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Abstract: A crop pretreatment with silicon was combined with passive modified atmosphere pack-
aging (PMAP) in a thermoformed recycled PET packaging format as a novel approach to min-
imize the quality degradation in mushrooms. This study was aimed to evaluate the effects of
(a) two preharvest treatments, namely preharvest control (PHTC) and preharvest silicon treatment
(PHTS) and (b) four packaging lid formats, namely PMAP1: a single hole of 1.1 mm size, PMAP2:
two holes of 0.53 mm size, PMAP3: three holes of 0.53 mm size, and PMAPC: OMNI-PW micro
perforated cling film as a control on the quality and shelf life of mushrooms during five days of
storage at 4 ◦C and 99.9% RH. The results of the analysis of variance showed that packaging type,
storage days, and the double interaction effects of storage days × packaging type had significant
effects (p < 0.0001) on the changes in O2, CO2, colour L* and a* values, ∆E, total soluble solids (TSS),
and the density of mushrooms. Density, electrolyte leakage (EL), and TSS were significantly affected
by the double interaction effects of preharvest treatment × packaging type. Overall, PMAP1, PMAP2,
and PMAP3 resulted in lower O2 + higher CO2 within packages compared with the conventional
control. A preharvest silicon treatment had little overall effect. PMAP 1, 2 and 3 had a significantly
lower ∆E (=better quality) after 5 days storage compared to PMAPC which had the highest ∆E
(lowest quality) overall. PMAP1 and PMAP2 had the lowest EL values compared to PMAP3 and
PMAPC. PMAP1, PMAP2, and PMAP3 all gave better TSS levels and density compared to PMAPC.
Notably, this study proved that a perforation-mediated MAP design for mushrooms packaged in a
thermoformed recycled PET packaging format maintained improved CO2, lowered O2, and reduced
EL while maintaining TSS and the density of the mushrooms during the storage period.

Keywords: passive MAP; mushroom; silicon treatment; rPET; electrolyte leakage; thermoformer;
quality; colour; density; food waste reduction

1. Introduction

The white button mushroom, Agaricus bisporus, is one of several widely grown edible
mushroom species. It is cultivated in over 70 countries worldwide, and accounted for
11% of the world’s total mushroom supply in 2018–2019 [1]. In Ireland, it is the most
important horticultural crop with a production of around 68,000 tonnes per annum [2].
Teagasc [2] reports that around 80% of the mushrooms are exported to the UK and 20%
are used to supply the domestic market, contributing approximately EUR 130 million per
annum to the Irish economy. However, exporting to continental Europe is more challenging
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due to the short shelf life of mushrooms, high transport costs, and long transport dura-
tion. Mushrooms have high respiratory and metabolic rates leading to a very short shelf
life—typically 3 days under ambient conditions and 5 to 8 days in a cold storage system [3].

The main causes of mushrooms’ short shelf life are their high moisture content
(81.8%–94.8%), lack of a cuticle, and high enzyme activity, which facilitates high respiratory
and metabolic activity in the harvested fruit body [4]. The susceptibility of mushrooms to
mechanical damage and microbial contamination is increased by these factors, leading to
browning and a decrease in quality [5–7]. This leads to a decline in both their physiological
and morphological quality, including water loss, cap opening, stipe elongation, cell deterio-
ration, texture damage, and the growth of microbes during storage and transportation [8,9].
As a result, there is a considerable reduction in both the nutritional and market value of
the mushrooms.

Various packaging types are widely used to extend the shelf life of mushrooms, includ-
ing nano-packaging and polysaccharide nanoparticle preservation, modified atmosphere
packaging, active packaging, edible film packaging, and nanocomposite packaging [3,10–14].
Of these, modified atmosphere packaging (MAP) is a safe, environmentally friendly, sim-
ple and cost-effective packaging technique for maintaining the postharvest quality of fresh
edible mushrooms.

The modification of the atmosphere inside the package (MAP) for fresh produce occurs
through the interaction of the product’s respiration and gas transfer through the packaging.
This results in an atmosphere with higher CO2 and lower O2 levels, which has the potential
to decrease the respiration rate, sensitivity to ethylene, decay, and oxidation [15]. Research
indicates that using modified atmosphere packaging in combination with low-temperature
(4 ◦C) storage conditions can have positive effects, such as reducing the respiration and
transpiration, delaying senescence, and extending the shelf life by preventing wilting and
shrivelling [15–17].

MAP is regarded as an efficient, straightforward, and relatively inexpensive packaging
technique [9]. The polymeric films of packaging bags/lidding films/trays can take three
different types of the MAP system: (a) micro perforated, (b) macro-perforated, and (c)
perforation-mediated packaging systems [16,18–20]. Achieving MAP for fresh produce
involves using micro perforated polymeric films to maintain low oxygen O2 and CO2 levels.
These films are suitable for preserving less CO2-tolerant fruits like mangoes, bananas,
grapes, and apples. On the other hand, macro-perforated films and packaging systems
with perforations have a higher permeability rate but a lower CO2 to O2 permeability ratio,
approaching unity. Thus, perforated films with low oxygen and high carbon dioxide levels
are highly sought after for preserving fresh produce such as mushrooms [16,18,20].

