The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review
Abstract
:1. Introduction
2. Physical Vapor Deposition Techniques
2.1. Magnetron Sputtering
2.2. Arc Ion Plating
3. Self-Lubricant Coatings for Tribological Applications
3.1. MoN Coatings
3.2. VN Coatings
3.3. WN Coatings
3.4. TMN-SMe Coatings
3.5. Lubricant Agent-Doped DLC Coatings
4. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kroll, C.; Warchold, A.; Pradhan, P. Sustainable development goals (sdgs): Are we successful in turning trade-offs into synergies? Palgrave Commun. 2019, 5, 140. [Google Scholar] [CrossRef]
- Swain, B.; Yang-Wallentin, R. Achieving sustainable development goals: Predicaments and strategies. Int. J. Sustain. Dev. World Ecol. 2020, 27, 96–106. [Google Scholar] [CrossRef]
- Buch, V.R.; Chawla, A.K.; Rawal, S.K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proc. 2016, 3, 1429–1437. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.S.; Lee, Y.H.; Hong, S.H.; Kim, K.S.; Park, Y.K. Design of nano-scale multilayered nitride hard coatings deposited by arc ion plating process: Microstructural and mechanical characterization. J. Mater. Res. Technol. 2021, 15, 572–581. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef]
- Nasim, M.; Li, Y.; Wen, M.; Wen, C. A review of high-strength nanolaminates and evaluation of their properties. J. Mater. Sci. Technol. 2020, 50, 215–244. [Google Scholar] [CrossRef]
- Saenz-Trevizo, A.; Hodge, A.M. Nanomaterials by design: A review of nanoscale metallic multilayers. Nanotechnology 2020, 31, 292002. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection. Diam. Relat. Mater. 1998, 7, 463–467. [Google Scholar] [CrossRef]
- Gu, L.; Ke, P.; Zou, Y.; Li, X.; Wang, A. Amorphous self-lubricant MoS2-C sputtered coating with high hardness. Appl. Surf. Sci. 2015, 331, 66–71. [Google Scholar] [CrossRef]
- Vuchkov, T.; Evaristo, M.; Yaqub, T.B.; Polcar, T.; Cavaleiro, A. Synthesis, microstructure and mechanical properties of W-S-C self-lubricant thin films deposited by magnetron sputtering. Tribol. Int. 2020, 150, 106363. [Google Scholar] [CrossRef]
- Pimentel, J.V.; Danek, M.; Polcar, T.; Cavaleiro, A. Effect of rough surface patterning on the tribology of W-S-C-Cr self-lubricant coatings. Tribol. Int. 2014, 69, 77–83. [Google Scholar] [CrossRef]
- Mutafov, P.; Evaristo, M.; Cavaleiro, A.; Polcar, T. Structure, mechanical and tribological properties of self-lubricant W-S-N coatings. Surf. Coat. Technol. 2015, 261, 7–14. [Google Scholar] [CrossRef]
- Ju, H.; Yao, L.; Luan, J.; Geng, Y.; Xu, J.; Yu, L.; Yang, J.; Fernandes, F. Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si. Vacuum 2023, 209, 111752. [Google Scholar] [CrossRef]
- Kumar, C.S.; Urbikain, G.; Lacalle, L.; Gangopadhyay, S.; Fernandes, F. Investigating the effect of novel self-lubricant TiSiVN films on topography, diffusion and oxidation phenomenon at the chip-tool interface during dry machining of Ti-6Al-4V alloy. Tribol. Int. 2023, 186, 108604. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, G.; Ding, Z.; Mu, H.; Piao, Z.; Liu, M.; Guo, W.; Xing, Z.; Wang, H. Tribological properties of the WC-10Co-4Cr-4CaF2 wear-resistant self-lubricating coating at different temperatures. Surf. Coat. Technol. 2023, 475, 130129. [Google Scholar] [CrossRef]
- Voevodin, A.A.; O’Neill, J.P.; Zabinski, J.S. Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 1999, 116–119, 36–45. [Google Scholar] [CrossRef]
- Voevodin, A.A.; O’Neill, J.P.; Zabinski, J.S. Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Film. 1999, 342, 194. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Supertough wear-resistant coatings with ‘chameleon’ surface adaptation. Thin Solid Film. 2000, 370, 223. [Google Scholar] [CrossRef]
- Baker, C.C.; Chromik, R.R.; Wahl, K.J.; Hu, J.J.; Voevodin, A.A. Preparation of chameleon coatings for space and ambient environments. Thin Solid Film. 2007, 515, 6737–6743. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Muratore, C.; Aouadi, S.M. Hard coatings with high temperature adaptive lubrication and contact thermal management: Review. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Baker, C.C.; Hu, J.J.; Voevodin, A.A. Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments. Surf. Coat. Technol. 2006, 201, 4224–4229. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Kumar, A.; Singh, B.P. Chapter 6—Applications of green nanomaterials in coatings. Green Nanomaterials for Industrial Applications. In Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 107–152. [Google Scholar]
