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Abstract: Industrial applications in the concrete industry face significant challenges in selecting
appropriate metallic materials, as these choices can enhance equipment lifespan and reduce costs.
This study examines the corrosion behavior of various metallic materials, offering valuable insights
for their selection in corrosive environments. The findings indicate that material testing can provide
cost-effective solutions for concrete industry equipment. Notably, replacing cast iron used in concrete
mixing blades with specific steels is advantageous for corrective or accidental maintenance, lowering
spare parts costs, and short-term use, steels P265GH and AISI 4140 exhibiting corrosion resistance
similar to cast iron. Additionally, for mineral aggregate dryers, selecting adequate steel can signifi-
cantly reduce operating and maintenance costs while increasing equipment durability. The results
show that substituting steel S235 with steel P265GH can decrease the corrosion rate by nearly 65%.

Keywords: corrosion rate; steel; cast iron; electrochemical properties; concrete industry

1. Introduction

The equipment utilized in large-scale concrete production is designed to withstand
significant operational stresses, primarily arising from the abrasive impact of mineral
aggregates (such as sand and variously sized stones) and the corrosive effects of the water-
cement dust blend [1]. In the realm of the concrete industry, where efficiency, reliability,
and durability are paramount, corrosion is posing significant challenges to the integrity
and performance of essential equipment such as rotary dryers and concrete mixers. These
industrial equipment, vital for the production and processing of materials from the con-
crete composition, confronts corrosion-induced degradation that compromises operational
efficiency and safety.

Rotary dryers, revered for their efficiency in drying mineral aggregates, and concrete
mixers, indispensable for homogenizing concrete mixtures, both struggle with corrosion-
induced deterioration that compromises their functionality and longevity. Understanding
the nuanced interplay between corrosion and materials within these equipment types is
essential for devising prevention measures.

The flight assembly of rotary dryers, serving in material transport and heat trans-
fer [2], faces corrosive attack from moisture, abrasive particles, and chemical contaminants
inherent in mineral aggregates. Conversely, the mixing blades of concrete mixers, tasked
with blending cement, aggregates, water, and additives, endure corrosive exposure to
alkaline environments, chloride ingress, carbonation, and aggressive chemicals present in
concrete mixtures.

At the base of corrosion lies an electrochemical process wherein metallic surfaces in-
teract with their environment, initiating chemical reactions determining the degradation of
material over time. In both rotary dryers and concrete mixers, this process is compounded
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by intrinsic factors such as material composition, design intricacies, and operational pa-
rameters, as well as extrinsic factors including environmental conditions, maintenance
practices, and exposure duration.

In case of rotary dryer, many studies [3–8] concentrated on identifying the factors that
influence their performance of rotary dryers, by reference to the distribution of the particles
inside the drum. Only the study [1] investigated the tribological behavior of materials used
in rotary dryer blades, focusing on abrasive and abrasive-erosive wear, using the Baroid
tester. The results identified abrasive erosion as the primary cause of blade damage and
outlined the conditions that exacerbate specific wear phenomena.

In case of concrete mixers, some studies [9–11] analyzed stress states in the arms
and blades of mixers, using these stress states as key indicators to evaluate abrasive wear
caused by impact and friction with aggregates. The wear characteristics of concrete mixers
resistance was investigated in the referenced literature [12–16]. The study [17] focused
on the concrete industry, comparing the abrasion-corrosion resistance of A36 carbon steel,
advanced high-strength steels (AHSSs), and ASTM 410 ferritic stainless steels. Laboratory
and field tests, including rubber wheel and microabrasion tests, were conducted using
adapted concrete mixers and actual mixing equipment. Analysis revealed that ferritic
stainless steel, despite lower hardness, outperformed AHSSs and significantly extended
equipment lifespan.

In the previous work of the authors [16], three types of chromium-alloyed cast iron
were tested under accelerated wear conditions simulating a real working environment (mix
of mineral aggregate, sand, cement, and water) using a Baroid tribometer. The tests revealed
that cast iron with the highest chromium content showed the best wear resistance overall.
However, the study found that wear resistance did not consistently increase with chromium
content. Specifically, cast iron with around 4% chromium performed better than those with
about 9% chromium when the chromium content was below 25%. The investigation was
extended in the paper [18] where the same types of chromium-alloyed cast irons used in
mixing blades were used, focusing on their wear resistance in a working environment of
crushed mineral aggregates (4–8 mm), using a special designed experimental stand that
replicated a half-scale double-axis horizontal mixer that allowed for adjustment of the
mixing blade attack angles to 30, 45, and 60 degrees. The results demonstrated a correlation
between the blade material type and wear rate and showed that increasing the blade’s
inclination angle relative to the shaft axis significantly reduced cumulative mass loss by
43% to 55.83%, depending on the blade material quality.