In Europe, fresh edible mushrooms are frequently retailed in polypropylene trays
wrapped in a stretchable Polyvinyl Chloride (PVC) cling film with a label on the top.
This kind of film not only has high permeability to O2 and CO2 but is also subject to
environmental concerns due to its non-recyclability, contributing to massive packaging
plastic waste that goes to either landfill or is incinerated. The packaging material suppliers
in Ireland emphasized that the mushroom industries are currently introducing recyclable
packaging films such as biaxially oriented polypropylene (BOPP) with polypropylene trays
(communication with the Leaf No Waste Packaging Material Supplier advisory board).
The packaging film should be environmentally friendly and adapted to the O2 and CO2
requirements of the commodity, which largely depend on the storage temperature [15].

Sustainable packaging options like recycled polyethylene terephthalate (rPET) and
monoPET film support the circular economy by using post-consumer recycled materials
and minimizing waste. Mono PET film contains 30% post-consumer recyclable materials,
while rPET food trays are made with 80% post-consumer recyclable materials, significantly
reducing the carbon footprint and producing the lowest greenhouse gas emissions, water
usage, and total energy usage of all plastics in manufacturing [21]. These packaging
materials are lightweight, rigid, and have excellent barrier performance, making them
suitable for MAP to extend the shelf life and providing a clear presentation of products
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with glass-like clarity, especially for fresh produce packaging. Thermoformed packaging
materials will help to reduce the warehousing costs of the trays currently utilized by the
industry, but implementing a thermoforming packaging system at the packing line within
the mushroom industry would be necessary. The successful use of PET mono materials
could eliminate the need for PVC and PP in mushroom packaging. This research supports
Ireland’s recycling targets of achieving 65% of all packaging by 2025 and 70% by 2030, as
mandated by EU Packaging Regulations (SI 322/2020) [21].

Numerous studies have demonstrated that the inclusion of silver, titanium, and silicon
nanoparticles in nanocomposite packaging materials can effectively delay the degradation
of membrane lipids, as well as reduce polyphenol oxidase activity, tyrosinase activity, and
reactive oxygen in mushrooms [22–24]. For instance, a nanocomposite film comprising
chitosan, nanosilica, and 1% nisin was found to enhance the antimicrobial effectiveness,
minimize polyphenol oxidase activity and weight loss, and preserve the colour, pH, and
total soluble solids of Agaricus bisporus mushrooms [25].

The silicon fertilization in crops such as strawberries and tomatoes has been linked to
the improved crop yield and quality, which can be linked to the increased shelf life [26–28].
Silicon applications have also proven effective against biotic stresses, such as disease, as-
sociated with silicon polymerization between plant cells [29]. Silicon as a biostimulant
increases the peel firmness, total soluble content, total acidity, ascorbic acid, total phenols
and antioxidant capacity, and reduced fruit decay in clementine mandarin [30]; reduced
weight loss and colour change, increased firmness, total soluble solids, and titratable acid-
ity in Hass Avocado and Mango Fruit [31]; and reduced sweet cherry cracking [32]. In
mushrooms, the preharvest supplementation of calcium silicate in the oyster mushroom
(Pleurotus ostreatus) during two harvest flushes resulted in an increase in vitamin D2 and
tocopherol content [33]. Silicon as a preharvest treatment combined with passive MAP
(PMAP) is a novel approach that could help to minimize the physiological and morphologi-
cal quality degradation in mushrooms. For mushrooms, the use of monomaterials designed
with post-consumer recyclable materials of 80% for rPET trays and 30% for monoPET films
in a thermoforming packaging system is a novel packaging format. Therefore, this study
aimed to investigate the effects of the preharvest silicon treatment and passive modified
atmosphere packaging (PMAP) in a thermoformed recycled PET on the quality and shelf
life of white button mushrooms.

2. Materials and Methods
2.1. Mushroom Cultivation

A crop trial was carried out in an environmentally controlled mushroom tunnel located
in the Mushroom Research Unit at the Teagasc Food Research Centre (Dublin, Ireland).
Crates (400 mm × 600 mm × 300 mm) with an internal surface area of 0.2 m2 were filled
with 16 kg of substrate, colonized with Agaricus bisporus strain Sylvan A15 (Carbury Com-
post, Kildare, Ireland), and then covered with a 5 cm layer of peat-based mushroom casing
(Harte Peat Ltd., Clones, Ireland). The growing conditions in the mushroom tunnel were
maintained using the Fancom environmental control system (www.fancommushroom.com)
according to the standard commercial practices. The crop was ready to harvest after 17 days,
at which stage the temperature and relative humidity in the room were maintained at 18 ◦C
and 88%–90%, respectively, for the remainder of the crop cycle. Mushrooms were harvested
over three weeks in three distinct ‘flushes’, each lasting three days. For this study, third
flush mushrooms in the size range of 40–50 mm were used. Mushrooms were harvested into
2 kg punnets and transported to the National Prepared Food Consumer Center packaging
suite of the Food Industry Development Department at Teagasc for packaging.

