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Abstract: Tribochemically produced triboproducts are becoming increasingly important in tribosys-
tems and serve to improve system performance by preventing friction or wear. Diamond-like carbon
(DLC) is chemically stable, which features a trade-off with tribological pros and cons. Chemically
stable DLC is thermally stable and suppresses surface damage in a high-temperature operating
environment; however, it causes a detrimental effect that hinders the formation of a competent
tribofilm. In this study, we dispersed highly reactive TiO2 nanoparticles (TDONPs) in molybdenum
dithiocarbamate (MoDTC)-containing lubricant for adhering triboproducts on the DLC surface. In
addition, TDONPs contributed to the decomposition of triboproducts by promoting the decomposi-
tion of MoDTC through its catalytic role. Rutile TDONPs were more helpful in reducing friction than
anatase TDONPs and improved the friction performance by up to ~100%.

Keywords: tribocatalyst; MoDTC; TiO2 nanoparticles; DLC; tribofilm; low friction

1. Introduction

The importance of tribochemically generated tribofilms has been emerging in tribolog-
ical systems [1]. Numerous tribofilms are formed based on thermodynamic factors for the
equilibrium state of friction by-products, which provide additional lubrication properties
and prevent surface damage, making it an essential factor in determining the efficiency
of tribosystems. To this end, oil-soluble additives such as molybdenum dithiocarbamate
(MoDTC) and zinc dialkyl dithiophosphates (ZnDTPs), which form a low-shearing and
wear-protecting tribofilm, are mainly used in the transportation machinery. Lubricant
additives have the advantage of forming affirmative friction by-products during the fric-
tion process. Among such additives, MoDTC has long been of interest as an efficient
friction modifier because it forms a colloidal MoS2-containing tribofilm and also serves as
an extreme pressure additive [2]. The low-shear MoS2-based tribofilm is formed by the
decomposition and chemical compatibility of MoDTC and exhibits excellent properties in
metal-to-metal tribopairs capable of Mo-metal metallic bonding.

In addition, several studies are being actively conducted on the surface treatment
of driven engine components for long-term durability. In recent years, awareness of
environmental issues has risen, and the trend of miniaturization of engine parts and low
viscosity of lubricants has accelerated, expanding the regime of mixed lubrication and
boundary lubrication rather than fluid lubrication in various tribosystems [3,4]. Therefore,
a technology to prevent wear due to solid contact in boundary lubrication is required, and
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it is also required to improve the wear resistance in terms of the material of the engine
parts. Today, according to such industrial requirements, tetrahedral amorphous carbon
(ta-C) [5,6], one of diamond-like carbon (DLC) with high hardness, chemical stability, and
wear resistance, has been pointed out as a suitable hard coating. On the other hand, the
superior chemical stability of ta-C acts as a double-edged sword for certain tribosystems.
Its chemical stability avoids surface damage in extreme operating environments (e.g.,
acid-base and high-temperature), but at the same time makes it difficult to react and form
triboproducts. As a way to solve this problem, metal-doped DLCs (Me-DLCs) have been
studied to increase the reactivity with additives [7–9]. There is a trade-off relationship
between the improved lubricity due to the formation of additive-derived tribofilm at the
cost of reduced hardness and worse wear resistance; therefore, we need to find a way to
solve the technical limitations of these conflicting friction and wear characteristics.

A tribocatalyst is a catalyst that mechanochemically promotes and induces the reaction
of materials [10–12]. Nanoparticles (NPs) are a hotspot material as a tribocatalyst because
of their large surface area, and their use has been explored early in the field of using existing
catalytic reactions such as energy, environment, and battery fields. Nevertheless, this is a
rare attempt in the field of friction reduction and is expected to be used as a next-generation
additive for lubricants. Unfortunately, their poor dispersibility is a challenge that needs to
be addressed at the present stage.

TiC coating [13,14], or Ti-doped DLC [15,16], has excellent triboreaction characteristics
and forms a well-developed tribofilm; however, it has the problem of deteriorating the
hardness of the DLC and rapidly increasing wear. On the other hand, adding NPs composed
of Ti to oil is expected to improve the friction characteristics by forming a tribofilm without
deteriorating the ta-C. According to Pauling’s valence bonding theory [17], titanium has
the fewest d-orbitals among 3d, 4d, and 5d-transition metals. Thus, it is an element with
high tribological utilization due to its high reactivity and adhesiveness with other elements.
Therefore, highly reactive titanium has high potential as a tribocatalyst [18], and titanium
dioxide exists in three major polymorphs: rutile, anatase, and brookite. TiO2 combines the
features of opto-electronic and photo-catalytic characteristics, as well as exhibiting high
chemical stability and being non-toxic and affordable. Of these, the rutile phase has a high
dielectric constant, which makes it useful for triboelectric applications [19].

In this paper, anatase-phase and rutile-phase titanium dioxide NPs (a-TDONPs and
r-TDONPs, respectively) were incorporated into poly alpha-olefin (PAO4) with 700 ppm of
MoDTC. Here, we tried to improve the lubricity in the tribopair of ta-C/steel by utilizing
the characteristics of valence bonding of Ti and the catalytic characteristics of TiO2. In
addition, the proper amount of TDONPs to be added to improve the friction performance
was identified. On the other hand, we did not deal with their long-term precipitation and
dispersion, and only short-term dispersion confirmed the sufficient potential of TDONPs
as tribological catalysts for future additives.