Analyzing the existent literature in the field, can be find many works related to the
corrosion analysis of different materials in concrete environment [19–35]. The labora-
tory study [19] assessed the corrosion activity of reinforcing steel in ordinary and high-
performance concrete using various measurement methods. The findings revealed that
Tafel plot, linear polarization resistance, half-cell potential, and chloride content methods
predicted the same corrosion activity level for only 24% of the specimens.

Garcia et al. [20] investigated how embedded steel reinforcement corrodes under
anoxic conditions with varying chloride concentrations. Three electrochemical techniques
were used to measure corrosion rates: linear polarization resistance, electrochemical
impedance spectroscopy, and chronopotentiometry. The maximum observed current
density was 0.98 µA/cm2, regardless of chloride content. Using an Evans diagram, re-
searchers estimated the cathodic Tafel constant to be 180 mV dec−1, with a limit current
density of 0.98 µA/cm2. The corrosion potential likely ranged from −900 mVAg/AgCl to
−1000 mVAg/AgCl, with the most probable corrosion current density between 0.22 µA/cm2

and 0.61 µA/cm2. The rapid galvanostatic pulse technique was implemented [21] on-site
across numerous measurement points, covering a spectrum of reinforcement conditions
from severe corrosion to passivity.

Field investigations were conducted in [36] to assess the corrosion of reinforcements in
underground metro tunnels built between 1980 and 2006. On-site measurements included
carbonation depth, half-cell potential, and concrete resistivity, while the chloride profile
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of cored concrete specimens was analyzed in the laboratory. The analysis revealed the
relationship between corrosion potential (half-cell potential) and corrosion rate. The study
also examined the impact of galvanic coupling on localized and macrocell corrosion. The
findings showed that a drop in half-cell potential near NaCl crystallization indicates
chloride-induced corrosion.

The present study presents a thorough investigation into electrochemical parameters
influencing corrosion behaviors in materials widely used in the concrete industry, focusing
on rotary dryers (Figure 1a) and concrete mixers (Figure 1b). By examining polarization
curves and Tafel plots from tests on cast iron and steel specimens, the research uncovers
unexpected findings. The research offers practical implications for selecting corrosion-
resistant materials for equipment like rotary dryers and concrete mixers. Certain steel
samples, designated as suitable for mixer equipment, and others recommended for dryers,
show promise in withstanding corrosive environments. Overall, the findings provide
strategic recommendations for optimizing equipment durability and performance in the
concrete industry, highlighting the essential role of electrochemical analysis in addressing
corrosion phenomena.
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Figure 1. Concrete industry equipment: (a) rotary dryer; (b) concrete mixer.

2. Materials and Methods
2.1. Equipment Used for the Electrochemical Corrosion Testing

In order to perform the tests to determine the parameters characterizing the corro-
sion behavior of commonly used materials, a VoltaLab (Tacussel-Radiometer PGZ 100,
Hatch Company, Mississauga, ON, Canada) potentiostat was used and the software was
VoltaMaster 4.

To determine the electrochemical parameters of the tested materials, the Tafel tech-
nique was chosen, which focuses on the problems that accurately determine the corrosion
rate of the material. With this technique, a controlled scanned potential is applied to the
specimen, starting at an assumed corrosion potential, and then being extended in both
anodic and cathodic directions by several hundred millivolts.

It should be noted that the “polarization resistance” technique is even faster than the
Tafel technique, sometimes being complementary to it, due to the much smaller scanned
area. Corrosion cell (Figure 2) works with a saturated calomel reference electrode and
specimen holder exposes 1 cm2 of the specimen to the test solution. Electrochemical tests
were made according to ASTM G5-94 [37], and ASTM G1-90 [38].
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Figure 2. Corrosion cell.

When beginning the work sequence, the analysis technique is selected, and the pa-
rameters for the test cell are set. These parameters include the potential of the calomel
reference electrode, its surface area, the surface area of the counter-graphite electrodes, and
the surface area of the working electrode, which is 1 cm2. Additionally, the atomic mass
of iron (Fe) is considered to be 55.85, and the ion valence is set to 2. The potential sweep
range is defined from −1 V to +1 V, with possible limits extending from −3 V to +3 V, and
the sweep rate is set to 1 mV/s.