- Buch, V.; Oza, A.D. Machining parameter comparison on HSS cutting tool coated with multi-walled carbon nano tube using green coating technique. Mater. Today 2022, 62, 7270–7274. [Google Scholar] [CrossRef]
- Ju, H.; Huang, K.; Luan, J.; Geng, Y.; Yang, J.; Xu, J. Evaluation under temperature cycling of the tribological properties of Ag-SiNx films for green tribological applications. Ceram. Int. 2023, 49, 30115–30124. [Google Scholar] [CrossRef]
- Jian, S.; Liu, Y.; Chang, C. Novel green and ecofriendly route for fabricating a robust corrosion protection coating on AZ91D magnesium alloy. Electrochem. Commun. 2024, 160, 107667. [Google Scholar] [CrossRef]
- Fan, W.; Ding, Y.; Xiao, Z. A brand new green coating technology for realizing the regulation of spherical propellant energy release process. Def. Technol. 2024, 36, 78–94. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, H. A State-of-the-art overview: Recent development in low friction and wear-resistant coatings and surfaces for high-temperature forming tools. Manuf. Rev. 2014, 1, 24. [Google Scholar] [CrossRef]
- Roostaei, M.; Tabrizi, A.T.; Aghajani, H. Predicting the wear rate of Alumina/MoS2 nanocomposite coatings by development of a relation between Lancaster coefficient & surface parameters. Tribol. Int. 2024, 191, 109129. [Google Scholar]
- Fernandes, F.; AL-Rjoub, A.; Cavaleiro, D.; Polcar, T.; Cavaleiro, A. Room and high temperature tribological performance of multilayered TiSiN/TiN and TiSiN/TiN(Ag) coatings deposited by sputtering. Coatings 2020, 10, 1191. [Google Scholar] [CrossRef]
- Du, J.; Lu, M.; Fang, J.; Li, W.; Chen, D. Current-carrying friction behavior and wear mechanism of Ag coatings by rotary spray deposition. Wear 2024, 546–547, 205367. [Google Scholar] [CrossRef]
- Vitu, T.; Escudeiro, A.; Polcar, T.; Cavaleiro, A. Sliding properties of Zr-DLC coatings: The effect of tribolayer formation. Surf. Coat. Technol. 2014, 258, 734–745. [Google Scholar] [CrossRef]
- Yaqub, T.B.; Vuchkov, T.; Bruyere, S.; Pierson, J.; Cavaleiro, A. A revised interpretation of the mechanism governing low friction tribolayer formation in alloyed-TMD self-lubricating coatings. Appl. Surf. Sci. 2023, 571, 151302. [Google Scholar] [CrossRef]
- Selvakumar, N.; Barshilia, H.C. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Sol. Energy Mater. Sol. Cells 2012, 98, 1–23. [Google Scholar] [CrossRef]
- Reichelt, K.; Jiang, X. The preparation of thin films by physical vapour deposition methods. Thin Solid Film. 1990, 191, 91–126. [Google Scholar] [CrossRef]
- Hamzan, N.B.; Ng, C.Y.B.; Sadri, R.; Lee, M.K.; Chang, L.-J.; Tripathi, M.; Dalton, A.; Goh, B.T. Controlled physical properties and growth mechanism of manganese silicide nanorods. J. Alloys Compd. 2021, 851, 156693. [Google Scholar] [CrossRef]
- Gutpa, J.; Shaik, H.; Kumar, K.N.; Sattar, S.A. PVD techniques proffering avenues for fabrication of porous tungsten oxide (WO3) thin films: A review. Mater. Sci. Semicond. Process. 2022, 143, 106534. [Google Scholar] [CrossRef]
- Hidalgo, H.; Thomann, A.L.; Lecas, T.; Vulliet, J.; Wittmann-Teneze, K.; Damiani, D. Optimization of DC reactive magnetron sputtering deposition process for efficient YSZ electrolyte thin film SOFC. Fuel Cell 2013, 13, 279–288. [Google Scholar] [CrossRef]
- Wen, J.N.; Wu, R.J.; Mi, Y.; Zhang, N.; Lin, Z.; Chen, S. Effect of Ti as cosputtering target on microstructure and mechanical properties of FeCoNi(CuAl)0.2 high-entropy alloy thin films. Mater. Chem. Phys. 2023, 296, 127214. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Hecimovic, A. Foundations of DC plasma sources. Plasma Sources Sci. Technol. 2017, 26, 123001. [Google Scholar] [CrossRef]
- Kozyrev, A.V.; Sochugov, N.S.; Oskomov, K.V.; Zakharov, A.N.; Odivanova, A.N. Optical studies of plasma inhomogeneities in a high-current pulsed magnetron discharge. Plasma Phys. Rep. 2011, 37, 621–627. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, J.; Lu, Z.; Wang, R.; Xu, Z. A review on the application of magnetron sputtering technologies for solid oxide fuel cell in reduction of the operating temperature. Int. J. Hydrogen Energy 2024, 50, 1179–1193. [Google Scholar] [CrossRef]