2. Materials and Methods

The ta-C deposition process is as follows, and a hybrid coating system with an anode-
layer ion source (ALIS), unbalanced magnetron sputter (UBMS), and filtered cathodic
vacuum arc (FCVA) was used as shown in Figure 1.

A 22.5 mm diameter and 4 mm thick SUJ2 steel disk was used as a substrate for
ta-C coating. The substrates were first ultrasonically cleaned with benzene and acetone to
remove oil. Secondly, Ar+ plasma etching was performed using ALIS to remove impurities.
Ar gas was discharged at a flow rate of 16 sccm using ALIS, and Ar+ ions were accelerated
at a discharge voltage of 1.8 kV to sputter the substrate for 20 min. In addition, to improve
adhesion to ta-C, a 200 nm thick Ti intermediate layer was deposited on the substrate using
UBMS. The discharge power of UBMS was 600 W and 25 sccm of Ar for 40 min.
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Figure 1. Schematic of hybrid coating system equipped with an anode-layer ion source, filtered
cathodic vacuum arc source, and unbalanced magnetron sputter source.

Finally, ta-C was coated with FCVA, which was used in our earlier work [20], to a
thickness of approximately 300 nm. The carbon target was discharged with an arc current
of 50 A, and carbon ions were accelerated with a substrate bias of −100 V.

a-TDONPs and r-TDONPs (EM Japan Co., LTD., Tokyo, Japan; purity = >3 N; φ = 30 nm)
were prepared to confirm their friction properties at similar sizes and purity. Since
anatase (H = 12.5 GPa) is chemically more unstable and has a lower hardness than rutile
(H = 15.5 GPa), two types of TDONPs were used to compare the difference as tribocatalysts.
Anatase is used in the photocatalyst field, and rutile is used as an excellent triboelectric
material, so its usefulness in tribocatalysis was evaluated. On the other hand, inorganic
TiO2 has poor surface compatibility with oil, so its dispersing performance is extremely
poor. In order to disperse even during the tribotest, we proceeded with the following
surface treatment. A technique to improve dispersibility has been reported to react with
oleic acid (OA), an organic alteration agent, in n-hexane as oil-based suspensions [21].
Through this, inorganic nanoparticles chemically absorb alkyl canes, increasing the oil
affinity of inorganic nanoparticles. First, TDONPs, OA, and n-hexane were ultrasonically
mixed at a ratio of 1 g:1 g:100 mL, respectively. After that, the mixed solution was stirred
with a magnetic stirrer (AS ONE CHPS-170DF, Osaka, Japan) to evenly treat the surface.
For sufficient reaction, the temperature of the solution was set to 60 ◦C, and the reaction
was elicited by stirring for 5 h. After the reaction was complete, the TDONPs were collected
on a PTFE membrane filter (Merck Omnipore, Bellerica, MA, USA, pore size: 0.2 µm) by
vacuum filtration and washed with isopropyl alcohol and de-ionized water to remove
unbound OA and n-hexane. Finally, the OA-modified TDONPs were heated in a furnace at
100 ◦C for 1 day to evaporate residual moisture and contaminants.

Figure 2a,b show PAO4 lubricants mixed with 2 wt.% of a-TDONPs and OA-modified
a-TDONPs after a 2 h friction test. In the case of a-TDONPs without OA treatment, they
were moved out of the contact surface by centrifugal force. On the other hand, OA-treated
a-TDONPs showed a dispersed appearance even after a 2 h tribological test. However, it
was confirmed that it precipitated after a week of mixing. We selected an additive amount
of OA-TDONPs up to 2.5 wt.% because the dispersion limit was observed at addition
amounts of 2.5 wt.% as shown in Figure 2c. The dispersion improvement occurred over a
narrow concentration range, and 2.5 wt.% was too catastrophic for the transition, which
was believed to be due to aggregation due to the high free surface energy and reduced
electrostatic repulsion that often occur in NPs. OA-modified a-TDONPs were added in an
amount of 0–2.5 wt.% to PAO4 with 700 ppm of MoDTC added, and the added mixture
was treated in an ultrasonic bath for 2 h to disperse. Hereinafter, ‘TDONPs’ refer to
‘OA-modified TDONPs’.
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Figure 2. Images after tribotest of lubricant composed of PAO4 base oil with 2 wt.% of (a) TDONPs
and (b) OA-modified TDONPs and (c) 2.5 wt.% of OA-modified TDONPs.

The friction performance of TDONPs was evaluated using a ball-on-disk-type tribome-
ter and tribotests were repeated at least 3 times to assure reliability. A ta-C-coated disk
and a SUJ2 ball (diameter 8 mm) were utilized as a DLC/steel tribopair. PAO4 mixed with
700 ppm MoDTC and 0–2.5 wt.% TDONPs were heated in an oil bath and functioned as a
lubricant. A load of ~10 N was applied using a weight of 1 kg, and the ta-C coated disk
rotated at a sliding speed of 34 mm/s for 3 h, corresponding to ~250 m of sliding distance.
The maximum contact pressure was ~1.3 GPa, and the coefficient of friction (CoF) was
collected in an initial boundary lubrication regime with a Lambda ratio less than 1.