2.2. Silicon Treatment Applications

A silicon treatment was applied using the commercial product, Actisil (Yara, Pock-
lington, UK) which contains 5.0 g/L silicon, in the form of orthosilicic acid in a liquid
formulation. The product was applied at a rate of 2 mL/m2 in a volume of 2 L H2O/m2.

www.fancommushroom.com
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Silicon was applied on three occasions during the crop cycle: the last watering on Day
5, the last watering between flush 1 and 2, and the last watering between flush 2 and 3.
Six replicate crates were prepared for each treatment and positioned in the growing room
according to a randomized block design.

2.3. Optimization of the Passive Modified Atmosphere Packaging (MAP) Conditions

The optimization of the passive MAP design involves determining the best headspace
gas composition to minimize the changes in the product quality parameters. This includes
screening polymeric films, identifying potential limitations, and reducing the number of
experimental trials. To design a successful passive MAP, it is essential to determine the
intrinsic properties of the product such as respiration rate (R), optimal O2 and CO2 gas con-
centrations (y), and film permeability characteristics [16,18,20]. Simulating a passive MAP
system is the most suitable method to ensure a correct design and achieve a commercially
successful product. Figure 1 depicts a thermoformer packaging system and illustrates fresh
mushrooms respiring in a perforation-mediated MAP in an rPET tray with a monoPET
lid film.
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Figure 1. Schematic diagram representing gas exchange in a perforation-mediated MAP for fresh
mushrooms. ‘y’ represents gas exchange through the perforated monoPET lidding film and ‘R’
represents gas exchange as a result of respiration of the mushrooms.

The plastic film can be used to control the flow of O2 into the package and the release
of CO2. We can use differential mass balance equations to describe the changes in O2
Equation (1) and CO2 Equation (2) concentrations in a package with a respiring product,
assuming a constant total pressure and no gas stratification inside the package [18,20]:

Vf
d
(
yO2

)
dt

=
PO2

e
A
(
yO2

out − yO2

)
− RO2 M (1)

Vf
d
(
yCO2

)
dt

=
PCO2

e
A
(
yCO2

out − yCO2

)
− RCO2 M (2)

where,

Vf is the headspace (free volume) in the package
y is the gas concentration (in molar fraction)
e is the thickness of the polymeric film
The package’s permeability, denoted as P, is the amount of gas exchanged per unit time
and area.



Coatings 2024, 14, 754 5 of 18

The respiration rate, denoted as R, is the volume of gas produced or consumed per
unit time.
M represents the weight of the product.
The subscripts O2 and CO2 indicate oxygen and carbon dioxide, respectively.

The simulation of the MAP system in this experiment was carried out using macro-
scopic perforations in a monoPET lidding film, providing a parallel pathway for gas
transport. The apparent permeability applied in Equations (3) and (4) is dependent on the
film permeability and the quantity and dimensions of the holes. It has been documented
that for holes of the same size [18]:

P′O2 = PO2 +
πR2

H16.4 × 10−6

(e + RH)
NH (3)

P′CO2 = PCO2 +
πR2

H16.4 × 10−6

(e + RH)
NH (4)

In Equations (3) and (4), the symbol P′ represents the apparent values, where RH
stands for the radius of the holes, and NH represents the number of holes.

To achieve the best conditions for preserving fresh mushrooms, a polynomial equation
was used to analyze the O2 and CO2 concentrations in packages with specific macro-
perforation dimensions. The study revealed that the ideal conditions for packaging fresh
mushrooms involved using perforations with a total diameter of 1 mm and a varying
number of holes ranging from one to four. Figure 2 illustrates the changes in O2 and
CO2 levels in the headspace based on the number of perforations and the quantity of
mushrooms. The first hole has a diameter of 0.973 mm. There are 2 holes with a diameter
of 0.515 mm and 3 holes with a diameter of 0.36 mm. In addition, there are 4 holes with a
diameter of 0.282 mm. This arrangement resulted in a gas composition of around 7% O2
and 10% CO2 during a storage period of 15 days at 4 ◦C.
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Figure 2. Perforation-mediated MAP optimization for fresh mushrooms with Bottom web rPET of
350 µm thickness and 320 mm width, PET lidding film of 20 µm thickness and 300 mm width, and
149 mm × 149 mm × 60 mm thermoformed packages.
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Based on the results of the optimization of the PMAP design as described in Section 2.3
and Figure 3, it was decided to investigate 1 hole × 1.1 mm, 2 holes × 0.53 mm,
3 holes × 0.53 mm, and control packaging systems.
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bottom web rPET of 350 µm thickness and 320 mm width, and PET lidding film of 20 µm thickness
and 300 mm width.