- Uchida, M.; Nihira, N.; Mitsuo, A.; Toyoda, K.; Kubota, K.; Aizawa, T. Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method. Surf. Coat. Technol. 2004, 177, 627–630. [Google Scholar] [CrossRef]
- Ikeda, T.; Satoh, H. Phase formation and characterization of hard coatings in the TiAlN system prepared by the cathodic arc ion plating method. Thin Solid Film. 1991, 195, 99–110. [Google Scholar] [CrossRef]
- Tu, R.; Yang, M.; Yuan, Y.; Min, R.; Li, Q.; Yang, M.; Ji, B.; Zhang, S. Sandwich structure to enhance the mechanical and electrochemical performance of TaN/(Ta/Ti)/TiN multilayer films prepared by multi-arc ion plating. Coatings 2022, 12, 694. [Google Scholar] [CrossRef]
- Ghasemi, H.; Farhadi, S. A comprehensive review on the tribological and mechanical properties of nitride-based PVD coatings: Recent advancements and future directions. Surf. Coat. Technol. 2019, 374, 149–170. [Google Scholar]
- Rodriguez, R.J.; Garcia, J.A.; Medrano, A.; Rico, M.; Sanchez, R.; Martinez, R.; Labrugere, C.; Lahaye, M.; Guette, A. Tribological behaviour of hard coatings deposited by arc-evaporation PVD. Vacuum 2002, 67, 559–566. [Google Scholar] [CrossRef]
- Torres, H.; Ripoll, M.R.; Prakash, B. Tribological behaviour of self-lubricating materials at high temperatures. Int. Mater. Rev. 2018, 63, 309–340. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, L.; Patnaik, P.C.; Zeng, X. Wear resistant TiMoN coatings deposited by magnetron sputtering. Wear 2006, 261, 119–125. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Zaleski, K.; Coy, E.; Jurga, S.; Lisovenko, M.O.; Konarski, P.; Rebouta, L. Superhard CrN/MoN coatings with multilayer architecture. Mater. Des. 2018, 153, 47–59. [Google Scholar] [CrossRef]
- Xiang, J.Y.; Lin, Z.X.; Renoux, E.; Wu, F.B. Microstructure evolution and indentation cracking behavior of MoN multilayer films. Surf. Coat. Technol. 2018, 350, 1020–1027. [Google Scholar] [CrossRef]
- Jauberteau, I.; Bessaudou, A.; Mayet, R.; Cornette, J.; Jauberteau, J.L.; Carles, P.; Merle-Mejean, T. Molybenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties. Coatings 2015, 5, 656–687. [Google Scholar] [CrossRef]
- Nordin, M.; Larsson, M.; Hogmark, S. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coat. Technol. 1998, 106, 234–241. [Google Scholar] [CrossRef]
- Ozturk, A.; Ezirmil, K.V.; Kazmanli, K.; Urgen, M.; Eryilmaz, O.L.; Erdemir, A. Comparative tribological behaviors of TiN-, CrN- and MoN-Cu nanocomposite coatings. Tribol. Int. 2008, 41, 49–59. [Google Scholar] [CrossRef]
- Solak, N.; Ustel, F.; Urgen, M.; Aydin, S.; Cakir, A.F. Oxidation behavior of molybdenum nitride coatings. Surf. Coat. Technol. 2003, 174, 713–719. [Google Scholar] [CrossRef]
- Sarioglu, C.; Demirler, U.; Kazmanli, M.; Urgen, M. Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate. Surf. Coat. Technol. 2005, 190, 238–243. [Google Scholar] [CrossRef]
- Abboudi, A.; Aissani, L.; Saoudi, A.; Djebaili, H. Effect of film thickness on the structural and tribo-mechanical properties of reactive sputtered molybdenum nitride thin films. Metall. Mater. Eng. 2022, 28, 419–433. [Google Scholar] [CrossRef]
- Lu, X.; Su, X.; Kang, J.; Zhang, X.; Miao, X.; Wang, J.; Hao, J. Effect of peak current on the microstructure, mechanical properties and tribological behavior of MoxN coatings deposited by high power impulse magnetron sputtering. Tribol. Int. 2023, 189, 108955. [Google Scholar] [CrossRef]
- Liu, C.; Ju, H.; Yu, L.; Xu, J.; Geng, Y.; He, W.; Jiao, J. Tribological Properties of Mo2N Films at Elevated Temperature. Coatings 2019, 9, 734. [Google Scholar] [CrossRef]
- Gassner, G.; Mayrhofer, P.H.; Kutschej, K.; Mitterer, C.; Kathrein, M. Magnéli phase formation of PVD Mo-N and W-N coatings. Surf. Coat. Technol. 2006, 201, 3335–3341. [Google Scholar] [CrossRef]
- Qian, J.; Li, S.; Pu, J.; Cai, Z.; Wang, H.; Cai, Q.; Ju, P. Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering. Surf. Coat. Technol. 2019, 374, 725–735. [Google Scholar] [CrossRef]
- Fan, J.; Wang, W.; Wang, H.; Pu, J. Tribological Performance and Mechanism of MoN/VN Multilayer Films with Different Modulation Periods at Different Temperature. Tribol. Lett. 2021, 69, 154. [Google Scholar] [CrossRef]
- Zhu, X.; Yue, D.; Shang, C.; Fan, M.; Hou, B. Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD. Surf. Coat. Technol. 2013, 228, S184–S189. [Google Scholar] [CrossRef]