A confocal laser scanning microscope (Olympus OLS5100, Tokyo, Japan) was used
to observe the surfaces of the disks and balls after tribotests. In addition, the elemental
distribution of the tribofilm was characterized using a scanning electron microscope (SEM;
JEOL JCM-5700NU, Tokyo, Japan) equipped with an energy-dispersive X-ray spectroscope
(EDS; JEOL EX-54175NU, Tokyo, Japan) at an acceleration voltage of 10 keV. A Raman
spectrometer with a laser wavelength of 532 nm (RENISHAW inVia Reflex, Gloucestershire,
UK) was used to identify the chemical structure of tribofilm at 1800 lines/mm grating. The
chemical composition and bonding ratio of the worn surface were obtained using X-ray
photoelectron spectroscopy (XPS; ULVAC PHI Quantera III, Chigasaki, Kanagawa, Japan;
X-ray spot size: 50 µm, Al-Kα radiation). The surface was cleaned by pre-sputtering with
Ar+ ions for 12 s before acquiring XPS spectra.

3. Results
3.1. Friction Performance of TiO2 Nanoparticles with MoDTC Addition

First, 0.0, 1.0, 1.5, 2.0, and 2.5 wt.% of a-TDONPs and r-TDONPs were mixed with
lubricating oil in which 700 ppm of MoDTC was added to PAO4 (Figure 3). The friction
test was conducted at a temperature of 80 ◦C, which is similar to the environment of a
vehicle engine and where MoDTC can be activated [22]. At this time, the initial Lambda
ratio was very low, ~0.05, meaning that friction was almost dominated by solid lubrication.
The friction performance of the ta-C/steel tribopair was evaluated at a load of 10 N and a
speed of 34 mm/s. As a result, the friction tended to decrease as the addition of a-TDONPs
and r-TDONPs increased. The oil without a-TDONPs showed a friction of 0.074, and
the oil with 2 wt.% of a-TDONPs and r-TDONPs showed a friction improvement effect
of approximately 57% and 100% at 0.047 and 0.037 of friction coefficient, respectively
(Figure 4). However, with an addition amount of 2.5 wt.%, the friction increased to 0.063
and fluctuated unstably. It is known that the chemical reaction of MoDTC deteriorates
the wear of DLC [9]; therefore, the wear of ta-C was measured, as shown in Figure 4b.
As a result, a similar wear rate was observed even when the amount of a-TDONPs was
increased to 2 wt.% compared to the case where TDONPs were not added. On the other
hand, in the case of r-TDONPs, the wear rate slightly decreased as the addition amount
increased up to 2 wt.%. However, as the concentration exceeded 2 wt.%, the wear increased
in both the anatase and the rutile. As shown in Figure 2, at the amount of 2.5 wt.% TDONPs
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in PAO4, the TDONPs no longer kept their dispersibility and precipitated on the surface
and outside of ta-C, which is believed to be the cause of the increase in friction. In addition,
a noticeable increase in wear was observed in rutile, which has relatively higher hardness
compared to anatase, and it is believed that this caused three-body wear in ta-C, causing
a rapid increase in wear. Similar to Figure 2, even extrapolated from friction and wear
performance, a maximum of 2.5 wt.% is considered the dispersion limit for TDONPs.

Coatings 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 

increased to 2 wt.% compared to the case where TDONPs were not added. On the other 
hand, in the case of r-TDONPs, the wear rate slightly decreased as the addition amount 
increased up to 2 wt.%. However, as the concentration exceeded 2 wt.%, the wear in-
creased in both the anatase and the rutile. As shown in Figure 2, at the amount of 2.5 wt.% 
TDONPs in PAO4, the TDONPs no longer kept their dispersibility and precipitated on the 
surface and outside of ta-C, which is believed to be the cause of the increase in friction. In 
addition, a noticeable increase in wear was observed in rutile, which has relatively higher 
hardness compared to anatase, and it is believed that this caused three-body wear in ta-C, 
causing a rapid increase in wear. Similar to Figure 2, even extrapolated from friction and 
wear performance, a maximum of 2.5 wt.% is considered the dispersion limit for TDONPs. 

 
Figure 3. (a) Friction curves of ta-C disk/steel ball tribopair under PAO4 mixed with MoDTC 700 
ppm and various addition amounts of TDONPs: (a) a-TDONPs and (b) r-TDONPs. 

 
Figure 4. (a) Average friction coefficient for steady-state (240–250 m) and (b) specific wear rate of ta-
C disk under PAO4 mixed with MoDTC 700 ppm and various addition amounts of TDONPs. 

Figure 5 shows images of the worn surface of the ta-C disk and steel ball with in-
creasing a-TDONPs loading. Tribofilm was hardly formed on ta-C under MoDTC-con-
taining PAO4 without TDONPs addition. It was also observed that friction by-products in 
the form of islands were attached to the steel ball. Instead of being in the shape of a com-
plete film, the triboproduct was formed in the form of scattered islands before the evolu-
tion to a tribofilm. Compared to the ball, it can be seen that the triboproduct was formed 
in dots here and there rather than covering the surface, and it was concentrated in the 
middle of the wear track. However, as the addition of TDONPs increased, island-like 

Figure 3. (a) Friction curves of ta-C disk/steel ball tribopair under PAO4 mixed with MoDTC 700 ppm
and various addition amounts of TDONPs: (a) a-TDONPs and (b) r-TDONPs.