2.4. Packaging Treatments

Third flush mushrooms with a size range of 40 to 50 mm were harvested on 27 March 2023
and stored at 4 ◦C for up to 2–3 h until packaged. The mushrooms were then packaged
in 200 g quantities in punnets made using automatic thermoformer settings of forming,
namely 85 ◦C, with bottom pre-heating at 90 ◦C, and sealing at 175 ◦C with top pre-heating
at 90 ◦C in bottom web rPET of 350 µm thickness and 320 mm width, and PET lidding
film of 20 µm thickness and 300 mm width were used to form the thermoformed packages
(149 mm × 149 mm × 60 mm) (Figure 3). The top lidding film was given one, two, or three
perforations in the top as described in Figure 1 to give three packaging treatments—PMAP1,
PMAP2, and PMAP3. A fourth control packaging type was also included, PMAPC, which
consisted of a conventional polypropylene tray (162 mm × 123 mm × 55 mm) wrapped
with OMNI-PW micro perforated cling film (Figure 4). The packaged mushrooms were
stored for up to 5 days at 4 ◦C and 99.9% relative humidity. This procedure required that
the mushrooms were double handled, first when harvested and again when placed into the
punnet for packaging. Generally, mushrooms are only handled once (directly into the final
punnets) to minimize any damage to the fragile cap surface.

2.5. Experimental Design

The experiment was set up as a 2 × 4 × 5 factorial design to evaluate the effects
of a preharvest silicon treatment and four packaging types on the various quality pa-
rameters of mushrooms cold stored over a five-day storage period. In summary, there
were (a) two preharvest treatments, namely preharvest control (PHTC) and preharvest
silicon treatment (PHTS), (b) four postharvest packaging treatments (PMAP1, PMAP2, and
PMAP3) and a conventional control (PMAPC) (Figure 4), and (c) five sampling times (Day
1, Day 2, Day 3, Day 4, and Day 5) corresponding to days 1 to 5 of the storage period. Three
replicate punnets with 200 g per punnet were prepared for each treatment combination.
The punnets of mushrooms were removed each day for analysis. A range of measurements
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were made daily which included the following: concentration of CO2 and O2 gases within
the punnets, colour parameters L*, a*, b*, and ∆E values, density, electrolyte leakage, and
total soluble solids, as outlined below.
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2.6. Analytical Methods

Three replicates of mushroom punnets from each of the PMAP packaging treatment
and conventional packaging (control) in a randomized complete block design were assessed
for changes in internal atmosphere, colour, density, electrolyte leakage, and total soluble
solids at one-day intervals in a strict order during a five-day storage period at 4 ◦C and
99.9% relative humidity. Samples were stored on a shelf labelled with their specific test days
and divided between control samples and different treatment samples for easier future
testing organization.

2.6.1. Sampling of Gas from the Packaging Atmosphere

The gas samples from each package were obtained using a Dansensor Check-Point
3 by piercing the septum located at the top lidding film of the punnets. This device is
designed with an injection needle to penetrate the punnets and monitor the changes in
the atmospheric composition inside the package caused by the product’s respiration. Just
before opening, the device measured the O2 and CO2 percentages in the punnets, and the
rate of O2 decline and CO2 increase indicated the speed of the crop’s respiration.

2.6.2. Colour

The colour parameters L*, a*, and b* values were measured from the cap surface on
three mushrooms per punnet of mushrooms using an UltraScan Pro (HunterLab, Reston,
VA, USA, Stotto Group, Leicester, UK). The visual colour degradation of the mushrooms
was expressed in terms of L*, a*, and b* individually, employing ∆E (Equation (5)) as
described in I.S. EN ISO/CIE 11664-4:2019 [34].

∆E =

√
(L0 − L1)

2 + (a0 − a1)
2 + (b0 − b1)

2 (5)
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where L0 = 97, a0 = −2, b0 = 0 were used as reference values for mushrooms as described by
Ajlouni [35].

2.6.3. Density

The density (kg/m3) of individual mushrooms was measured using Voluscan (Portable
micro systems), and three mushrooms per punnet from each treatment were analyzed.

2.6.4. Electrolyte Leakage

Electrolyte Leakage Analysis was adapted from the methods of leaf and fruit-based
techniques described by [36]. A circular disc of 12 mm diameter and 10 mm depth was
extracted. The obtained cylindrical-shaped mushroom pieces were towel-drained on lint-
free sheets, and then placed in 50 mL labelled beakers and filled to 30 mL with ultra-pure
water, and the conductivity was recorded using a conductivity meter. Three measurements
were conducted at the beginning (e0), and then the sample was placed on an oscillator and
gently mixed for 3 h to allow the electrolyte to permeate (e1). Subsequently, the contents of
the beaker were subjected to heating in a water bath at 75 ◦C for 20 min to decompose the
mushrooms, and a final measurement of electrical conductivity was taken to indicate the
overall electrolyte concentration of the mushrooms (et). The electrolyte leakage (EL) could
then be determined using Equation (6):

EL =
(100 × (e1 − e0))

et
(6)

2.6.5. Total Soluble Solids (TSS)

Three mushrooms were randomly selected from a punnet and homogenized using a
blender, and the obtained extract was centrifuged (4000 rpm for 10 min). TSS in ◦Brix was
measured at 25 ◦C using an Anton Paar Refractometer (Abbemat 3100, Graz, Austria) with
a resolution of 0.1. The test was repeated for each of three replicates per treatment.