2.2. Sample Selection and Preparation

The disk samples used for the test were taken from sheet-type semi-finished products,
in the case of steels, and cast solids, in the case of cast irons.

The selection of cast iron and steel types was made based on experience in concrete
manufacturing plants (cement concrete and asphalt concrete) considering the place of use
and the working environment [1,18]. The selected cast irons are specific to the mixing
blade materials of concrete mixers. Also, some of the selected steels were proposed to
replace—within the maintenance interventions—the cast irons when making the mixing
blades of the mixers. The use of steels instead of cast irons can be justified by the lower price
of materials and the accessible technology of obtaining semi-finished products. Several
types of steels have been selected for specific applications of dryers (with rotary drum)
in asphalt concrete production plants. Tables 1 and 2 present the chemical composition
and the corresponding microstructure of cast irons samples, and in Table 3 is indicated the
chemical composition of steel samples. The three types of cast iron and steels proposed for
use in concrete mixers were tested in aqueous cement environment (cement paste, Table 4)
and steels with applications in rotary dryers were tested in water (Table 4).

Table 1. The chemical composition of the cast iron samples [18].

Sample
Chemical Composition, wt.%

C Si P S Cr Mn Fe Ni Mo

F1 3.28 0.76 0.07 0.03 3.83 1.10 89.86 0.89 0.20
F2 3.72 0.74 0.02 0.04 25.65 0.87 68.19 0.040 0.35
F3 3.08 0.96 0.04 0.03 9.77 1.14 84.12 0.35 0.49
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Table 2. The microstructures and hardness values for the cast iron samples [16].

Sample Sample Microstructure

Hardness HV0.2
(Average of Three

Measurements)
Occupied Surface

by the Hard
Constituents, %

Hardness HV0.2,
(Weighted
Average)

Matrix Carbide

1
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Table 4. The environments used for testing the steel samples.

Steel
Sample A B B′ C D E F G S

Environment Cement
paste

Cement
paste/water

Cement
paste/water

Cement
paste Water Water Water/

Cement paste water water

The results of the microstructure analysis for the three types of materials and the
hardness measurements can be seen in Table 2. The microstructure of the three samples is
specific to white hypoeutectic cast irons, presenting hard constituents in different forms,
depending on the Cr content.

The chemical composition was determined using Genius 5000 X-ray Fluorescence Spec-
trometer (Skyray Instruments, Dallas, Texas, USA) using Positive Material Identification
(PMI) principle.

It was also tested in the working environment (water), the steel (denoted as S) from
the flights of rotary dryer used to dry the mineral aggregates, as seen in Figure 3.

Coatings 2024, 14, x FOR PEER REVIEW 6 of 15 
 

 

B’ 
P265GH (1.0425): EN 10028 

[39] 9
8.

65
9 

0
.0

72
 

0
.0

98
 

0.
51

 

0
.0

07
 

0
.0

04
 

0.
12

 

0.
03

 

0.
09

 

- 

0.
14

 

0.
08

 

0.
01

 

0.
12

 

0.
06

 

- 

C 

(AISI 4140 ASTM A29 

[42]/42Cr4Mo2 EN 10083 [43]; 

rolled semi-finished product, 

thickness s = 4 mm 

9
8.

29
1 

0.
2

89
 

0.
2

52
 

0.
4

68
 

0.
0

11
 

0.
0

03
 

0.
3

40
 

0.
0

20
 

0.
0

30
 

0.
0

35
 

0.
0

07
 

0.
0

26
 

0.
0

40
 

0.
1

10
 

0.
0

58
 

0.
0

20
 

D 

AISI 4140 ASTM A29 

[42]/42Cr4Mo2 EN 10083 [43]; 

rolled semi-finished 

product, thickness s = 3 mm) 

97
.7

75
 

0
.1

7
4 

0
.0

3
4 

1
.3

9
0 

0
.0

1
0 

0
.0

0
3 

0
.0

7 

0.
00

17
 

0
.0

6 

0
.0

2
1 

- 

0
.2

3 

0.
00

04
 

0
.1

4 

0
.0

9 

- 

E 

(S275 EN 10025 [44]; 
laminated semi-finished 

product, thickness s = 2 mm) 