Coatings 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 

increased to 2 wt.% compared to the case where TDONPs were not added. On the other 
hand, in the case of r-TDONPs, the wear rate slightly decreased as the addition amount 
increased up to 2 wt.%. However, as the concentration exceeded 2 wt.%, the wear in-
creased in both the anatase and the rutile. As shown in Figure 2, at the amount of 2.5 wt.% 
TDONPs in PAO4, the TDONPs no longer kept their dispersibility and precipitated on the 
surface and outside of ta-C, which is believed to be the cause of the increase in friction. In 
addition, a noticeable increase in wear was observed in rutile, which has relatively higher 
hardness compared to anatase, and it is believed that this caused three-body wear in ta-C, 
causing a rapid increase in wear. Similar to Figure 2, even extrapolated from friction and 
wear performance, a maximum of 2.5 wt.% is considered the dispersion limit for TDONPs. 

 
Figure 3. (a) Friction curves of ta-C disk/steel ball tribopair under PAO4 mixed with MoDTC 700 
ppm and various addition amounts of TDONPs: (a) a-TDONPs and (b) r-TDONPs. 

 
Figure 4. (a) Average friction coefficient for steady-state (240–250 m) and (b) specific wear rate of ta-
C disk under PAO4 mixed with MoDTC 700 ppm and various addition amounts of TDONPs. 

Figure 5 shows images of the worn surface of the ta-C disk and steel ball with in-
creasing a-TDONPs loading. Tribofilm was hardly formed on ta-C under MoDTC-con-
taining PAO4 without TDONPs addition. It was also observed that friction by-products in 
the form of islands were attached to the steel ball. Instead of being in the shape of a com-
plete film, the triboproduct was formed in the form of scattered islands before the evolu-
tion to a tribofilm. Compared to the ball, it can be seen that the triboproduct was formed 
in dots here and there rather than covering the surface, and it was concentrated in the 
middle of the wear track. However, as the addition of TDONPs increased, island-like 

Figure 4. (a) Average friction coefficient for steady-state (240–250 m) and (b) specific wear rate of
ta-C disk under PAO4 mixed with MoDTC 700 ppm and various addition amounts of TDONPs.

Figure 5 shows images of the worn surface of the ta-C disk and steel ball with increas-
ing a-TDONPs loading. Tribofilm was hardly formed on ta-C under MoDTC-containing
PAO4 without TDONPs addition. It was also observed that friction by-products in the
form of islands were attached to the steel ball. Instead of being in the shape of a complete
film, the triboproduct was formed in the form of scattered islands before the evolution to a
tribofilm. Compared to the ball, it can be seen that the triboproduct was formed in dots
here and there rather than covering the surface, and it was concentrated in the middle of
the wear track. However, as the addition of TDONPs increased, island-like triboproducts
gradually formed on ta-C, and island-like products gradually developed in the form of
films on steel balls. The development of the tribofilm that appeared along with lowering
the friction is thought to be the cause of the friction reduction. In the case of r-TDONPs,
more products were attached to the ta-C disk. It is assumed that TDONPs contributed
greatly to developing the tribofilm and low friction.
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Figure 5. Optical images of wear track on ta-C disk and wear scar of steel ball after friction test under
PAO4 mixed with MoDTC 700 ppm and TDONPs: (a) a-TDONPs and (b) r-TDONPs.

Both a-TDONPs and r-TDONPs showed the highest wear scar diameter (WSD) when
1.5 wt.% was added; however, it gradually decreased as the addition amount of TiO2 NPs
increased beyond 1.5 wt.%. This phenomenon is attributed to the three-body abrasion
effect of nanoparticles at concentrations below 1.5 wt.%, leading to an increased WSD of
the steel ball. Conversely, at concentrations above 1.5 wt.% of TiO2 NPs, the formation of a
soft MoDTC-based tribofilm prevented direct contact between the ball and ta-C, thereby
reducing the WSD. Additionally, the rutile phase showed a higher WSD of the steel ball,
which is likely due to its higher hardness compared to anatase, resulting in more severe
three-body abrasion.

Representatively, the composition of the tribofilm formed under the addition of
0.0 wt.% and 2.0 wt.% of a-TDONPs or r-TDONPs was investigated by using EDS (Figure 6).
Since the EDS energy levels of Mo L and S K are similar, it is difficult to distinguish them, so
they were not divided. As a result, when a-TDONPs were not added, Mo or S signals were
mainly detected outside the wear track on ta-C. In contrast, when 2.0 wt.% of aTDONPs
was added, Mo or S signals were also strongly detected in the center of the wear track
on ta-C. Moreover, in r-TDONPs, Mo or S intensity was obtained extensively inside the
wear track of ta-C. The friction coefficient gradually decreased as the formation area of the
tribofilm containing Mo or S increased on the ta-C disk. The addition of TDONPs could
form MoDTC-derived tribofilms on the ta-C disk, and their effects were different for each
phase of TiO2. On the other hand, a Ti interlayer was deposited to increase ta-C adhesion;
therefore, no significant difference could be obtained in the Ti mapping result. On the
surface of the steel ball, the Mo or S intensity was detected weakly and narrowly under
lubrication without TDONPs addition. On the other hand, under the lubricant added with
2.0 wt.% of a-TDONPs or r-TDONPs, the intensity of Mo or S inside the worn surface
was higher than that outside the worn surface on the steel ball. At the same time, Ti was
detected at the same location as Mo or S. This might suggest that Ti, which we intended,
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played a role as the adhesive layer of tribofilm. Based on the results so far, it was deduced
that Ti increased the adhesion of Mo-or S-containing tribofilms. Their chemical structures
are covered in Section 3.2 below.
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3.2. Chemical Structure of Tribofilm