- Samra, H.A.; Staedler, T.; Aronov, I.; Xia, J.; Jia, C.; Wenclawiak, B.; Jiang, X. Deposition and characterization of nanocrytalline Mo2N/BN composite coatings by ECR plasma assisted CVD. Surf. Coat. Technol. 2010, 204, 1919–1924. [Google Scholar] [CrossRef]
- Gilewicz, A.; Warcholinski, B.; Murzynski, D. The properties of molybdenum nitride coatings obtained by cathodic arc evaporation. Surf. Coat. Technol. 2013, 236, 149–158. [Google Scholar] [CrossRef]
- Hazar, H. Characterization of MoN coatings for pistons in a diesel engine. Mater. Des. 2010, 31, 624–627. [Google Scholar] [CrossRef]
- Zhang, G.; Fan, T.; Wang, T.; Chen, H. Microstructure, mechanical and tribological behavior of MoNx/SiNx multilayer coatings prepared by magnetron sputtering. Appl. Surf. Sci. 2013, 274, 231–236. [Google Scholar] [CrossRef]
- Liang, B.; Hsieu, F.; Wu, F. Modulation effect on mechanical properties of nanolayered MoN/MoSiN coatings. Surf. Coat. Technol. 2022, 436, 128278. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Li, Y.; Gao, F.; Zhang, G. Self-lubricating TiN/MoN and TiAlN/MoN nano-multilayer coatings for drilling of austenitic stainless steel. Ceram. Int. 2019, 45, 24248–24253. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Ren, S.; Jiang, B. Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering. J. Alloys Compd. 2017, 701, 1–8. [Google Scholar] [CrossRef]
- Krysina, O.V.; Ivanov, Y.F.; Koval, N.N.; Prokopenko, N.A.; Shugurov, V.V.; Petrikova, E.A.; Tolkachev, O.S. Composition, structure and properties of Mo-N coatings formed by the method of vacuum-arc plasma-assisted deposition. Surf. Coat. Technol. 2021, 416, 127153. [Google Scholar] [CrossRef]
- Tillmann, W.; Kokalj, D.; Stangier, D. Impact of structure on mechanical properties and oxidation behavior of magnetron sputtered cubic and hexagonal MoNx thin films. Appl. Surf. Sci. Adv. 2021, 5, 100119. [Google Scholar] [CrossRef]
- Tillmann, W.; Kokalj, D.; Stangier, D. Influence of the deposition parameters on the texture and mechanical properties of magnetron sputtered cubic MoNx thin films. Materialia 2019, 5, 100186. [Google Scholar] [CrossRef]
- Zin, V.; Miorin, E.; Deambrosis, S.M.; Montagner, F.; Fabrizio, M. Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates. Tribol. Int. 2018, 119, 372–380. [Google Scholar] [CrossRef]
- Sun, L.; Mao, J.; Li, Y.; Zhou, Q.; Yuan, Z.; Xiong, X.; Fang, Q.; Gong, W.; Lu, J.; Tang, L.; et al. Microstructures and mechanical properties of MoNx isomeric multilayer films with different number of layers deposited by DC magnetron sputtering. Materialia 2023, 28, 101714. [Google Scholar] [CrossRef]
- Wicher, B.; Chodun, R.; Nowakowska-Langier, K.; Okrasa, S.; Trzciński, M.; Król, K.; Minikayev, R.; Skowroński, Ł.; Kurpask, Ł.; Zdunek, K. Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin films. Appl. Surf. Sci. 2018, 456, 789–796. [Google Scholar] [CrossRef]
- Li, J.; Xiong, D.; Wu, H.; Zhu, H.; Kong, J.; Tyagi, R. Tribological properties of MoN layer on silver-containing nickel-base alloy at high temperatures. Wear 2011, 271, 987–993. [Google Scholar] [CrossRef]
- Münz, W.D. Large-scale manufacturing of nanoscale multilayered hard coatings deposited by cathodic arc/unbalanced magnetron sputtering. MRS Bull. 2003, 28, 173–179. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar] [CrossRef]
- Magn’eli, A. Structures of the ReO3-type with recurrent dislocations of atoms: ‘homologous series’ of molybdenum and tungsten oxides. Acta Crystallogr. 1953, 6, 495–500. [Google Scholar] [CrossRef]
- Erdemir, A. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Technol. 2005, 200, 1792–1796. [Google Scholar] [CrossRef]
- Wu, C.; Huang, J.; Yu, G. Optimization of deposition procession of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods. Mater. Chem. Phys. 2019, 224, 246–256. [Google Scholar] [CrossRef]
- Huang, J.; Wei, L.; Ting, I. Evaluation of fracture toughness of VN hard coatings: Effect of preferred orientation. Mater. Chem. Phys. 2022, 275, 125253. [Google Scholar] [CrossRef]
- Ge, F.; Zhu, P.; Meng, F.; Xue, Q.; Huang, F. Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings. Surf. Coat. Technol. 2014, 248, 81–90. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, S.; Li, B.; Lee, J.-W.; Zhao, D. Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings. Procedia Eng. 2012, 36, 217–225. [Google Scholar] [CrossRef]
