molar ratio of acrylate groups to thiol groups (nacrylate:nthiol) is 1:1, and
the amount of HMPP is 3% of the total mass of NR–PUA–3 and thiol resin.
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3.1.2. Impact of Different NR–PUAs

Different NR–PUAs were fabricated by adjusting the feed ratios, and the impact of
different NR–PUAs was evaluated, as shown in Table 2. As can be seen, with the increase in
the feed molar ratios of DMBA to PEG–600 from 5:95 to 30:70, the gel–sol fraction and pencil
hardness of the UV coatings decreased from 93.1% to 77.3% and 2 H to H, respectively.
Additionally, SD decreased from 1.1227 g·mL−1 to 1.1175 g·mL−1. It can be concluded that
the impact of different NR–PUAs on the performance of UV coatings is attributed to the
increment in the amount of rigid and steric covalent-grafted NR groups in NR–PUAs.
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Table 2. Impact of different NR–PUAs on the performance of UV coatings.

Sample NR–PUA
Molar Ratio of

DMBA to PEG–600
in NR–PUAs

Gel–Sol Frac-
tion/wt%

Pencil
Hardness SD/(g·mL−1)

Coating-1 NR–PUA–1 5:95 93.1 2H 1.1227
Coating-2 NR–PUA–2 10:90 92.3 2H 1.1221
Coating-3 NR–PUA–3 15:85 89.4 H 1.1192
Coating-4 NR–PUA–4 20:80 83.5 H 1.1189
Coating-5 NR–PUA–5 25:75 77.3 H 1.1175

Conditions: The UV curing time is 50 s. The other conditions are the same as in Table 1.

3.1.3. Impact of nacrylate:nthiol

The impact of nacrylate:nthiol on the performance of the UV coatings is summarized in
Table 3. When nacrylate:nthiol was 0.5:1, the gel–sol fraction and the pencil hardness were
85.2 wt% and 1B, respectively. When nacrylate:nthiol was in the range of 1:1–2.5:1, there was
almost no change in the gel–sol fraction or the pencil hardness because there was no SD
variation in the UV coatings about 1.1189–1.1199 g·mL−1.

Table 3. Impact of nacrylate:nthiol on the performance of UV coatings.

nacrylate:nthiol Gel–Sol Fraction/wt% Pencil Hardness SD/(g·mL−1)

0.5:1 85.2 1 B 1.1187
1:1 89.4 1 H 1.1192

1.5:1 89.1 1 H 1.1199
2.0:1 87.5 1H 1.1189
2.5:1 88.9 1 H 1.1191

Conditions: NR–PUA is NR–PUA–3. The other conditions are the same as in Table 2.

3.2. Performance of UV Coatings
3.2.1. Adhesive Property

Adhesive performance plays an important role in fields including coatings, electronic
device packaging, and sensors, so the adhesive performance of the UV coatings was
evaluated. Firstly, the adhesive performance of the UV coatings prepared with different
NR–PUAs was explored (Figure 3 and Table 4). When the molar ratio of NP to PEG–600 is
in the range of 5:95–25:75, there is almost no shedding area, so the UV coatings have quite
good adhesive properties of grade 0 to glass slides.

Coatings 2024, 14, x FOR PEER REVIEW 8 of 14 
 

 

     
(a) (b) (c) (d) (e) 

Figure 3. Photos of adhesive performance test of UV coatings prepared with different NR–PUAs. (a) 
Coating-1, (b) Coating-2, (c) Coating-3, (d) Coating-4, and (e) Coating-5. 

Table 4. The ratio of shedding area and adhesive grade of UV coatings prepared with different NR–
PUAs. 

 UV Coating-1 UV Coating-2 UV Coating-3 UV Coating-4 UV Coating-5 
Ratio of 

shedding 
area/%  

Almost no shedding area  

Adhesive 
grade 0 0 0 0 0 

3.2.2. Thermal Properties 
The thermal stability of the UV coatings was evaluated (Figure 4) because it is quite 

important for coatings and package materials exposed to elevated temperatures. As re-
ported, traditional polyurethanes will undergo severe thermal decomposition at 200 °C 
[22]. Additionally, the initial thermal decomposition (Td5) of pH-sensitive pyranofla-
vylium–cellulose acetate films fabricated by V. Gomes was also not higher than 200 °C 
[27]. Compared with those materials reported, the UV coatings exhibited superior thermal 
stability because the Td5 was in the range of 202–245 °C.  

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

150 200
94

96

98

M
as

s/%

Temperature/?

M
as

s/%

Temperature/oC

 Coating-1
 Coating-2
 Coating-3
 Coating-4
 Coating-5

 

Figure 3. Photos of adhesive performance test of UV coatings prepared with different NR–PUAs.
(a) Coating-1, (b) Coating-2, (c) Coating-3, (d) Coating-4, and (e) Coating-5.



Coatings 2024, 14, 728 8 of 14

Table 4. The ratio of shedding area and adhesive grade of UV coatings prepared with different
NR–PUAs.