We tried to reveal the chemical structure of friction by-products using Raman spec-
troscopy. In Raman spectra, all tribosurfaces were carbon-containing structures, and we
focused on the spectral range of 100–1100 cm−1 with the peaks of anatase- and rutile-phase
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TiO2 [23], Fe2O3 [24], MoS2 [25], Ti-FeOx [26,27], and MoO3 [28]. Island-like triboproducts
were formed on the surface of the steel ball under lubrication without adding TDONPs.
Raman spectra were obtained as shown in Figure 7a, where the triboproduct was generally
sparse and loose in area (2). All of them contained MoS2, and some contained MoO3 as well.
Also, oxides of Fe2O3 were strongly detected in the region (1). In contrast, the formation
of a relatively thick and wide tribofilm was confirmed under a lubricating environment
in which 2 wt.% of a-TDONPs were added. There was no significant difference in the
structure measured for the thick and densely formed tribofilm (3) and the thin and sparsely
formed area (4). In the case of r-TDONPs, a thin and narrow tribofilm was formed on the
worn surface (5, 6). In the tribofilm formed on steel balls lubricated with TDONPs, anatase-
and rutile-phase TiO2 peaks appeared, and additional Ti-substituted phases (denoted as
Ti-FeOx) appeared in the tribofilm. On the other hand, the tribofilm was sparsely formed on
the surface without TiO2, as if the adhesion was insufficient. Therefore, it could mean that
Ti is strongly chemically bonded to Fe. It is inferred that MoS2 was formed on a chemically
bonded TiO2 surface.
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Finally, no Mo-based peaks appeared on ta-C under lubrication without adding
TDONPs (Figure 8). However, when 2 wt.% of a-TDONPs or r-TDONPs were added,
TiO2 and MoS2 peaks appeared on ta-C simultaneously, similar to the steel ball. From this,
we could know that titanium assisted the formation of tribofilm on the chemically stable
ta-C surface.
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Figure 8. Raman spectra of tribofilm formed on worn surface of ta-C disk. Red-colored circles indicate
acquired points.

The element ratio and bonding state of each tribofilm were confirmed using XPS.
The spectra of Ti 2p, S 2p, and Mo 3d were obtained, and details of each fit with the
Gaussian–Lorentzian function can be found in Table 1 [29]. The doublet separation and area
ratio of S 2p3/2–2p1/2 were 1.18 eV with a 2:1 area ratio with equal FWHM. Ti 2p3/2–2p1/2
was split with 5.7 eV with a 2:1 area ratio and FWHM. The Mo 3d5/2–3d3/2 splitting
was 3.13 eV with a 3:2 area ratio with equal FWHM. Figure 9 displays a representative
peak deconvolution.

Table 1. Details of peak fits related to XPS analyses of tribofilm.

Element Contribution Binding Energy, eV Assigned Species G/L Ratio Ref.

S 2p3/2
S0 164.0 ± 0.2 S-S/CS2

2:8
[30]

(S2)2− 163.4 ± 0.2 MoOySx/MoS3 [31]
S2− in Mo-S 162.4 ± 0.2 MoS2 [31]

Ti 2p3/2
Ti4+ 458.7 ± 0.3 TiO2

7:3
[32,33]

Ti3+ 456.5 ± 0.3 TiO2-x [32]
Ti2+ 455.1 ± 0.3 TiC/TiO [33,34]

Mo 3d5/2

Mo6+ 232.6 ± 0.3 MoO3/MoS3

2:8

[33,35]
Mo5+ 231.0 ± 0.3 MoOx/MoSx/MoOySx [33,36]
Mo4+ 229.4 ± 0.3 MoS2/MoO2 [35]
Mo2+ 228.6 ± 0.3 Mo2C/MoO [33,35]
Mo0 227.8 ± 0.3 Mo-metal [35]

The additive-derived tribofilm formed on the ta-C disk and steel ball appeared to
be in a small amount, and S was detected only on the outermost surface of the tribofilm
regardless of the presence or absence of TDONPs; almost no S was detected after 1 min of
sputtering (Figures 10 and 11). In addition, the tribofilm formed on the ta-C disk and steel
balls lubricated with TDONPs contained Mo, S, O, and Ti together, and as the sputtering
time increased, they gradually decreased, and only their base material (i.e., ta-C and SUJ2)
was detected after 5 min of sputtering. From this, we were able to obtain information at
the interface between the tribofilm and the ta-C disk or the steel ball. Also, the significant
difference is that, as shown in Figure 11a, a very thin or small tribofilm was observed on
the steel ball rubbed without TDONPs.

Mo5+ and Mo6+ bonds gradually decreased from the surface to the bulk direction,
and the intensity of Mo2+ increased on the ta-C disks (Figure 12). Additionally, when
lubricated with TDONPs, the intensity of Mo0 also increased in the tribofilm formed on
the ta-C disks, suggesting that Mo formed a metallic bond with Ti. On the other hand,
no notable change in area ratio was observed in the tribofilm formed on the steel ball in
Mo3d (Figure 13). In Ti 2p spectra, Ti4+ was dominant on the surface, and the Ti4+ area ratio
decreased toward the interfaces between the tribofilm/ta-C disk and the tribofilm/steel ball
(Figures 12 and 13). Unfortunately, for the ball lubricated without TDONPs, the element S
was not detected after pre-sputtering to remove the residual oil. Furthermore, MoS2 (Mo4+)