- Cai, Z.; Pu, J.; Lu, X.; Jiang, X.; Wang, L.; Xue, Q. Improved tribological property of VN film with the design of pre-oxidized layer. Ceram. Int. 2019, 45, 6051–6057. [Google Scholar] [CrossRef]
- Gassner, G.; Mayrhofer, P.H.; Kutschej, K.; Mitterer, C.; Kathrein, M. A new low friction concept for high temperatures: Lubricious oxide formation on sputtered VN coatings. Tribol. Lett. 2004, 17, 751–756. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, M.; Zhao, Y. Carbon doping to improve the high temperature tribological properties of VN coating. Tribol. Int. 2016, 97, 327–336. [Google Scholar] [CrossRef]
- Zhou, Z.; Rainforth, W.M.; Lewis, D.B.; Creasy, S.; Forsyth, J.J.; Clegg, F.; Ehiasarian, A.P. Oxidation behaviour of nanoscale TiAlN/VN multilayer coatings. Surf. Coat. Technol. 2004, 177–178, 198–203. [Google Scholar] [CrossRef]
- Zhou, Z.; Rainforth, W.M.; Tan, C.C.; Zeng, P.; Ojeda, J.J.; Romero-Gonzalez, M.E.; Hovespian, P.E. The role of the tribofilm and roll-like debris in the wear of nanoscale nitride PVD coatings. Wear 2007, 263, 1328–1334. [Google Scholar] [CrossRef]
- Kamath, G.; Purandare, A.P.E.Y.; Hovespian, P.E. Tribological and oxidation behaviour of TiAlCN/VCN nanoscale multilayer coating deposited by the combined HIPIMS/(HIPIMS-UBM) technique. Surf. Coat. Technol. 2011, 205, 2823–2829. [Google Scholar] [CrossRef]
- Fateh, N.; Fontalvo, G.A.; Gassner, G.; Mitterer, C. Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 2007, 262, 1152–1158. [Google Scholar] [CrossRef]
- Fallquist, M.; Olsson, M. The influence of surface defects on the mechanical and tribological properties of VN-based arc-evaporated coatings. Wear 2013, 297, 1111–1119. [Google Scholar] [CrossRef]
- Liu, Z.X.; Li, Y.; Xie, X.H.; Qin, J.; Wang, Y. The tribo-corrosion behavior of monolayer VN and multilayer VN/C hard coatings under simulated seawater. Ceram. Int. 2021, 47, 25655–25663. [Google Scholar] [CrossRef]
- Grigore, E.; Ruset, C.; Luculescu, C. The structure and properties of VN-VCN-VC coatings deposited by a high energy ion assisted magnetron sputtering method. Surf. Coat. Technol. 2011, 205, S29–S32. [Google Scholar] [CrossRef]
- Park, J.; Baik, Y. Increase of hardness and oxidation resistance of VN coatings by nanoscale multilayered structurization with AlN. Mater. Lett. 2008, 62, 2528–2530. [Google Scholar] [CrossRef]
- Cai, Q.; Li, S.; Pu, J.; Cai, Z.; Lu, X.; Cui, Q.; Wang, L. Effect of multicomponent doping on the structure and tribological properties of VN-based coatings. J. Alloys Compd. 2019, 806, 566–574. [Google Scholar] [CrossRef]
- Storz, O.; Gasthuber, H.; Woydt, M. Tribological properties of thermal-sprayed Magneli-type coatings with different stoichiometries (TinO2n−1). Surf. Coat. Technol. 2001, 140, 76–81. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.W.; Duh, J.G. Mechanical strengthening in self-lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics. Surf. Coat. Technol. 2016, 303, 12–17. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Singh, D.P.; Stone, D.S.; Polychronopoulou, K.; Nahif, F.; Rebholz, C.; Muratore, C.; Voevodin, A.A. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C. Acta Mater. 2010, 58, 5326–5331. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Paudel, Y.; Luster, B.; Stadler, S.; Kohli, P.; Muratore, C.; Hager, C.; Voevodin, A.A. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coat ings for aerospace applications. Tribol. Lett. 2008, 29, 95–103. [Google Scholar] [CrossRef]
- Caicedo, J.C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films. Appl. Surf. Sci. 2011, 258, 312–320. [Google Scholar] [CrossRef]
- Chun, S. Properties of VN Coatings Deposited by ICP Assisted Sputtering: Effect of ICP Power. J. Korean Ceram. Soc. 2017, 54, 38–42. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Z.; Guo, P.; Shuai, J.; Ye, Y.; Wang, A.; Ke, P. Friction behavior of VN coating under different loads. Tribology 2020, 5, 656–663. [Google Scholar]
- Kuprin, A.S.; Gilewicz, A.; Tolmachova, G.N.; Klimenko, I.O.; Kolodiy, I.V.; Vasilenko, R.L.; Warcholinski, B. Effect of Nitrogen Pressure and Substrate Bias Voltage on Structure and Mechanical Properties of Vacuum Arc Deposited VN Coatings. Metall. Mater. Trans. A 2023, 54, 4438. [Google Scholar] [CrossRef]
