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Abstract: A grain boundary (GB) is a structure of great concern in materials research, which affects the
mechanical properties and electrical conductivity of materials, but the microscopic thermodynamic
properties of GBs cannot be explained comprehensively. In this review, we demonstrate a variety of
calculation methods for GBs: density functional theory (DFT) and molecular dynamics (MDs) aim to
extract the thermodynamic and kinetic properties of GBs on the atomic scale, and machine learning
accelerates DFT or improves the accuracy of MDs. These methods explain the microscopic properties
of a GB from different perspectives and are combined by machine learning. It is hoped that this
review can inspire new ideas and provide more practical applications of computer calculations in
GB engineering.

Keywords: GB; computer calculation; machine learning

1. Introduction

Metal atoms are bonded by metallic bonds. According to theoretical calculations, the
strength of a metal should be two to three orders of magnitude higher than what it actually
exhibits. However, in materials, there are a large number of microscopic defects between
metal atoms, such as vacancies, interstitials, impurities, dislocations, grain boundaries (GBs)
and phase boundaries, the presence of which reduces the strength of the material. GBs
are widely present in polycrystalline materials, which can be regarded as planar surfaces
consisting of multiple edge-type dislocations. On the one hand, GBs hinder the movement
of dislocations and provide higher strength compared to the lattice; on the other hand,
GBs are more energetic and tend to be enriched with magazine atoms, resulting in faster
corrosion rates than ordered structures. With the development of industry and computer
calculations, the properties of GBs have consistently been a subject of interest. GB engineer-
ing and other materials science problems need to analyze them existing in polycrystalline
materials, but the databases cannot satisfy the demand of exploring the details of GBs and
explaining the mechanism of their influence on macroscopic properties [1].

Computer calculations are one of the important methods to explore the properties
of GBs in materials, and numerical simulations are more economical under the premise
of accuracy. We hope to explain and predict the properties of GBs and explore their
application possibilities through calculations. In the research of the multi-scale design of
novel Co-based alloys by Liu Xingjun et al. [2], it can be seen that a relatively complete
thermodynamic data acquisition method has been formed for the multi-component Co-
based alloys, and the data of binary alloys can be effectively supplemented by the first
principle [3], which can sift materials using a high-throughput method. CALPHAD and
the phase-field method can solve the problem of inconsistency between the model and the
thermodynamic parameters. However, there is still a problem in the kinetic data. Some of
the exchange-correlation functionals are quite different from the experimental values in the
calculation of diffusion coefficients [4], which are focused on in the study of solid solutions.
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The article found that machine learning methods can effectively accelerate the work in this
field and have great potential for the improvement of material databases.

Based on some of the DFT calculations of materials that our group have performed [5,6],
we found that the computational cost associated with DFT forces us to find new methods to
perform more comprehensive calculations on the research objects as we go deeper into this
study. In this review, we investigate the first principles, molecular dynamics and machine
learning methods to find a more economical and accurate research process for the in-depth
study of GB materials. Currently, the first principle algorithms are continuously optimized
and machine learning methods are being updated [7]. We will focus on the application and
development of the first nature principle and machine learning potential (MLP) for the
prediction of GB properties.

2. Application in GB Structure
2.1. Simulation Calculations Based on First Principles

First principles calculation denotes the calculation method that directly predicts var-
ious physicochemical properties of materials from their electronic structures according
to the theory of quantum mechanics. This is currently an effective method for scientific
research and has been applied in many fields, such as materials, biology and condensed
matter physics, as it is complementary to experimental observation [8,9]. First principles
calculations take elementary species and lattice information as data and use density flood
theory to realize the solution of Schrödinger’s equation to obtain the macroscopic properties
of materials. A computational simulation can be summarized into two main roles: one is
to predict the material structure and explore the material properties [10,11]; the other is to
explain the experimental phenomena and investigate the reaction mechanism [8–11].