98
.7

21
 

0.
07

5 

0.
00

4 

0.
26

8 

0.
02

1 

0.
01

1 

0.
17

0 

0.
04

0 

0.
13

0 

- 

0.
10

0 

- - 

0.
38

0 

0.
05

0 

0.
03

0 

F 

(S185 EN 10025 [44]; 
laminated semi-finished 

product, thickness s = 2 mm) 

98
.4

03
 

0.
05

1 

0.
00

5 

0.
30

0 

0.
01

8 

0.
01

3 

0.
20

0 

0.
06

0 

0.
27

0 

- 

0.
34

0 

- - 

0.
22

0 

0.
11

0 

0.
01

0 

G 

G (S355 JR SR EN 10025 [44] 
laminated semi-finished 

product, thickness s = 4 mm 

98
.3

90
 

0
.0

9
0 

0
.0

4
0 

0
.7

6
0 

0
.0

1
4 

0
.0

1
1 

0
.1

3
0 

0
.0

4
0 

0
.1

4
0 

0
.0

1
5 

0
.1

0
0 

0
.1

0
0 

0
.0

1
0 

0
.0

5
0 

0
.1

0
0 

0
.0

1
0 

S -flight material 

(S235 EN 10025 [44]; Rolled 

semi-finished products, 

thickness s = 4 mm) 
98

.3
80

 

0.
1

71
0 

0.
0

32
0 

1.
37

0 

0.
0

10
6 

0.
0

03
2 

0.
0

27
9 

0.
0

01
7 

0.
0.

02
0

5 

- - - 

0.
0

00
5 

- 

0.
0

02
9 

- 

The chemical composition was determined using Genius 5000 X-ray Fluorescence 

Spectrometer (Skyray Instruments, , Dallas, Texas, USA) using Positive Material Identifi-

cation (PMI) principle. 

It was also tested in the working environment (water), the steel (denoted as S) from 

the flights of rotary dryer used to dry the mineral aggregates, as seen in Figure 3. 

 

Figure 3. The flights of rotary dryer. 

  

Figure 3. The flights of rotary dryer.

The testing environment had the following characteristics:
A cement paste mixture composed of cement dust and water in a ratio of approximately

1 part cement dust to 2.75 parts water.
The density of this mixture, as measured in the laboratory, was about 1170 kg/m3.
The use of cement paste was intended to prevent solidification during the testing process.
The average pH of the mixture was 11.84, at the ambient temperature of 25.5 ◦C. The

water used had a pH of 7.54.
The tests were conducted in the resulting aqueous solution after the coarse components

had settled out. Therefore, the tests were performed in an environment with the described
characteristics (pH 11.84, temperature 25.5 ◦C).

The samples were mechanically processed in the form of discs with 16 mm diameter
and 2~4 mm thickness.

The mechanical processing was carried out with low cutting rates using cooling liquids,
in order not to introduce mechanical or thermal stresses in the processed material and
thereby maintain the structure and initial physico-chemical qualities of the materials.

One of the surfaces of the disc samples, the one that will come into contact with the
work environment, was sanded wet on abrasive paper, initially with the 250 Mesh grit size
and then with the 600 Mesh grit size.

Before the specimens were mounted in the fixture for testing, they were placed in
boiling benzene for 5 min. Specimens not tested immediately were stored in a silica gel
desiccator. The surface exposed to the work environment was 1 cm2.

2.3. Theoretical Considerations

According to the mixed potential theory [45], any electrochemical reaction can be
divided into two or more oxidation and reduction reactions, without accumulating electric
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charges during the reactions. In a corrodible system, oxidation of the metal (corrosion) and
reduction of certain elements in the solution occurs at the same rate and the net current
measured is zero [46–48].

imeas = ired − iox = 0 (1)

imeas is the measured net current,
ired is the reduction current (rate at which electrons are gained by elements in the

solution),
iox is the oxidation current (rate at which electrons are lost by the metal).
When a metal or alloy is placed in contact with a solution, the metal will assume a

potential that is dependent on the nature of the material and the nature of the solution. This
open circuit potential, without the application of any potential from outside the cell, is the
corrosion potential Ecor.

Many of the modern corrosion techniques are based on the theoretical analysis of the
shapes of the Stern and Geary polarization curves.