UV
Coating-1

UV
Coating-2

UV
Coating-3

UV
Coating-4

UV
Coating-5

Ratio of
shedding
area/%

Almost no shedding area

Adhesive
grade 0 0 0 0 0

3.2.2. Thermal Properties

The thermal stability of the UV coatings was evaluated (Figure 4) because it is quite im-
portant for coatings and package materials exposed to elevated temperatures. As reported,
traditional polyurethanes will undergo severe thermal decomposition at 200 ◦C [22]. Addi-
tionally, the initial thermal decomposition (Td5) of pH-sensitive pyranoflavylium–cellulose
acetate films fabricated by V. Gomes was also not higher than 200 ◦C [27]. Compared with
those materials reported, the UV coatings exhibited superior thermal stability because the
Td5 was in the range of 202–245 ◦C.
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DSC analysis was also adopted to evaluate the thermal performance of the UV coatings.
As demonstrated in Figure 5, there was a single glass transition temperature (Tg) of the UV
coatings, which revealed that the UV coatings were not composites of polymers. The Tg
increased from 8.6 ◦C to 13.3 ◦C with the increase in the molar ratio of DMBA to PEG–600
in NR–PUAs from 5:95 to 25:75 because the steric resistance gradually increased thanks to
the large NR group.
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3.2.3. The pH-Sensitive Property

pH-sensitive intelligent materials can serve as sensors in fields including food spoilage [11],
chemical reactions [28], specific chemical substance determination [29,30], biotechnol-
ogy [31,32], biomedical applications [33,34], and monitoring wastewater discharged from
chemical industries [35,36]. Therefore, the pH-sensitive performance of the UV coatings
was explored (Figure 6). In aqueous solutions with different pH values in the range of
2–12, it can be observed that the color of the UV coatings changed gradually from deep
red to yellowish brown. When the pH values were lower than 5, the color was mainly
deep red. When the pH values increased from 6 to 12, the color changed from pink to
yellowish brown. Thus, the UV coatings have a good pH-sensitive property based on the
color change visible to the naked eye. It is well known that the pH-sensitive range of NR is
6.4–8.0 and that the color changes from red to orange [37]. The intelligent pH-sensitive indi-
cator films prepared by the covalent bonding of NR onto cellulose nanofibrils reported by
Khanjanzadeh et al. [20] exhibited a visible color variation at a pH value of 2–10. Evidently,
the pH-sensitive range of the UV coatings has been obviously expanded.

The covalent bonding of pH indicator groups onto a polymer matrix is a reliable
strategy to improve the stability of pH-sensitive intelligent materials. It also can be seen in
Figure 6 that the color of the UV coatings no longer changed when they were immersed
in an aqueous solution with different pH values for 20 min. Furthermore, the color re-
mained even when the UV coatings were immersed for over 5 h. The pH-sensitive films
prepared by Yue et al. exhibited a color change after 30 min of exposure to ammonia with
concentrations ≥ 0.1 M [9]. Similarly, the intelligent pH-sensitive indicator films reported
by Khanjanzadeh et al. [20] also changed from red to yellow after 30 min of exposure to am-
monia vapor. Therefore, the UV coatings exhibited considerable variation in pH-sensitivity
performance and long-term color stability.

The color variation performance of the UV coatings was also investigated. As exhibited
in Figure 7, the distinctive color variation in the UV coatings in different aqueous solutions
of different solvents can be observed by the naked eye. This outstanding performance
suggests that the UV coatings have the potential to act as sensors for monitoring wastewater
with different solvents.
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3.2.4. Monitoring the Freshness of Shrimp and Pork

During the course of storage and transportation, some high-protein foods such as
shrimp and pork deteriorate easily. Eating deteriorated high-protein food by mistake will
cause significant harm to health [38,39]. So, it is crucial to develop intelligent materials to
monitor food spoilage. If a certain food is contaminated by pathogenic microorganisms,
the pH value of the food will change irreversibly because of the metabolite production
such as organic acids, CO2, and sulfur derivatives [14]. So, color variation in intelligent
materials corresponding to pH changes can be adopted to monitor food spoilage [39,40].
As discussed above, the UV coatings exhibited quite good pH-sensitive performance, so an
investigation into monitoring spoilage of high-protein food such as shrimp and pork was
carried out, as shown in Figure 8. When monitoring the food spoilage of shrimp (Figure 8a),
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the color of the pH-sensitive material gradually changed from deep red (fresh) to wine red
(day 1), peach red (day 2), light red (day 3), orange-yellow (day 4), and light yellow (day 5
and day 6). Similarly, the color of the pH-sensitive material gradually changed from deep
red (Fresh to day 2) to peach red (day 3), orange-yellow (day 4), and light yellow (day 5
and day 6) when the material was applied to monitor the freshness of pork (Figure 8b) So,
the pH-sensitive intelligent materials can be used to monitor the food spoilage of shrimp
and pork.
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4. Conclusions

UV-curable, pH-sensitive, intelligent silicone-modified materials for monitoring the
freshness of high-protein food such as shrimp and pork were prepared. The materials
have good pH-sensitive properties with changes in the color visible to the naked eye and
obviously expanded pH values in the range of 2–12. When the pH values were lower
than 5, the color was mainly deep red. When the pH values increased from 6 to 12, the
color changed from pink to yellowish brown. The materials also exhibited long-term
color stability because their color remained even when they were immersed for over
5 h. The distinctive color variation in the UV coatings in different aqueous solutions of
different solvents can be observed by the naked eye, which suggests the UV coatings
can be used as potential sensors for monitoring wastewater with different solvents. The
investigation monitoring the freshness of shrimp and pork revealed that these pH-sensitive
intelligent materials can be applied to monitor the freshness of high-protein food. These
UV-curable, pH-sensitive, intelligent silicone-modified materials exhibited quite good
adhesive properties of grade 0 to glass slides and fairly good thermal stability with Td5
in the range of 202–245 ◦C. The UV-curable, silicone-modified, pH-sensitive intelligent
materials have potential applications in monitoring the freshness of high-protein food such
as shrimp and pork.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings14060728/s1, Table S1: Feed ratios for the preparation of PUAs. Table S2: Feed ratios
for the preparation of NR–PUAs.
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