2.7. Statistical Analysis

The effects of two preharvest treatments, four PMAP packaging types, and five storage
days on the quality of mushrooms were determined using the analysis of variance (ANOVA)
for a 2 × 4 × 5 factorial design via the modelling data option (XLSTAT 2023 by AddinSoft™
SARL, Paris, France). To determine significant differences between means, the Fisher
Least Significant Difference test (LSD) was performed at a 5% probability level (p < 0.05).
Additionally, principal component analysis (PCA) was conducted on the observations, or
the variables table was analyzed to visually represent the differences among preharvest
treatments, packaging types, and storage days using a vector distance plot.

3. Results and Discussion
3.1. Headspace Gas Composition during the Storage Days

The results of the analysis of variance showed that packaging type, storage days, and
the double interaction effects of storage days × packaging type had significant effects
(p < 0.0001) on the changes in CO2 and O2 content inside the packages (Table 1). The mean
values of the main effects and the results showed that the concentration of CO2 from day 2 to
day 5 within the packaging system increased significantly in PMAP1, PMAP2, and PMAP3
compared to PMAPC as shown in Figure 5a. In the normal atmosphere, there are about
78% N2, 21% O2, 0.3% CO2, and small amounts of other gases in a storage room. PMAP1
and PMAP2 had slightly higher CO2 and lower O2 compared to PMAP3 after 5 days of
storage. The mushrooms packed in PMAP1, PMAP2, and PMAP3 showed an increase
in CO2 concentration with time reaching 6.3%, 6.6%, and 5.5% after 5 days, respectively,
whereas the CO2 concentrations did not change significantly (0.85%–0.4%) over 5 days
in the control packages (PMAPC). Similarly, the concentrations of O2 after Day 1 were
significantly higher in PMAP3 compared to PMAP1 and PMAP2, but all were significantly
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lower compared to the control PMAPC (Figure 5b). In PMAPC, the conventional packages’
respiration rate of mushrooms was higher, as the entry rate of O2 was high through the
micro perforated packaging film (Figure 5b). There was no significant effect of preharvest
treatment with silicon on CO2 or O2 concentration (Table 1).
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Figure 5. The interaction effects of packaging type and storage days on (a) CO2 concentration; and
(b) O2 concentration of mushrooms. PMAP1: one hole of perforation size of 1.1 mm on monoPET
lidding film; PMAP2: two holes of perforation size of 0.53 mm on monoPET lidding film; PMAP3:
three holes of perforation size of 0.53 mm on monoPET lidding film; PMAPC: OMNI-PW film micro
perforated conventional packaging system. ‘a–g’ means within each figures (a,b) with different
superscripts are different (p < 0.05) when analyzed using analysis of variance.
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Table 1. Analysis of variance of the effect of preharvest treatments (PHTs), storage days (SD), and
packaging type (PT) on the gas composition and quality of mushrooms, Pr > F values.

Category Model SD PHT PT SD×PHT SD×PT PHT×PT SD×PHT×PT

CO2 <0.0001 <0.0001 0.731 <0.0001 0.996 <0.0001 0.896 1.000
O2 <0.0001 <0.0001 0.650 <0.0001 0.992 <0.0001 0.838 1.000
L* <0.0001 <0.0001 0.471 <0.0001 0.855 <0.0001 0.958 0.179
a* <0.0001 <0.0001 0.126 <0.0001 0.094 <0.0001 0.688 0.637
b* <0.0001 <0.0001 0.023 <0.0001 0.928 0.258 0.553 0.999
∆E <0.0001 <0.0001 0.104 <0.0001 0.954 <0.0001 0.622 1.000
EL <0.0001 0.005 0.135 <0.0001 0.147 0.240 0.016 0.130
Density <0.0001 0.001 0.072 <0.0001 0.008 0.002 0.004 0.001
TSS <0.0001 <0.0001 0.531 <0.0001 <0.0001 <0.0001 0.023 0.097

EL: Electrolyte Leakage; TSS: Total Soluble Solids.

Figure 5 presents the mean value of the changes in oxygen and carbon dioxide content
during the storage days. The results show that with the passage of storage days, the amount
of oxygen decreased and the amount of carbon dioxide increased due to the respiration of
the product inside the package except for the control PMAPC. The changes in headspace O2
and CO2 concentrations varied as a function of the number of perforations in the lid. An
inverse relationship (highly negative correlation, r2 = −0.9) with the trends of CO2 and O2
concentrations was observed during the storage period. The difference in gas composition
between the micro perforated OMNI-PW film package and the other treatments was due to
the varying film permeability. The high oxygen permeability of the micro perforated OMNI-
PW film enables gas exchange with the product inside, while the low permeability of the
monoPET lidding film restricts gas transfer into the package. Consequently, the product’s
respiration causes a significant decrease in oxygen and an increase in carbon dioxide levels
inside the packages.