Grain boundaries, as a type of inherent defect in materials, introduce lattice mis-
matches and excess volume that significantly affect material properties and behavior,
including electrical conductivity, thermal conductivity, corrosion resistance, migration
and solute segregation [12,13]. In order to improve materials, it is imperative to model
grain boundaries and investigate the effects of grain boundary geometry and an electronic
structure on material properties and behavior from an atomic scale [14–16].

In the grain boundary, there is a transition in the arrangement from one direction
to another; therefore, the atomic arrangement at the grain boundary is irregular. This
leads to the grain boundary exhibiting different properties compared to the grain. Metal
impurities are often easily enriched in the grain boundaries [17,18]. Grain boundaries are
prone to vacancy defects affecting the material’s electrical conductivity [19]. Hydrogen,
carbon dioxide, water and other molecules preferentially dissociate at the grain boundaries,
via adsorption and diffusion, enabling the grain boundary to function as a “channel” for
material corrosion [20]. In summary, the influence of the grain boundary on the material
is critical, the study of the grain boundary is also necessary, and the first step is to fully
comprehend the structure of the grain boundary. In a two-dimensional lattice, the grain
boundary can be indicated by the angle and orientation difference of two grains, while
in a three-dimensional lattice, the grain boundary is more complicated and needs to be
projected in different planes and comprehensively indicated. In 1975, H. Grimmer proposed
the theory of a coincident site lattice (CSL) [21], and the initial grain boundary model
constructed by this has been widely used in the field of grain boundary research. The grain
boundary allows for the recombination of the lattice between two grains, allowing them
to undergo extended rotation relative to each other. Some of the atoms exhibit regular
coincidence, and these coincident positions of the atoms form a new lattice known as the
recombination lattice. The recombination dot matrix model is based on the periodicity
and interactions of crystals and is used to describe the structure and properties of crystals,
which in turn leads to large-scale calculations and simulations to predict the physical and
chemical properties of crystals.

The specific structure of the ∑5(021)/[100] crystal boundary is given in the following
Figure 1.
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mentioned in this paper are all based on the theory of the coincident site lattice. Emeric 
Bourasseau et al [22]. for the first time investigated the atomic structure of two symmetri-
cally tilted grain boundaries in uranium dioxide bicrystals by combining high-resolution 
transmission electron microscopy (HR-TEM) and atomic-scale numerical simulations and 
found excellent agreement between experimental observations and simulated structures 
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Figure 2. The comparison between the HR-TEM images and simulated systems for the ∑5(031)/[100] 
−36.86 (a) and ∑5(021)/[100−53.13 (b). Only uranium atoms are displayed on the simulation snap-
shots. The red dotted lines indicate the GB interfaces. The yellow and black dotted lines allow for 

Figure 1. ∑5(021)/[100] grain boundary.

As in the above figure, the blue dot matrix L1 is rotated by an angle according to the
[100] axis to obtain the gray dot matrix L2. The overlapping part is the brick red dot matrix,
taking the brick red dot matrix as the grain boundary, the blue dot matrix on one side and
the gray dot matrix on the other side, which is an overlapping dot matrix model. Every
5 pairs of dot matrixes in the figure have one pair of overlap, so the overlap is 1/5, the
number of the overlap is ∑ = 5, the grain boundary is a ∑5 grain boundary, the axis of
rotation is [001] and the grain interface is (210). In the cubic crystal system, the symmetric
tilted grain boundary can be expressed as ∑ (h k l), where (h k l) is the Miller index of the
grain boundary, and ∑ can be calculated from the Miller index of the grain interface [22]:

∑ =δ
(

h2 + k2 + l2
)

(1)