- Polcar, T.; Parreira, N.M.G. Cavaleiro. Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear 2008, 265, 19–26. [Google Scholar] [CrossRef]
- Parreira, N.M.G.; Carvalho, N.J.M.; Vaz, F.; Cavaleiro, A. Mechanical evaluation of unbiased W-O-N coatings deposited by d.c. reactive magnetron sputtering. Surf. Coat. Technol. 2006, 200, 6511. [Google Scholar] [CrossRef]
- Boukhris, L.; Poitevin, J.-M. Electrical resistivity, structure and composition of d.c. sputtered WNx films. Thin Solid Films 1997, 310, 222–227. [Google Scholar] [CrossRef]
- Tiron, V.; Velicu, I.; Porosnicu, C.; Burducea, I.; Dinca, P.; Malinsky, P. Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications. Appl. Surf. Sci. 2017, 416, 878–884. [Google Scholar] [CrossRef]
- Patra, L.; Mallick, G.; Pandey, R.; Karna, S.P. Surface stability of WN ultrathin films under O2 and H2O exposure: A first-principles study. Appl. Surf. Sci. 2022, 588, 152940. [Google Scholar] [CrossRef]
- Cui, Z.; Cai, D.; Li, Y.; Li, C.; Song, Z. WN coating of TiN electrode to improve the reliability of phase change memory. Mater. Sci. Semicond. Process. 2022, 138, 106273. [Google Scholar] [CrossRef]
- Gachon, Y.; Ienny, P.; Forner, A.; Farges, G.; Catherine, M.C.S.; Vannes, A.B. Erosion by solid particles of W/W-N multilayer coatings obtained by PVD process. Surf. Coat. Technol. 1999, 113, 140–148. [Google Scholar] [CrossRef]
- Javdosank, D.; Musil, J.; Soukup, Z.; Haviar, S.; Cerstvy, R.; Houska, J. Tribological properties and oxidation resistance of tungsten and tungsten nitride films at temperature up to 500 °C. Tribol. Int. 2019, 132, 211–220. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, F. Microstructure evolution and mechanical properties of refractory molybdenum-tungsten nitride coatings. Surf. Coat. Technol. 2024, 476, 130154. [Google Scholar] [CrossRef]
- Polcar, T.; Parreira, N.M.G.; Cavaleiro, A. Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering. Wear 2007, 262, 655. [Google Scholar] [CrossRef]
- Lou, B.; Moirangthem, I.; Lee, J. Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate. Surf. Coat. Technol. 2020, 393, 125743. [Google Scholar] [CrossRef]
- Kumara, D.D.; Kumar, N.; Kalaiselvam, S.; Dash, S.; Jayavel, R. Substrate effect on wear resistant transition metal nitride hard coatings: Microstructure and tribo-mechanical properties. Ceram. Int. 2015, 41, 9849–9861. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, L.; Ye, F. Comparison study on the oxidation behavior of WN and WCN ceramic coatings during heat treatment. Mater. Chem. Phys. 2018, 206, 144–149. [Google Scholar] [CrossRef]
- Tsai, Y.Z.; Duh, J.G. Tribological behavior of CrN/WN multilayer coatings grown by ion-beam assisted deposition. Surf. Coat. Technol. 2006, 201, 4266–4272. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhang, J.J.; Yang, J.; Wang, L.Q.; Li, D.J. Influence of Ar/N2 flow ratio on structure and properties of nanoscale ZrN/WN multilayered coatings. Surf. Coat. Technol. 2007, 201, 5472–5476. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Yamamoto, K.; Veldhuis, S.C.; Kovalev, A.I.; Shuster, L.S.; Ning, L. Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions. Surf. Coat. Technol. 2006, 201, 1852–1860. [Google Scholar] [CrossRef]
- Bagdasaryan, A.A.; Pshyk, A.V.; Coy, L.E.; Kempinski, M.; Pogrebnjak, A.D.; Beresnev, V.M.; Jurga, S. Structural and mechanical characterization of (TiZrNbHfTa)N/WN multilayered nitride coatings. Mater. Lett. 2018, 229, 364–367. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kawate, M.; Hasegawa, H.; Suzuki, T. Effects of nitrogen concentration on microstructures of WNx films synthesized by cathodic arc method. Surf. Coat. Technol. 2005, 193, 372–374. [Google Scholar] [CrossRef]
- Samano, E.C.; Clemente, A.; Díaz, J.A.; Soto, G. Mechanical properties optimization of tungsten nitride thin films grown by reactive sputtering and laser ablation. Vacuum 2010, 85, 69–77. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, S.; Hong, Y.; Wang, Y.; Hu, Y.; Zou, G.; Kuang, T.; Zhou, K. Microstructures and properties of novel nanocomposite WNx coatings deposited by reactive magnetron sputtering. Appl. Surf. Sci. 2020, 512, 145508. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, X.; Zhang, H.; Song, M. Positioning of interstitial carbon atoms in the deformed Fe-C system. Mater. Today Commun. 2023, 34, 105377. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, C.; Chen, L.; Kong, Y.; Mayrhofer, P.H. An ab initio guided study on the shear-induced fcc-hcp transition: A case study of (Ti, Al)N/ZrN multilayers. Scr. Mater. 2024, 245, 116064. [Google Scholar] [CrossRef]