If a potential is imposed on the material from an external source and the reaction rate
is controlled, it results:

ired = iex(red)e
−η/β1 (2)

and
iox = iex(ox)e

−η/β2 (3)

where: iex(red) is the exchange reduction current, iex(ox) is the exchange oxidation current, η
is the overvoltage, being equal to the difference between the potential imposed from the
material outside, Eapl and corrosion potential, Ecor;

β1 and β2—Tafel constants.
By logarithming the Equations (2) and (3), we obtain the equations of J. Tafel:

η = −βC · log
(

ired
iex

)
η = −βA · log

(
ired
iex

) (4)

where βC = 2.3·β1 and βA = 2.3·β2 being called Tafel’s constants, cathodic and anodic
respectively [21].

Once the potential Ecor and the corrosion current icor are determined, the corrosion rate
can be calculated.

According to Faraday’s law:
Q = nFW/M (5)

where Q—Coulomb;
n—the number of electrons involved in electrochemical reactions;
F—Faraday’s constant, 96,487 Coulombs;
W—the lost weight of the material.
M—the atomic mass of the material.
It can be written:

W/t = icor(E.W.)/F (6)

where W/t = C.R.—corrosion rate in g/s;
E.W. = M/n—equivalent weight, n—the number of electrons involved in the reaction.
Because C.R. it is usually expressed in units of length/time (mm/year or milliinches/year-

mpy) we have [49]:
C.R. = 0.13 icor (E.W.)/ρ, [mpy] (7)

where, ρ is material density, g/cm3;
icor—corrosion current density, µA/cm2.
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3. Results and Discussion
3.1. Testing of Materials Used for Mixing Blades (in Cement Paste)

Figure 4 shows for exemplification the polarization curve for F1 material and Figure 5
shows the Tafel curves obtained after testing the samples made of cast-iron materials.
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The determined parameters for the samples tested in cement paste are presented in
Table 5, and the comparison between corrosion rates in Figure 6.
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Table 5. The parameters determined for samples tested in cement paste.

Sample
Parameter

icor,
µA/cm2

Ecor,
mV

βA,
mV

βC,
mV

CR,
µm/year

F1 0.685 −383.1 55.7 −56.8 7.96

F2 0.603 −249.6 57.2 −63.4 7.00

F3 2.198 −439 62.1 −60 25.55

A 1.3804 −449.3 57.3 −65.3 16.04

B 0.7639 −468 85 −38 8.87

B′ (cement paste) 0.5525 −565.7 18.3 −41.9 6.42

C 0.3442 −325.7 43.3 −37.9 3.99

D (cement paste) 0.6121 −504.2 25.3 −86 7.11

F (cement paste) 0.7167 −500 58.3 −55 8.32
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The corrosion current density icorr represents the rate at which corrosion occurs. Higher
values indicate a higher rate of corrosion. The corrosion potential Ecor represents the
thermodynamic tendency for corrosion to occur. More negative values indicate a higher
tendency for corrosion. F3 has the most negative corrosion potential, suggesting it is the
most susceptible to corrosion among the three samples. The anodic Tafel slope βA reflects
the rate of anodic dissolution during corrosion. Higher values suggest a higher rate of
anodic dissolution. F3 shows the highest value, indicating a potentially higher rate of anodic
dissolution compared to F1 and F2. The cathodic Tafel slope βC reflects the rate of cathodic
reduction during corrosion. F2 shows the most negative value, suggesting potentially
faster cathodic reduction compared to F1 and F3. This observation can be correlated with
the values of corrosion rate, observing that F3 present the highest corrosion rate, 3.2 and
3.6 times greater than F1 and F2 respectively. This conclusion is in accordance with the
previous work of the authors [16] where the same materials were used for tribological tests
in different environments (mixture of mineral aggregate, sand, cement, and water), using
Baroid tribometer and it was found tha the cast iron with 9% Cr had the lowest abrasive
wear resistance in all testing environments. Also, in another investigation performed by the
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authors [18] it was concluded that blade made of F2 material had the smallest corrosion rate
compared to blades made from F1 and F3 cast iron, and therefore the best wear resistance
for all values of blade inclination angle.

Among the steel samples, sample C shows the lowest corrosion rate (3.99 µm/year),
indicating that it has the best corrosion resistance in cement paste, while sample A has the
highest corrosion rate (16.04 µm/year).

Generally, steel samples exhibit a wide range of corrosion rates [50] (from 3.99 µm/year
to 16.04 µm/year), with some (B′, C and D) performing better than cast iron.