If h2 + k2 + l2 is odd, δ = 1, and if h2 + k2 + l2 is even, δ = 0.5. The grain boundary models
mentioned in this paper are all based on the theory of the coincident site lattice. Emeric
Bourasseau et al. [22]. for the first time investigated the atomic structure of two symmetri-
cally tilted grain boundaries in uranium dioxide bicrystals by combining high-resolution
transmission electron microscopy (HR-TEM) and atomic-scale numerical simulations and
found excellent agreement between experimental observations and simulated structures
(Figure 2).
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Figure 2. The comparison between the HR-TEM images and simulated systems for the ∑5(031)/[100] 
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Figure 2. The comparison between the HR-TEM images and simulated systems for the ∑5(031)/[100]
−36.86 (a) and ∑5(021)/[100] − 53.13 (b). Only uranium atoms are displayed on the simulation
snapshots. The red dotted lines indicate the GB interfaces. The yellow and black dotted lines allow
for visualizing the misorientation angles. The arrows indicate various axes. The yellow squares
represent the FCC lattice, and the blue triangles reveal the atomic patterns at the GB interface. The
black circles on figure (b) show the structural unit of a fluorite.
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The recombination dot matrix model is the basic method for constructing grain bound-
aries, but to understand the effect of grain boundaries on material properties, the specific
structure of grain boundaries needs to be investigated, from which various models have
been derived, including the structural unit model [5,16,19], the coordination number [23]
and other methods. Structural units are identical structures that appear periodically on
grain boundaries, and they play an important role in the representation and identification
of grain boundary structures. Ashby et al. [24] demonstrated, based on the rigid sphere
model, that nine convex triangular polyhedra can describe the structure of all grain bound-
aries. Dickey et al. [25] determined by Z-contrast imaging microscopy that two symmetric
yttria-stabilized cubic zirconia through Z-contrast imaging microscopy tilted [001] grain
boundaries and found that both boundaries consisted of periodic arrays of elementary
grain boundary structural units whose atomic structures were determined from Z-contrast
images. Hajime Hojo et al. [26] used scanning transmission electron microscopy, electron
energy-loss spectroscopy and first principles calculations to determine the ∑5(210) grain
boundary Ce and oxygen sublattices of CeO2. This finding paves the way for a compre-
hensive understanding of grain boundaries through the atomic-scale determination of
the atomic and defect positions. The adaptation of structural units in the description of
grain boundaries is determined at the level of experimental observations and theoretical
calculations by mutually verifying scanning transmission electron microscopy and first
principles calculations.

The coordination number, in coordination chemistry, is the number of coordinating
atoms around the central atom in a compound, a concept first introduced in 1893. In
crystallography, the coordination number is the number of lattices in the crystal lattice that
are closest to a particular Bravais lattice, and the rest of the grain boundary structure or cell
type is used to determine how closely the atoms are stacked. Jiake Wei et al. [27] combined
valence electron energy-loss spectroscopy (EELS) with first principles calculations and
found that a decrease in the forbidden bandwidth at the grain boundaries is directly
correlated with a decrease in the number of coordinating atoms of the Al and O ions at the
grain boundaries. In addition to the coordination number, M. Imaeda used dangling bonds
and structural distortions to characterize the structural deformation at the grain boundaries.

Due to the loose structure of grain boundaries, they become channels for the diffusion
of gas molecules. The interaction between grain boundaries and molecules can be summa-
rized using three processes: adsorption, diffusion and polarization. At this stage, there are
fewer studies on gas adsorption at grain boundaries, and most of them are studies on the
adsorption of gas molecules (e.g., H2, CO, CO2, H2O, etc.) on the surface of the body. H.L.
Yu et al. [28] used DFT to calculate hydrogen atom adsorption and diffusion on the PuO2
(110) surface. A conventional approach to study atom adsorption and diffusion using DFT
is to identify stable adsorption sites, which adsorb from the surface to the body, and then
use the Climbing Image-Nudged Elastic Band (C-NEB) to find the minimum energy path
between several adsorption sites.

This involves the adsorption energy, which is calculated as follows:

Eads = EM/N − EM − EN (2)

where EM/N is the energy of the total system with adsorbed M atoms, EM is the energy of
the M atoms and EN is the initial total energy of the N system.