The variability in the permeability of the films was found to be the main reason for the
significant difference in the amount of oxygen and carbon dioxide in the PMAP packaging type,
as it affects the entering and exiting of gases based on the number and sizes of perforations,
as also noted by Gholami et al. [17]. Perforation-mediated MAP in thermoformed rPET tray
and monoPET lidding film packaging systems should increase the shelf life of mushrooms by
lowering the amount of reactive oxygen species, blocking microbial activity and respiratory
metabolism. Research has indicated that MAP is considered an effective, simple, and relatively
affordable packaging method for fresh mushrooms [9]. To establish a passive modified at-
mosphere, packaging bags, films that cover the tray, or trays with microporous materials are
punctured directly [16,19], helping to preserve the mushrooms by regulating the quantity and
composition of gases by creating a balanced gas exchange within the packaging systems.

The amount of oxygen in the PET packages had become almost stable after the second
day until the end of the storage day, and the amount of oxygen remained in the range of
14.4%–17.4% in PET with different perforations compared to 20.8% in OMNI-PW film micro
perforated packages, which was slightly above the range reported for mushrooms [37].
The optimum packaging conditions obtained for ~200 g of fresh mushrooms were PMAP1
and PMAP2 leading to an equilibrium exchange of O2 and of CO2 in the headspace gas
composition, after 1 day of storage at 4 ◦C and 99.9% RH. In line with the results of our
study, an equilibrium gas composition in the headspace was achieved after, approximately,
1 day for packages containing sliced mushrooms [16]. The amount of 20.8% oxygen and
0.4% carbon dioxide in OMNI-PW film micro perforated packages was found to be in agree-
ment with the findings reported for mushrooms in PVC conventional packaging [15–17]. It
is important to note that the two perforation-mediated MAP packaging systems (PMAP1
and PMAP2) effectively modified the exchange of oxygen and carbon dioxide between the
package and the surrounding environment. In PMAP1 and PMAP2, an equilibrated gas
exchange was reached after the first storage day conforming to and validating the results
obtained from perforation-mediated MAP modelling for the mushrooms.
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3.2. Colour Changes during the Storage Period

The results of the analysis of variance showed that there was a significant main effect of
storage days and packaging type on all the colour parameters, L*, a*, b*, and ∆E (p < 0.001).
All the parameters showed deterioration with increased storage days, compared to Day 1,
as might be expected (Supplementary Table S1). Packaging types PMAP1, PMAP2, and
PMAP3 had better L*, a*, b*, and ∆E characteristics compared to the control PMAPC. There
was no significant effect of preharvest treatment as a main effect on the colour parameters,
except for b* value (p < 0.05). The results showed a significantly lower b* value (whiter
mushrooms) for silicon-treated mushrooms (12.0) compared to the control (12.4).

There was a significant interaction effect between storage days × packaging type for all
the colour parameters (p < 0.0001) (Table 1, Figure 6), but not for b* (Supplementary Table S2).
The results showed a significantly lower ∆E value (whiter mushrooms) for PMAP1, PMAP2,
and PMAP3 after the 5 days of storage compared to mushrooms under the OMNI-PW film
micro perforated conventional packaging system. This finding probably reflects the impact
of the PMAP design in reducing the rate of respiration (Figure 4) while keeping the cellular
structure and integrity of the mushrooms. For example, controlling respiratory metabolism
could help to minimize the oxidative damage to nutrients and leakage of electrolytes, ulti-
mately limiting the availability of substrates for browning enzymes such as tyrosinase and
polyphenol oxidase thereby inhibiting their activities [38–40].
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Figure 6. The interaction effects of packaging type and storage days on ∆E of fresh mushrooms.
PMAP1: one hole of perforation size of 1.1 mm on PET lidding film; PMAP2: two holes of perforation
size of 0.53 mm on PET lidding film; PMAP3: three holes of perforation size of 0.53 mm on PET
lidding film; PMAPC: conventional packaging system. ‘a–i’ means within a figure with different
superscripts are different (p < 0.05) when analyzed using analysis of variance.

Overall, an increasing trend in ∆E was observed due to a decrease in L* combined
with an increase in a* and b*, with the increase in storage days. This may be linked to the
absence of a cuticle and the bruising during harvesting and packaging which increases
the metabolic rate of tyrosinase and polyphenol oxidase enzymes leading to enzymatic
browning reactions [41–45]. Research has indicated that utilizing a combination of 10%
O2 and 5% CO2 MAP packaging, along with treatment involving calcium chloride and
citric acid, led to a significant decrease in respiration rate, an increase in radical scavenging
activity, a reduction in browning, and the retention of quality in Pleurotus florida mushrooms
for up to 25 days [16]. The use of a polyvinyl chloride polyethylene–silicon window resulted
in a lowered respiratory rate, delayed texture and flavour changes, reduced browning and
weight loss, and delayed senescence in pine mushrooms [46]. Moreover, applying a 2%
alginate coating with 100% O2 led to a reduction in microbial count, inhibited the activity



Coatings 2024, 14, 754 12 of 18

of polyphenol oxidase, maintained firmness, and delayed browning, cap opening, and
changes in soluble solids, total sugars, and ascorbic acid, extending the shelf life of Lentinus
edodes mushrooms to 16 days [47]. Furthermore, a higher respiration rate was achieved
by using a combination of 20% CO2 and 15% O2 at a temperature of 4 ◦C and a relative
humidity of 95%, leading to an increase in the total phenolic content and a decrease in
browning, thereby prolonging the shelf life of Pleurotus eryngii mushrooms to 10 days [48].