Coatings 2024, 14, 773 10 of 21

and MoO3 (Mo6+), which were found in the Raman spectra, were barely observed after peak
deconvolution in the XPS spectra. This is likely the result of a thin tribofilm forming on the
balls as shown in Figure 7, which disappeared after a short pre-sputtering. The results of
peak deconvolution also explain why the MoDTC-derived tribofilm adhered well under
TDONPs lubrication. The tribofilm on ta-C showed an increase in Ti2+, which appeared to
be the result of carbide formation where Ti combines with C (Figure 12d,e). On the other
hand, in the tribofilm formed on the steel ball, only the Ti3+ intensity increased without an
increase in the Ti2+ fraction (Figure 13d,e). The increase in Ti3+ in the tribofilm formed on
the steel ball is thought to represent the Raman vibration in Ti-FeOx. In addition, it was
shown that the Ti/Mo atomic ratio in the tribofilm formed on ta-C disk increased with an
increasing sputtering time (Figure 14a). From this, it was deduced that Ti, which easily
adhered to carbon, preferentially formed a tribofilm, and a tribofilm derived from MoDTC
was formed after the formation of an adhesive layer of Ti. From this, it is speculated that
the existence of MoS2 on ta-C in EDS and Raman is due to the formation of the Ti adhesion
layer. On the other hand, there was no clear difference in the Ti/Mo element ratio on the
steel ball, which might mean that Ti and Mo were mixed in the film at almost similar ratios
along the depth direction (Figure 14d). When lubricated without TDONPs, Mo attaches
by directly combining with C to form chemical bonds; however, Mo2C has a higher Gibbs
free energy for carbide formation than TiC, which might make it more unstable and result
in lower adhesion on the ta-C disk (Figure 14b). On the other hand, ta-C lubricated in
TDONPs can be rigidly attached to the chemically stable ta-C due to the strong bonding of
TiC, so that MoDTC-derived tribofilms could be stably produced. In particular, the increase
in Ti3+ seen in both the ball and the disk is believed to have contributed to the creation of
these products and is discussed in Section 3.4.
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Figure 9. Respective XPS spectra for (a) Ti 2p, (b) Mo 3d, and (c) S 2p of worn surface on ta-C disks
under PAO4 oil with 2 wt.% r-TDONPs and 700 ppm MoDTC. Depth profiling XPS analysis for
(d) Ti 2p, (e) Mo 3d, and (f) S 2p of tribofilm formed on ta-C slid under 2 wt.% r-TDONPs containing
MoDTC lubricant.
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Figure 14. Atomic ratio of (a,d) S/Mo, (b,e) area ratio of Mo0 and Mo2+ in Mo 3d, and (c,f) Ti4+ in Ti
2p in tribofilm: (a–c) ta-C disks and (d–f) steel balls.

Figure 15 shows the XPS spectra on surfaces on ta-C. The Mo4+ and S2− intensities
were higher on the tribosurface rubbed with r-TDONPs. Figures 16 and 17 show the atomic
concentration and bonding percentage of tribofilm formed on the outermost surface of
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the ta-C disk and steel ball. When TDONPs were not added, there was relatively little
Mo4+ in Mo 3d and S2− in S 2p in the tribofilm formed on the ta-C disk. Moreover, there
was almost no Mo4+ on the steel ball, and S was not detected either. This suggests that
the content of MoS2 on its surfaces lubricated without TDONPs was lower than that on
surfaces lubricated with TDONPs. In addition, the elemental ratio of S/Mo and S/O, and
the bonding ratio of Mo4+ in Mo 3d are shown in Figures 16e and 17e. Their ratio suggests
that r-TDONPs are the superior additive for both steel balls and ta-C disks. Figure 18 shows
their relationship with the friction coefficient. They show strong agreement with the low
friction under TDONPs-containing lubricating oil, which is attributed to the low friction
properties due to the MoS2-rich tribofilm formed on the outermost surface.
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Figure 16. (a) Atomic concentration of worn surface on ta-C disks and area percent in (b) Mo 3d,
(c) Ti 2p, and (d) S 2p lubricated without TDONPs, and with 2 wt.% of r-TDONPs and a-TDONPs.
(e) Atomic ratio of S/Mo and S/O, and bonding ratio of Mo4+ of worn ta-C disks.

After lubricating without TDONPs, additives-derived tribofilm formed little on both
the ta-C disk and steel ball. Moreover, Mo oxide was formed on ta-C lubricated without
TDONPs mainly compared to low-shearing MoS2. On the other hand, in the case of the
addition of 2 wt.% of TDONPs, Mo and S were adhered on the ta-C disk with a TiC carbide
bond. Comparing S 2p and Mo 3d, the MoS2 content of tribofilm slid under 2 wt.% of
TDONPs lubricant was higher than that which slid with 0 wt.% of TDONPs. Onodera
et al. [37] reported that MoDTC transformed into a bridging isomer of MoDTC (Li-MoDTC)
at moderate temperatures. Deshpande et al. [38,39] reported that the decomposition
of MoDTC was accelerated by the catalysis of a TiO2 atmospheric plasma-spray coating.
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Likewise, the degradation of MoDTC by r-TDONPs and a-TDONPs assisted in the sustained
formation and lubrication of MoS2 tribofilms. On the other hand, when TDONPs were not
added, the MoS2 formation rate was significantly lower than the oxidation rate, making
it difficult to maintain the MoS2-based contact interface. Thus, TDONPs are expected to
be useful for the decomposition of MoDTC and the adhesion of MoS2-derived tribofilms.
Moreover, it is suggested that a ta-C disk lubricated with lubricants added with TDONPs
formed a Mo-Ti metallic bond and TiC carbide bond on the ta-C disk, which further
attracted the tribofilm and led to the interlaminar shear properties of MoS2. Galhenage
et al. [40] conducted a computational study based on density functional theory on the
growth of MoS2 on TiO2 as to why TiO2 exhibited a strong interaction with MoS2. It was
found that strong covalent bonds were formed by preferentially coordinating the bridging
O atoms in TiO2 to the edge S atoms of MoS2. These studies explain why TDONPs persisted
and formed well on MoDTC-derived tribofilms.
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3.3. Friction Performance of TiO2 Nanoparticles without Light