The first principle is applied to achieve more molecular adsorption at grain boundaries
and less diffusion and segregation. The reasons for this are, firstly, the model construction
is difficult, and the calculation is large; secondly, the density functional theory calculation is
difficult to use to simulate the dynamic process of the particles. Even if the study of dynamic
processes such as diffusion and polarization is aimed at the calculation of the initial and
final states, the study of the transition state is lacking. Theoretical calculations based on the
first principle and molecular dynamics have their own advantages and disadvantages: DFT
can more accurately calculate the electronic structure and properties of the material, but it
requires large computational resources and high-performance servers; molecular dynamics
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is suitable for large-scale systems and long time scale processes and has advantages in the
study of the dynamic behavior and mechanical properties of materials. Therefore, both
DFT and molecular dynamics are indispensable tools for the study of materials, and they
can complement each other.

2.2. Molecular Dynamics Calculations of Kinetic Properties

The structure and energy of equilibrium GBs constitute a thermodynamic study;
however, it is difficult to reach equilibrium at the GBs in polycrystals, so dynamics issues
such as the evolution of GBs in polycrystalline materials need to be investigated. A
kinetic analysis of GBs is of great importance, and by gaining access to the evolution of
the microstructure, it is possible to explain the way in which materials evolve during
processing on larger scales and their effect on the behavior of crystal defects [29].

GB mobility is an important kinetic property in the evolution of polycrystalline mi-
crostructures, and GB mobility is defined (1) as the ratio of the GB velocity v to the thermo-
dynamic driving force (per area) F in the limit of infinitesimal driving force [29],

M = lim
F→0

v
F

(3)

The motion of GBs changes the average size of the crystals and also affects the electrical,
optical and mechanical properties. The control of GB motions has become an effective
means of regulating polycrystalline properties in materials processing [30], so it is necessary
to analyze the crystal evolution process and its influencing factors.

The way to control the rate of microstructure evolution is to control the change in
temperature (T)—the annealing process; therefore, lots of grain boundary mobility studies
have been carried out based on temperature. Kongtao Chen and Jian Han et al. used
the kinetic Monte Carlo method (kMC) to perform simulations of a quasi-2D bicrystal
structure [31] and statistically formed a mechanical model and validated it with MDs,
which explains the variation in grain boundary mobility with temperature. The statistical
disconnection (i.e., line defect) model developed in the study reveals that the temperature
dependence of grain boundary mobility is related to the different dynamics of the line
defects at low and high temperatures: at low temperatures, the grain boundaries consisting
of a single type of fracture follow the Arrhenius formula as shown in Figure 3, and at high
temperatures, the mobility is inversely proportional to the temperature, which proves the
phenomenon of “anti-heat” in the macroscopic state [32].
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modes with h2/h1 = 2 < e (blue dashed curve) and two modes with h2/h1 = 3 > e (red solid curve) 
Figure 3. The temperature dependence of GB mobility for a single mode (black dotted curve), two
modes with h2/h1 = 2 < e (blue dashed curve) and two modes with h2/h1 = 3 > e (red solid curve) cases.
In the two-mode simulations, Q2 = 10Q1. The x-axis represents the temperature when the contribution
of the long-range elastic interactions is much smaller than the estimate of the disconnection core
energy (T→0), and the x-axis represents GB mobility in classical Arrhenius coordinates.

In this article, static relaxation calculations as well as single-point energy calculations
have been performed for two specific grain boundaries in aluminum, and thermodynamic
parameters are used to determine the energy distribution associated with fracture motion
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when using EAM potential calculations, providing parameterizations for the kMC and
statistical disconnection kinetic theory as shown in Figure 4. The kMC and fracture models
are later compared with the molecular dynamics simulations of grain boundary migration,
and all three results were found to be in good agreement, implying that both the kMC and
the theory can be used to qualitatively predict the migration behavior of GBs.
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squares), kMC simulations (black circles) and fracture models (red lines) for Al (a) Σ17 [100] (035)
and (b) Σ25 [100] (034) symmetric rhombohedral grain boundaries, where the hollow blue squares
represent their average values. The x-axis represents the temperature, and the y-axis represents the
GB mobility M.