- Sreehari, S.; George, N.S.; Jose, L.M.; Nandakumar, S.; Subramaniam, R.T.; Aravind, A. A review on 2D transition metal nitrides: Structural and morphological impacts on energy storage and photocatalytic applications. J. Alloys Compd. 2023, 950, 169888. [Google Scholar] [CrossRef]
- Ju, H.; Yu, L.; Yu, D.; Assempah, I.; Xu, J. Microstructure, mechanical and tribological properties of TiN-Ag films deposited by reactive magnetron sputtering. Vacuum 2017, 141, 82–88. [Google Scholar] [CrossRef]
- Ju, H.; Yu, D.; Yu, L.; Ding, N.; Xu, J.; Zhang, X.; Zhang, Y.; Yang, L.; He, X. The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN-Ag films. Vacuum 2018, 148, 54–61. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Blanchet, T.A.; Gall, D. CrN-Ag nanocomposite coatings: Tribology at room temperature and during a temperature ramp. Surf. Coat. Technol. 2010, 25, 1388–1394. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Kong, J.; Huang, J.; Wu, Q.; Xiong, D. Achieving high toughness and wear resistance for hard TaN-Ag films actuated by Ag. Int. J. Refract. Met. Hard Mater. 2023, 111, 106076. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, S.; Qiu, J.; Yang, X.; Wang, W.; Li, Y.; Si, Y.; Wang, G.; Wen, M. Self-lubricating behavior of VN coating catalyzed by solute Ag atom under dry friction and oil lubrication. Surf. Coat. Technol. 2021, 409, 126845. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Su, F.; Li, Z.; Chen, Y.; Xu, Z. Microstructure and tribological performance of adaptive MoN-Ag nanocomposite coatings with various Ag contents. Wear 2022, 488–489, 204170. [Google Scholar] [CrossRef]
- Ju, H.; Xu, J. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering. Appl. Surf. Sci. 2015, 355, 878–883. [Google Scholar] [CrossRef]
- Ren, Y.; Jia, J.; Cao, X.; Zhang, G.; Ding, Q. Effect of Ag content on the microstructure and tribological behaviors of NbN-Ag coatings at elevated temperatures. Vacuum 2022, 204, 111330. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, K.; He, X.; Du, S.; Yang, X.; An, T.; Wen, M.; Zheng, W. Toughness enhancement and tribochemistry of the Nb-Ag-N films actuated by solute Ag. Acta Mater. 2017, 137, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, S.; Ren, L.; Denisov, V.V.; Koval, N.N.; Yang, K.; Yu, B. Effect of substrate pulse bias voltage on the microstructure and mechanical and wear-resistant properties of TiN/Cu nanocomposite films. Rare Met. Mater. Eng. 2018, 47, 3284–3288. [Google Scholar]
- Xu, X.; Su, F.; Li, Z. Microstructure and tribological behaviors of MoN-Cu nanocomposite coatings sliding against Si3N4 ball under dry and oil-lubricated conditions. Wear 2019, 434–435, 202994. [Google Scholar] [CrossRef]
- Ezirmik, K.V.; Rouhi, S. Influence of Cu additions on the mechanical and wear properties of NbN coatings. Surf. Coat. Technol. 2014, 260, 179–185. [Google Scholar] [CrossRef]
- Ma, K.J.; Chao, C.L.; Liu, D.S.; Chen, Y.T.; Shieh, M.B. Friction and wear behaviour of TiN/Au, TiN/MoS2 and TiN/TiCN/a-C: H coatings. J. Mater. Process. Technol. 2002, 127, 182–186. [Google Scholar] [CrossRef]
- He, J.L.; Wang, J.; Li, W.Z.; Li, H.D. Simulation of nacre with TiN/Pt multilayers and a study of their mechanical properties. Mater. Sci. Eng. B 1997, 49, 128–134. [Google Scholar] [CrossRef]
- Wu, J.; Wei, P.; Liu, G.; Chen, D.; Zhang, X.; Chen, T.; Liu, H. A comprehensive evaluation of DLC coating on gear bending fatigue, contact fatigue, and scuffing performance. Wear 2024, 536–537, 205177. [Google Scholar] [CrossRef]
- Marian, M.; Zambrano, D.F.; Rothammer, B.; Waltenberger, V.; Boidi, G.; Krapt, A.; Merie, B.; Stampfl, J.; Rosenkranz, A.; Gachot, C.; et al. Combining multi-scale surface texturing and DLC coatings for improved tribological performance of 3D printed polymers. Surf. Coat. Technol. 2023, 466, 129682. [Google Scholar] [CrossRef]
- Dai, X.; Wen, M.; Wang, J.; Cui, X.; Wang, X.; Zhang, K. The tribological performance at elevated temperatures of MoNbN-Ag coatings. Appl. Surf. Sci. 2020, 509, 145372. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, K.; Du, S.; Meng, Q.; He, X.; Wang, S.; Wen, M.; Zheng, W. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface. Appl. Surf. Sci. 2017, 407, 434–439. [Google Scholar] [CrossRef]