Since TDONPs are used as an excellent photocatalyst, to determine the effect of light
energy, a light and dark environment was created in the tribometer system using LEDs and a
blackout curtain, respectively. A blackout curtain was installed surrounding the tribometer,
and the LED was irradiated directly to the specimen. The experimental conditions of the
tribotest were the same as in the previous section, with the addition of 2 wt.% a-TDONPs,
which was the most efficient photocatalyst among TiO2. Figure 19 shows the effect of light
energy on the friction characteristics to clarify the photocatalytic influence. The dark and



Coatings 2024, 14, 773 15 of 21

bright environments showed similar friction coefficients of 0.053 and 0.048, and their wear
rates showed little difference within the error bar range. The friction coefficient showed a
slight difference of approximately 0.005 in a dark environment, and it was confirmed that
the friction reduction was not a photocatalytic effect.
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3.4. Friction Performance of TiO2 Nanoparticles without MoDTC Addition

In addition to MoDTC, OA generally exhibits excellent low friction when used as a
lubricant, so we sought to investigate the friction reduction effect of OA without an MoDTC
addition. We added 0, 1, and 2 wt.% of a-TDONPs to PAO4 to investigate only the charac-
teristics of OA-modified a-TDONPs. The tribological properties of the ta-C/steel tribopair
were evaluated under a load of 10 N, a speed of 34 mm/s, and at room temperature for 3 h.
The Lambda ratio at the beginning of the friction was 0.26, which was lubrication belonging
to the boundary lubrication regime. Further, we aimed to investigate whether a-TDONPs
adhere to ta-C and steel without additional thermal energy under boundary lubrication.

Figure 20 shows the friction curve and the average CoF during a steady state. In the
absence of MoDTC, the friction-reducing effect of a-TDONPs was not significantly different.
Pure PAO4 showed a coefficient of friction of 0.077, and even when 2 wt.% of a-TDONPs was
added, the CoF was almost similar to 0.075. Therefore, the tribological performance could
not be improved only by the addition of a-TDONPs. Conventionally, friction reduction
mechanisms by the mechanical movement of NPs such as rolling, sliding, and exfoliation
are reported [41]. On the other hand, in this study, such an effect was not seen, and the
friction reduction by simply adding nanoparticles could not be expected. In addition,
OA also acts as an additive or lubricant contributing to low friction; however, the friction
reduction caused by OA was not shown in OA-modified a-TDONPs-containing lubricant.

To confirm that the a-TDONPs formed any additional friction by-products, we ob-
served wear scars on the steel balls. Figure 21a shows an optical image of the worn surface
of a steel ball slit under lubricant without TDONPs. A black-colored tribofilm was observed
in the optical images of balls lubricated in pure PAO4. On the other hand, when a-TDONPs
were added, it was confirmed that a blue tribofilm was gradually formed. Therefore, it
was found that additional triboproducts were formed when lubricated with a-TDONPs.
Figure 21b shows EDS mapping images of balls lubricated in PAO4 with 0 wt.% and 2 wt.%
of a-TDONPs. In the case of ta-C, no difference was observed because the Ti interlayer was
used to increase ta-C adhesion. The black tribofilm formed under pure PAO4 lubrication
was mostly composed of iron and oxygen, whereas the blue tribofilm formed with the
addition of TDONPs was composed of carbon, titanium, and oxygen. The black tribofilm
was composed of iron oxide, and the blue tribofilm was estimated to be composed of
titanium carbide, titanium oxide, and free carbon.
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tribopair under PAO4 with various addition amounts of a-TDONPs.
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Figure 21. (a) Optical images and (b,c) EDS mapping images of wear scar on steel ball lubricated
under PAO with various addition amounts of a-TDONPs.

As shown in Figure 22, the atomic ratio of Ti/C in the depth direction of the tribofilm
gradually increased in the steel ball and gradually decreased in the ta-C disk. Therefore,
it can be seen that a-TDONPs adhere well to the surfaces of the steel ball and ta-C disk.
Vengudusamy et al. [8] reported that the friction did not significantly decrease under
PAO4 lubrication at the C/C contact interface using various types of self-mated DLCs.
Comparing their work, it is understandable that the friction did not decrease despite the
formation of carbonaceous tribofilms. We reported in a previous study that when titanium
is attached to a mating material, it serves as an adhesive layer and improves the adhesion
of tribofilm [15,16,42]. Therefore, it is assumed that the addition of a-TDONPs caused
titanium to adhere onto iron and strongly attract carbon. Finally, we could expect the
desired adhesion of Ti and the catalytic effect of TiO2.
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4. Discussion