The validation process reflects that molecular dynamics has better accuracy in the de-
scription of the mobility of quasi-2D grain boundaries and has continuity in the description
of the mobility compared with the kMC and statistical disconnection model, and the pa-
rameterization of the statistical disconnection model by MDs has similar prediction results.
So, the numerical calculations by the fracture statistical model can greatly reduce the cost
of large-scale MD simulations within the allowable range of error. The computational cost
of large-scale MD simulations can be greatly reduced.

The interaction between dislocations and GBs plays an important role in the strength-
ening of metallic systems, crack growth of single-phase or multi-phase ductile metals,
fatigue crack growth and stress corrosion cracking [33]. The mechanism of GB strengthen-
ing is one of the ways to improve the plastic strength of materials by creating hindrance
for dislocations through the interaction between dislocations and GBs. Different modes of
interaction have various effects, so there is a need to construct a generalized criterion for
predicting the type of interaction and evaluating the hindering effect [34].

In A. Kedharnath’s MD study of the motion of tantalum dislocations on grain bound-
aries [34], 32 slip configurations totaling 64 structures were constructed on two crystal
planes by twisting neighboring grains at different angles around the grain plane axis.
Firstly, numerical calculations of the resolved shear stress (RSS) at GBs were made using
the slip transfer parameters (STPs) and then MDs were carried out for the 64 configura-
tions. The potential function used is the interatomic potential of the tungsten–tantalum
system developed by Chen et al. by fitting the data from experiments and first principles
calculations [35]; finally, the results obtained by MDs and STPs were used as the input
parameters, and the RSS at the GBs were used as the output parameters. The relationships
between the data were fitted by the machine learning model XGBoost [36], and the model
parameters were explained by SHAP [37] to interpret the model parameters. This step
aims to obtain the degree of influence of the descriptors on the model in order to obtain
the correlation between the input and the output. By machine learning combined with
numerical calculations and MD simulation parameters, we can predict more macroscopic
properties of GBs.

It was found that some of the parameters can quantify the RSS more accurately,
including the parameter absorption of a dislocation Dcr, drop in shear stress ∆τ in MDs
and m’ in the calculation of STPs,
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m′ = (nin · nout)(bin · bout) = cosψcosκ (4)

where nin, bin are fixed grain vectors and nout, bout are torsion grain vectors. The prediction
results found that the configurations with a Dcr less than 40 Å and higher ∆τ values are
difficult to deform compared to the other configurations, with the highest grain boundary
yield stress on the [111] face, followed by [112] and [110].

Currently, kinetic calculations in GBs are not limited to MDs, but numerical calcu-
lations and the kMC can be complementary to MDs in the study of kinetic properties.
Machine learning is a fitting tool in this process to compare the accuracy of different
methods. This facilitates the screening of different descriptors to establish a connection
between the properties of matter at different scales. However, the accuracy of the methods
themselves is still controversial, especially the potential function of MDs, which is not
calculated with high accuracy in some models with low symmetry.

2.3. Machine Learning for Computational Efficiency

The cross-scale study of materials has always been a concern, especially characterizing
the atomic-scale structure accurately. DFT based on first principles can obtain reliable
results in the system of up to a few hundred atoms, and can be used for exploring and
screening unknown material structures, but are limited by the computational cost, which
makes it difficult to realize kinetic calculations at larger scales; MDs based on the potential
model of inter-atomic interactions extends the computational scales but is not as reliable as
DFT calculations in terms of accuracy [38]. There are two current applications of machine
learning to DFT and MDs: One is to use it as a tool for fitting data, utilizing the good
interpolation ability to predict the structure and thermodynamic properties of substances.
The other is to extract reference data from DFT, and the potential energy surface (PES)
formed by fitting potentials by machine learning can be used to perform calculations
close to the accuracy of DFT on larger scales while being comparable to general empirical
potentials in terms of the computational cost.