3.3. Electrolyte Leakage, TSS, and Density during the Storage Period

Besides colour, electrolyte leakage, density, and TSS are very important indices related
to the quality and metabolism of mushrooms. The results of the analysis of variance showed
that the storage time (p < 0.001), packaging type (p < 0.0001), and the double interaction effects
of preharvest treatment × packaging type had significant effects (p < 0.05) on the changes in
electrolyte leakage (Table 1). The PMAP2 packaging type resulted in the least electrolyte leakage
of all packaging types, while preharvest treatment with silicon reduced the electrolyte leakage
significantly in PMAP1 and PMAP3 while it had no significant effect in PMAP2 or PMAPC
(Figure 7a). There were significant differences in TSS levels for the main effects of storage days
and packaging type as well as a two-way interaction between these two parameters (p < 0.001).
The control PMAPC had lower TSS levels across storage days, while for PMAP1, PMAP2,
and PMAP3 packaging types, the TSS levels increased during storage (Figure 7b). Preharvest
treatment with silicon had a minimal impact on TSS levels. For density, ANOVA (Table 1)
indicated significant effects of storage time (p< 0.001), packaging type (p < 0.0001), and the
double interaction effects of storage days × packaging type (p < 0.002). Other interaction effects
were more variable. The density was lowest with PMAPC packaging, and it continued to
decrease with increased storage time compared to the other packaging types (Figure 7c).
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Figure 7. The interaction effects of packaging type and storage days on electrolyte leakage (a), TSS
(b), and density (c) of mushrooms. PHTC: control preharvest treatment; PHTS: silicon preharvest
treatment; PMAP1: one hole of perforation size of 1.1 mm on PET lidding film; PMAP2: two holes of
perforation size of 0.53 mm on PET lidding film; PMAP3: three holes of perforation size of 0.53 mm
on PET lidding film; PMAPC: conventional packaging system. ‘a–j’ means within each figures
(a–c) with different superscripts are different (p < 0.05) when analyzed using analysis of variance.

Overall, the mushrooms packaged in PMAPC had significantly lower TSS and density
compared to the other packaging types, and higher EL compared to PMAP1 and PMAP2.
An increase in electrolyte leakage could potentially be linked to a loss of TSS and density
leading to the senescence or quality deterioration of the mushrooms with a low negative
correlation between EL and TSS (r = −0.307) and density (r = −0.281). This can also be
clearly viewed form the principal component analysis chart in Figure 8a,b. Figure 8 presents a
summarized view of the interaction effects of preharvest treatments with packaging types
where the first two principal components (F1 and F2) explained 74.86% of the total variability
in gas composition and quality parameters of the mushrooms. F1 differentiates mushroom
colour L*, TSS, density, and CO2 on the left-hand side from ∆E, b*, a*, EL, and O2 on the
right-hand side (Figure 8a).

The PCA biplot chart clearly shows the highest EL and O2 for the PMAPC conventional
mushroom packaging system indicating the potential for faster decay with this packaging
system (Figure 8b). On the other hand, the highest CO2, L*, density, and TSS of fresh mush-
rooms were recorded for PMAP2 (two holes of a perforation size of 0.53 mm) compared to the
other packaging treatments, revealing that the low respiration rate could be linked with better
quality maintenance.