A MoDTC-based tribofilm does not form well on general DLC. Doping metal into
the DLC matrix can form a MoDTC-based friction film; however, metal doping has the
problem of deteriorating the mechanical properties of DLC [7–9]. We added TiO2 to the oil
to improve the friction properties under MoDTC-added oil without deteriorating the me-
chanical properties of DLC, and, as a result, we were able to form a MoDTC-based tribofilm
on DLC. The friction reduction effectiveness of TiO2 NPs has been previously reported
under water lubrication [43,44]. On the other hand, there have been few comparisons be-
tween anatase and rutile phases, and the friction reduction effect was reported only for the
steel/steel tribopair. MoDTC is known to decompose by electron transfer to form MoS2 [45].
Deshpande et al. [38,39] deduced that electrons emitted by the photocatalytic properties
of TiO2 as an n-type semiconductor could break the bond of MoDTC. On the other hand,
the photocatalytic properties of TiO2 are superior in the anatase phase compared to the
rutile phase [46]. In this study, the decomposition of MoDTC in rutile-phase TDONPs and
the formation of a MoS2-containing tribofilm were effective. Kajdas and Hiratsuka [47–49]
reported that tribochemistry or tribocatalysis is related to a ‘negative-ion-radical action
mechanism’. The emitted electrons, which are composited of exoelectrons and thermal
electrons, act with lubricant molecules and decompose the lubricant. The neutral atoms
or molecules cause an anti-emission with electron absorption and hurt the triboemission,
considered from ‘intermediate excited states’, which mechano-chemically influence the
dissolution of chemical bonds. Hence, excited states of the nascent surface involve the
emission of electrons, ions, molecules, and so on, and charged electrons and ions could
have a positive effect on the triboemission [50]. This phenomenon helps us understand
the formation of a MoDTC-derived tribofilm on an oxide layer or a non-metallic surface
formed during the rubbing of metallic bulk material. [51,52]. It is often reported that the de-
composition of MoDTC and the formation of a MoS2 tribofilm are formed on iron oxide or
a chrome oxide tribolayer [53], and we believe this is due to such triboemission properties.
Fan et al. [54] also focused on the fact that tribocatalysts could be operated by tribocharing
or triboelectrification. The exoelectron and thermionic emission are related to the Seebeck
effect, and a triboelectric charge was recently reported through this relationship [55]. Upon
contact and release of DLC and TDONPs, electrons might move due to triboelectric charge,
which can be evaluated by the triboelectric factor ξ:

ξ = S/
√

ρck (1)

where, S, ρ, c, and k are the Seebeck coefficient, material density, specific heat, and thermal
conductivity. The triboelectric factor of rutile (−0.154–−0.079) is quite high compared to
that of anatase (−0.102–−0.049). As r-TDONPs are rubbed with DLC, electrons are trans-
ferred to DLC, and it is believed that these released electrons can help decompose MoDTC.
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The adhesive and catalytic properties of Ti are shown in Figure 23. MoDTC is known
to be decomposed by electrons with alternative switching between Ti4+ and Ti3+ to form
MoS2-based tribofilms in the following:

Ti4+ + eCB
− + LI-MoDTC (Mo2O2S2 [R2NCS2]2) → Ti3+ + 2MoS2 + 2R2NCOS (2)
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was 2.0 wt.%, and when more than this was added, the friction and wear increased 
due to a rapid decrease in precipitation and dispersion performance. 

(3) The addition of TDONPs may have increased the formation or adhesion of MoS2 on 
the DLC and steel surfaces, thereby reducing friction. 

(4) The improved friction and wear characteristics of r-TDONPs were superior to those 
of a-TDONPs, and this difference in tribocatalytic properties is presumed to result 
from their triboelectric capabilities. 

(5) TDONPs have been tribologically useful additives due to their adhesive and catalytic 
action, but the technology to maintain their dispersion remains a problem to be 
solved. 
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Figure 23. Schematic of (a) the expected tribofilm structure and (b) degradation of MoDTC with TDONPs.

The d-vacancies of Ti lead to chemical bonding and are preferentially adhered to the
surface of the ta-C disk and steel ball to form a robust adhesive layer. After that, the
TDONPs are activated due to the frictional energy and expel electrons into LI-MoDTC,
which decomposes MoDTC into MoS2. As a result, the MoDTC-derived tribofilm is strongly
adsorbed on the contact surface to form a MoS2/MoS2 contact interface, resulting in
low friction.

5. Conclusions

In this study, TDONPs were dispersed in MoDTC-containing lubricating oil to improve
tribological performance through their catalytic and reactive properties. We tried to exclude
the effects of light irradiation and oleic acid to clearly identify the effects of TDONPs. The
key findings are summarized as follows:

(1) TDONPs alone added to PAO4 lubricant without MoDTC did not improve the friction
performance. On the other hand, TDONPs attached to the wear surface of DLC and
steel activated the surface to attach carbon.

(2) Dispersion of the TDONPs in PAO4 oil containing MoDTC improved the lubrication
performance by up to ~100%. When a-TDONPs were added at 1 wt.% and 2.5 wt.%,
the effect of reducing friction was not significant. The optimal content of TDONPs
was 2.0 wt.%, and when more than this was added, the friction and wear increased
due to a rapid decrease in precipitation and dispersion performance.

(3) The addition of TDONPs may have increased the formation or adhesion of MoS2 on
the DLC and steel surfaces, thereby reducing friction.

(4) The improved friction and wear characteristics of r-TDONPs were superior to those of
a-TDONPs, and this difference in tribocatalytic properties is presumed to result from
their triboelectric capabilities.
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(5) TDONPs have been tribologically useful additives due to their adhesive and catalytic
action, but the technology to maintain their dispersion remains a problem to be solved.
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