Tamura et al. used both the DFT results of GBs and atoms as a training dataset when
exploring the structure of GBs and their properties [39]. They divided the total energy
of the DFT system into the localized energy of the GBs so that the results of the DFT can
be fully utilized to effectively extract the charge redistribution features at the defects and
refine the analysis of the energy distribution at GBs. The latest machine learning model can
describe the local energy of grain boundaries accurately and quickly.

As shown in Figure 5, because the local energies will be affected by the kinetic measure,
in this paper, they calculate the Bader region energy of the charge density as single-atom
energy by using the DFT-PAW method [40] when dividing the local energies. The algorithm
adopts LASSO regression, which is a linear model that reduces the model complexity by
introducing the regularization parameter λ. It has a better predictive ability and inter-
pretability compared with linear regression models, and it has a better predictive effect
for the sparse sample set where the feature size is larger than the sample size. In the
optimization algorithm, two penalty terms are introduced:
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Figure 5. A flowchart of the study by Tamura et al. (a) Structures are optimized by empirical
potential (b) obtain atomic descriptors (c) a single-point energy calculation is performed for the grain
boundaries, after which (d) the calculated energy is divided into the local energies of the atoms.
(e) model parameters are optimized via machine learning, * represents that this bias parameter is the
result of machine learning training.

∼
λ

com
, λatom are two trade-off parameters to improve the prediction accuracy of atomic

energies, and γ is a hyperparametric term controlling the strength of the penalty factor to
improve the prediction accuracy of grain boundary energies. As shown in Figure 6, where
LASSO-aGc uses an optimization algorithm that introduces two penalty terms, the perfor-
mance is superior to the original LASSO-a algorithm and the LASSO-aG algorithm that
only adds an atomic energy correction term. Moreover, the energy bias of all predictions is
decreased with the use of the smoothed overlap of atomic positions (SOAP) [41] descriptor.
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Figure 6. The RMSE of LASSO for the (a) single-atom energy and (b) grain boundary energy using
different descriptors and optimization algorithms. The color represents a different model, and the
x-axis represents a different descriptor. R is three body angles; AC is the common neighbor analysis
(CNA); and S is the smoothed overlap of atomic positions (SOAP).

In this article, the use of multiple configurations (single atoms and GBs) on the sam-
pling achieves an accuracy close to that of DFT with a lower computational cost and enables
better results at local energies. The multi-configuration sample space sampling is also used
in the training of generalized MLP. In addition, the impact of descriptors on the predictive
ability of the model is emphasized in this article, which inspires us to take into account the
impact of descriptors for different configurations and also poses a challenge for constructing
a generalized MLP.

In Christoph Dösinger et al.’s study, they used active learning for GB deviation in
rhenium–tungsten alloys [42]. There are three machine learning methods, and four descrip-
tors were used to learn a DFT dataset, and the Gaussian process regression (GPR) model
was found to have the best predictive properties, which employs the Steinhardt parameter
as the local environment of the deviated point location. Then, they used Minimization of
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the determinant of the Fisher information matrix and of the model prediction error as a
criterion, to improve the quality of the model, as it can only use a small amount of new data.

All the research methods provided in the above literature have accomplished the
prediction and high-throughput calculation of the energy at GBs with DFT accuracy;
meanwhile, they used a small sample space. These methods facilitate the understanding of
the energy and structural properties of GBs as well as the exploration of new configurations.
The methods were performed only on small-scale systems, and not much more exploration
was performed on longer time and larger system scales, which means no bridge from
thermodynamics to dynamics has been built in the study. But the machine learning strategy
used in the paper and their choice of descriptors provide ideas for constructing MLP with
better generalization.