The results presented in Figure 8 show that the respiratory rate in terms of oxygen
concentration is positively correlated with electrolyte leakage (r = 0.31 and a* (r = 0.30),
and highly negatively correlated with TSS (r = −0.91) which might also be linked to the
variation in the gaseous permeability rate of the different types of perforations on PMAP
systems. This result can be explained by the fact that PMAP1 and PMAP2 were more
effective in blocking the passage of gas (CO2) from inside the package to the outside, which
is in agreement with the findings of other research on perforated MAP conditions. The
findings support previous research demonstrating that micro perforated films may decrease
the respiration rate of strawberries and mushrooms [49,50]. The results above suggest that
micro perforations can reduce the rate of mushroom spoilage by potentially creating an altered
internal atmosphere, which limits the exchange of gases between the environment and the
mushrooms. In relation to the presence of CO2, this could not only lead to an increase in
the respiration rate but also promote the growth of specific microorganisms, such as aerobic
bacteria, yeast, and moulds. Additionally, the researchers examined the impact of various
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initial gas components (ranging from as low as 3% to as high as 100% of O2 content) on the
nutrient components (polysaccharides, total phenols, and free amino acids) of fresh Lentinula
edodes mushrooms [51,52]. The authors suggest that packaging with high O2 levels (exceeding
50%) could increase the umami amino acid content and prevent the formation of ethanol
and electrolyte leakage. Moreover, modified atmosphere packaging using a combination of
polyethylene/polyamide, calcium chloride, and citric acid with 10% O2 and 5% CO2 resulted
in a significant decrease in the respiration rate, increased the radical scavenging activity,
maintained quality, received higher sensory ratings, reduced changes in weight, pH, and
TSS, lowered the total polyphenol content, and extended the storage life of Pleurotus florida
mushrooms to 25 days [19].
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Figure 8. PCA (principle component analysis) of variables (a), observations (b), and biplot (c) of the
effects of packaging type on quality of mushrooms (mean values). PMAP1: one hole of perforation
size of 1.1 mm size on PET lidding film; PMAP2: two holes of perforation size of 0.53 mm on PET
lidding film; PMAP3: three holes of perforation size of 0.53 mm on PET lidding film; PMAPC:
conventional packaging system.
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Mushrooms have a high respiration rate; therefore, creating an equilibrium gas compo-
sition such as using perforation-mediated MAP techniques may be a useful tool to maintain
the quality and extend the shelf life. In this study, after 1 day of storage for packaging
with perforations in monoPET films, O2 decreased to 16.1%, 16.4%, and 17.4% in the pack-
ages with one hole of 1.1 mm, two holes of 0.53 mm, and three holes of 0.53 mm sizes,
respectively, compared to 20.9% in the OMNI-PW film micro perforated conventional pack-
aging system. Mushrooms in perforation-mediated MAP maintained significantly higher
TSS, density, and CO2 concentration along with lower O2 concentration and electrolyte
leakage with the increase in storage days compared to PMAPC conventionally packaged
mushrooms. Research indicates that reducing the oxygen level to a minimum lowers the
respiration rate and slows down the cap development, decreases aerobic spoilage, min-
imizes weight loss, and reduces tyrosinase activity, which in turn decreases enzymatic
browning [16,53]. Despite the numerous advantages of low oxygen levels, an oxygen level
lower than 2% might lead to the growth of anaerobic microbes like Clostridium botulinum
and Staphylococcus aureus [54]. Moreover, the concentration of CO2 must not exceed 12% as
excessive CO2 accumulation can cause physiological damage to mushrooms.

4. Conclusions

Fresh mushrooms are characterized by the lack of a cuticle, high respiratory and
metabolic rates, moisture content, and enzyme activity. In response to these intrinsic factors
and the atmosphere surrounding them, the product has a very short shelf life, typically
3 days under ambient conditions and 5 to 8 days in a cold storage system. This study
presented a novel approach to enhance the shelf life through the combined application
of silicon preharvest treatment and perforation-mediated passively modified atmosphere
packaging (PMAP) to minimize the physiological and morphological quality degradation
in mushrooms. This work also identified an optimized passive MAP design, with respect
to the number and size of perforations in the film, in order to achieve the best headspace
gas composition over time, for maintaining the quality and extending the shelf life of
fresh edible mushrooms. The simulated MAP system based on a macroscopic perforation
of a 1 mm hole size in monoPET lidding films regulated the O2 flow into the package
and the flow of CO2 out while minimizing the changes in the quality parameters of fresh
mushrooms. Good-quality mushrooms generally have characteristics such as low ∆E, high
L*, high TSS, high density, and low EL. The optimum packaging types that maintained the
quality of 200 g of fresh mushrooms were PMAP1 with a single hole of 1.1 mm and PMAP2
with two holes of 0.53 mm size in a monoPET lidding rPET tray thermoformed package size
of 149 mm × 149 mm × 60 mm, leading to equilibrated conditions for the flow of O2 and
CO2, after the first day of storage at 4 ◦C. The concentration of CO2 within the packaging
system, TSS, and density of the mushrooms were significantly higher in PMAP1 and PMAP2
compared with the PMAP3 and PMAPC packaging formats. Notably, mushrooms in all
passive MAP showed significantly (p < 0.001) lower ∆E value, with the lowest recorded
in PMAP1 and PMAP2, suggesting that a passive MAP design can successfully help to
control or regulate the respiratory metabolism thereby minimizing the oxidative damage to
nutrients and leakage of electrolytes, ultimately inhibiting browning enzymes’ activities in
fresh mushrooms. However, silicon treatment had little effect overall and did not affect the
∆E values where respiration was reduced in PMAP1, PMAP2, and PMAP3. Further work is
required to understand how reduced respiration affects mushrooms’ colour characteristics.
Electrolyte leakage was significantly lower in PMAP2 indicating the potential extension of
the shelf life of fresh mushrooms with a micro perforated optimized passive MAP design in
a thermoformed recycled PET packaging system. Therefore, micro perforation using laser
technology involving a simulated optimized MAP design is recommended for validating
the results in industrial scalable systems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings14060754/s1, Table S1: The main effects of packaging types

https://www.mdpi.com/article/10.3390/coatings14060754/s1
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and storage days, and preharvest treatments on colour values of mushrooms; Table S2: The double
interaction effects storage days x packaging types on colour values of mushrooms.
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