3.2. Testing of Materials Used for Rotary Dryers (in Water)

In Table 6 are presented the parameters obtained from the experimental tests (in water
environment) for the steels used in manufacturing of rotary dryers.

Table 6. The parameters determined for samples tested in water.

Sample
Parameter

icor,
µA/cm2

Ecor,
mV

βA,
mV

βC,
mV

CR,
µm/Year

B 4.1307 −111.1 48.4 −96.8 48.00

B′ (water) 0.7942 −378.3 58.7 −53 9.23

D (water) 4.8271 −521.1 45.4 −59 56.1

E 5.9076 −527.5 36.6 −58.3 68.65

F (water) 4.9443 −567.3 40.4 −55.7 57.46

G 4.8157 −576.4 43.5 −64.4 55.96

S 2.1827 −205.9 45.5 −58.9 25.36

The corrosion rates vary significantly across different materials (see Figure 7). For
example, sample E exhibits the highest corrosion rate (68.65 µm/year), while sample B′

shows the lowest corrosion rates (9.23 µm/year). Therefore, for the flights of rotary dryers
used to dry mineral aggregates, sample B′ is the most suitable due to its good corrosion
resistance. Samples E, D, F, and G are not recommended due to their high corrosion rates,
while samples B and S offer moderate performance. Also, it was found that substituting
steel S (S235) with steel B′ (P265GH) can decrease the corrosion rate by nearly 65% due to
several key differences in their chemical compositions. P265GH has a significantly lower
carbon content (0.072% vs. 0.171%), which reduces carbide formation that can deplete
protective chromium. It also has lower manganese (0.51% vs. 1.37%), minimizing the
formation of less protective manganese oxides. Additionally, P265GH contains higher
levels of chromium (0.12% vs. 0.0279%), nickel (0.09% vs. 0.0205%), and copper (0.08% vs.
negligible), which enhance the formation and stability of a protective oxide film on the steel
surface. This oxide film acts as a barrier against corrosive elements in water, significantly
improving corrosion resistance. Thus, the optimized alloying elements in P265GH result in
a much lower corrosion rate compared to S235 when exposed to water.

Comparing the data from Figures 6 and 7, it can be observed that corrosion rates
also vary depending on the testing environment. Materials tested in water generally
exhibit higher corrosion rates compared to those tested in cement paste. For instance,
material B shows a corrosion rate of 48 µm/year in water, significantly higher (5.41 times)
than its corrosion rate of 8.87 µm/year in cement paste. Steel B′ revealed 1.43 times
higher corrosion rate in water compared with cement paste, while steel F presents very
big differences between water and cement paste environment (corrosion rate is 6.9 times
greater in water).

This observation highlights the importance of considering the environment in which
materials will be used, as different environments can accelerate corrosion processes.
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4. Conclusions

Industrial applications specific to concrete industry present challenges in the choice of
metallic materials. The appropriate choice of materials leads to an increase in the operating
life of equipment and cost reduction.

The corrosion rate data provides valuable guidance for material selection in various
applications. Materials with lower corrosion rates are preferable for environments where
corrosion is a concern, as they offer greater durability and longer service life. Understanding
the corrosion behavior of different materials in specific environments allows engineers
and designers to make informed decisions when selecting materials for construction,
infrastructure, and industrial applications.

The research results presented in this paper demonstrate that, in some applications,
material testing can provide economical solutions for equipment components in the con-
crete industry. Proposals to replace cast irons, used in the manufacture of concrete mixing
blades, with steels are justified in specific situations: corrective/accidental maintenance
works; situations involving the reduction of spare parts costs; use the equipment for a short
time. It is observed that, in such cases, steels of type B′ and C offer—from the point of view
of corrosion resistance—similar results to cast iron.

Similarly, for use in mineral aggregate driers, judicious choice of steels can lead to con-
siderable reductions in operating costs (including maintenance) and increased equipment
durability. The results obtained by the authors show that it is beneficial to replace steel S
with steel B′, reducing the corrosion rate by almost 65%.

For a correct decision, the results of corrosion tests (as presented in this article) must
be combined with the results of wear tests [1,18], specific to the operation of the studied
equipment. In this way, pertinent and complete conclusions can be drawn regarding the
choice of technological solutions.

Further research could explore the underlying factors contributing to the observed
differences in corrosion rates across materials and environments.

Investigating the microstructure, composition, and surface characteristics of the mate-
rials could provide insights into their corrosion resistance mechanisms and help optimize
material properties for enhanced performance.
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