Poul et al. carried out an MLP study of magnesium metal defects [43]. The model
they used was the moment tensor potential (MTP) [44], where the “level” affects the
number of fitted parameters. Because the energy of atoms in GBs and defects differs from
that of a general structure significantly, when constructing a multi-space group dataset
without specific defect configurations using RANDSPG [45], DFT relaxation calculations
were performed for the initial configurations under low convergence parameters for the
volume, cell shape and internal coordinates, respectively, which were used to preserve
some of the space group configurations and improve the dataset dimensionality. As
shown in Figure 7, the predicted values for GB defects are more accurate as the number
of fitted parameters increases. Moreover, in the active learning validation, 100 ps of
molecular dynamics calculations were performed for the four conformations to select new
conformations for learning.
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Figure 7. The plot of the defect excess energy prediction for each face at a different cutoff radius
(Rc), where the different points represent the prediction of the MTP model using different levels. The
dotted line connects the points of potentials with level 24.

In conclusion, the work of Fujii et al. [46]. verifies that the machine learning potential
has a large breakthrough in simulation accuracy, and they provide important ideas for
efficient material property measurements by comparing the data analysis methods of
perturbed MDs and phonon wave-packet simulations.

The thermal conductivity of the silicon lattice in electronic components affects the
thermal performance of the electronic component, and the thermal conductivity of single
crystal silicon is high. Due to the presence of a large number of grain boundaries in widely
used nanoscale silicon [47], which leads to a reduction in thermal conductivity, component
heat dissipation problems are triggered. Fujii et al. [46] utilized the MLP library from
Kyoto University and obtained the optimal MLP in the library by a grid search in order
to calculate the thermal conductivity of silicon GBs. As can be seen in Table 1, the Pareto-
optimal machine learning potential (MLP-1) and its potential function developed based on
the GB structure data (MLP-2) are able to better represent the GB structure and achieve an
accuracy closer to the first principles than the empirical potentials of Tensoff and Stillinger
Weber and values similar to the DFT in calculating lattice thermal conductivity. The final
four configurations were not included in the dataset. For the configurations that were not
known, the errors of all four models increased to varying degrees. However, the error
growth of MLP-2 was less than that of the other models, indicating that MLP-2 has superior
generalization capabilities.
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Table 1. GB energies after relaxation using different potential functions.

GB Type GB Energy Predict by Different Potential (mJ/m2)
Reference
(mJ/m2)

- SW Tensoff MLP-1 MLP-2 DFT

Σ3(112)/
[
110

]
931 803 757 715 674

Σ3(112)/
[
11 0] 702 698 758 433 375

Σ5(310)/[001] 661 629 622 387 333
Σ21

(
15 4)/[111] 811 795 699 575 534

Σ11(113)/
[
110 ] 874 881 916 722 676

Σ5(210)/[001] 673 649 604 409 361
Σ9(112)/

[
110 ] 446 440 462 252 185

Σ19(331)/[110] 498 496 493 337 285
RMS error 276 253 250 52 —

The perturbed MD method was used for the GB thermal conductivity test, and the
results are shown in Figure 8. Both potential functions reflect the influence of the structure
on the thermal conductivity, and the effect is similar, but MLP-2 is closer to the single-crystal
thermal conductivity in the test. Moreover, the phonon wave-packet simulations revealed
that anharmonic vibrations are also one of the important factors affecting the thermal
conductivity of silicon GBs.
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and Tersoff.

Dai et al. investigated the segregation behavior of tungsten at the GBs of zirconium
diboride and the effect of this segregation on the strength of GBs by deep learning potential
(DLP) [48–50]. The dataset contains AIMD data for crystals, surfaces and GBs, as shown in
Figure 9, and the accuracy of the DFT is realized.

The fitted DLP was applied to the Monte Carlo and MDs to explore the distribution
of W in ZrB2 GBs and its effect on material properties: The W-polarization of tungsten in
ZrB2 GBs to the equilibrium state is first simulated by the Monte Carlo method, where
DLP is used for the determination of the system energy after the atomic exchange; after
that, the mechanical strength of GBs is determined by the MD tensile test, and DLP is
used for the calculation of the interatomic forces. The results show that the polarization of
tungsten enhances the structural stability of grain boundaries at high temperatures, and the
polarization of W significantly improves the strength of grain boundaries at temperatures
up to 2000 K, which is of great significance for the design and optimization of ultrahigh-
temperature ceramics.

The above results show that DLP can better describe the high-temperature system,
which proves the potential application of this method in the design of high-temperature
materials. It should be noted that due to the drastic changes in the high-temperature
system, the temperature gradient and time step should be reduced to improve the quality
of the dataset during the AIMD sampling process. Meanwhile, compared with MTP,
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DLP also suffers from poor interpretability, i.e., the parameters of DLP have no specific
physical meaning.
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3. Challenges and Perspective

There are two challenges for DFT: Firstly, first principles calculations are inherently
difficult to use to simulate the dynamic processes of particles. As the dynamic process sim-
ulation is to calculate the initial and final states through the energy relaxation to determine
the most stable structure, its calculation of the intermediate state reference value is not high.
Therefore, how to calculate the transition state and the transformation of a point calculation
into a line calculation is necessary for further research. Secondly, existing models are not at
the scale of real materials. The number of atoms in the models ranges from tens to hundreds
and remains at the microscopic scale. This produces a disconnect between the microscopic
lattice and the macroscopic predictions of the material. Combining microstructures with
macroscopic properties and establishing universal connections between multiple scales
requires continued efforts by researchers.

When training the MLP, the cutoff radius in the descriptor includes only the first few
coordination layers, which is a very successful method for materials dominated by covalent
and metallic bonds, but the accuracy of this method decreases when long-range interactions
dominate, mainly in the ionic solid system. Deep Potential Long-Range (DPLR), developed
by Linfeng Zhang et al., corrects for long-range electrostatic interactions between valence
electrons [51]. It is approximated by spherical Gaussian charges located on the ions and
valence electrons and calculated by Ewald summation, where the position of the valence
electrons is fixed at the Wannier center of maximum localization. The Wannier centroid
of all valence electrons of each atom depends only on the configuration of its immediate
neighbors [52]. However, a framework that would “learn” all long-range terms and
hierarchically combine this with a short-range fit, thereby making it generally applicable to
all kinds of solids (in particular, weakly ionic ones), is lacking so far [38].

The current trained MLPs have poor extrapolation, i.e., poor prediction of unknown
configurations, and may cause overfitting if too many of the same type of data exist in the
dataset, which is an inherent characteristic of high-dimensional fitting functions. Therefore,
we need to carefully configure the sample space and choose reasonable descriptors. In the
generalized α-phase iron-hydrogen embrittlement MTP constructed by Fan-Shun Meng
et al. [53], they sampled pure iron, pure hydrogen and their binary system, which included
a variety of configurations, such as grain boundaries and clusters. Transfer learning can
also be applied to the multivariate system. These methods provide us with ideas to improve
the model accuracy and generalization ability.



Coatings 2024, 14, 815 12 of 14

4. Conclusions

Computer calculation has been widely used in GB research, particularly for materials
that are difficult to access or are highly hazardous. Compared to general experimental
methods, simulations can obtain thermodynamic information under extreme conditions,
and the field of materials science has obtained more detailed structural information about
grain boundary structures through simulation calculations over the past decade or so [54].
However, simulations are not particularly generalizable, and in DFT, different exchange
correlation functions must be selected according to the specific research system in ques-
tion; in machine learning, multiple models are often required for comparative analyses,
which raises questions about their credibility. Although simulations can facilitate research
progress, they still require relevant experiments for validation.
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