- Shah, R.; Pai, N.; Khandekar, R.; Aslam, R.; Wang, Q.; Yan, Z.; Rosenkranz, A. DLC coatings in biomedical applications-Review on current advantages, existing challenges, and future directions. Surf. Coat. Technol. 2024, 487, 131006. [Google Scholar] [CrossRef]
- Luo, G.; Xu, X.; Dong, H.; Wei, Q.; Tian, F.; Qin, J.; Shen, Q. Enhance the tribological performance of soft AISI 1045 steel through a CrN/W-DLC/DLC multilayer coating. Surf. Coat. Technol. 2024, 485, 130916. [Google Scholar] [CrossRef]
- Wu, F.; Yu, L.; Ju, H.; Asempah, I.; Xu, J. Structural, mechanical and tribological properties of NbCN-Ag nanocomposite films deposited by reactive magnetron sputtering. Coatings 2018, 8, 50. [Google Scholar] [CrossRef]
- Liu, C.; Ju, H.; Xu, J.; Yu, L.; Zhao, Z.; Geng, Y.; Zhao, Y. Influence of copper on the compositions, microstructure and room and elevated temperature tribological properties of the molybdenum nitride film. Surf. Coat. Technol. 2020, 395, 125811. [Google Scholar] [CrossRef]
- Liu, E.; Zhang, J.; Chen, S.; Du, S.; Du, H.; Cai, H.; Wang, L. High temperature negative wear behaviour of VN/Ag composites induced by expansive oxidation reaction. Ceram. Int. 2021, 47, 15901–15909. [Google Scholar] [CrossRef]
- Guo, H.; Han, M.; Chen, W.; Lu, C.; Li, B.; Wang, W.; Ji, J. Microstructure and properties of VN/Ag composite films with various silver content. Vacuum 2017, 137, 97–103. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. Diamond-like carbon films: A historical overview. In Tribology of Diamond-like Carbon Films: Fundamentals and Applications; Springer: New York, NY, USA, 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Hauert, R. An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 2004, 37, 991–1003. [Google Scholar] [CrossRef]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Azzi, M.; Amirault, P.; Paquette, M.; Klemberg-Sapieha, J.E.; Martinu, L. Corrosion performance and mechanical stability of 316L/DLC coating system: Role of interlayers. Surf. Coat. Technol. 2010, 204, 3986–3994. [Google Scholar] [CrossRef]
- Choi, J.; Nakao, S.; Kim, J.; Ikeyama, M.; Kato, T. Corrosion protection of DLC coatings on magnesium alloy. Diam. Relat. Mater. 2007, 16, 1361–1364. [Google Scholar] [CrossRef]
- Shi, J.; Ma, G.; Han, C.; Wang, H.; Li, G.; Wei, A.; Liu, Y.; Yong, Q. The tribological performance in vacuum of DLC coating treated with graphene spraying top layer. Diam. Relat. Mater. 2022, 125, 108998. [Google Scholar]
- Podgornik, B.; Vizintin, J. Tribological reactions between oil additives and DLC coatings for automotive applications. Surf. Coat. Technol. 2005, 200, 1982–1989. [Google Scholar] [CrossRef]
- Tasdemir, H.A.; Wakayama, M.; Tokoroyama, T.; Kousaka, H.; Umehara, N.; Mabuchi, Y.; Higuchi, T. The effect of oil temperature and additive concentration on the wear of non-hydrogenated DLC coating. Tribol. Int. 2014, 77, 65–71. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Lapitskaya, V.; Khabarava, A.; Trukhan, R.; Chizhik, S.; Torskaya, E.; Mezrin, A.; Fedorov, S.; Rogachev, A.; Warcholinski, B. Silicon addition as a way to control properties of tribofilms and friction of DLC coatings. Appl. Surf. Sci. 2023, 608, 155115. [Google Scholar] [CrossRef]
- Song, J.; Talukder, S.; Rahman, S.M.; Jung, Y.; Yeo, C. Comparison study on surface and thermos-chemical properties of PFPE lubricants on DLC film through MD simulations. Tribol. Int. 2021, 156, 106835. [Google Scholar] [CrossRef]
- Vercammen, K.; Acker, K.V.; Barriga, A.V.J.; Arnsek, A.; Kalin, M.; Meneve, J. Tribological behaviour of DLC coatings in combination with biodegradable lubricants. Tribol. Int. 2004, 37, 983–989. [Google Scholar] [CrossRef]
- Barriga, J.; Kalin, M.; Acker, K.V.; Vercammen, K.; Ortega, A.; Leiaristi, L. Tribological performance of titanium doped and pure DLC coatings combined with a synthetic bio-lubricant. Wear 2006, 261, 9–14. [Google Scholar] [CrossRef]
- Persson, K.; Gahlin, R. Tribological performance of a DLC coating in combination with water-based lubricants. Tribol. Int. 2003, 36, 851–855. [Google Scholar] [CrossRef]
- Ueda, M.; Kadiric, A.; Spikes, H. Wear of hydrogenated DLC in MoDTC-containing oils. Wear 2021, 474–475, 203869. [Google Scholar] [CrossRef]
- Yoshida, Y.; Kunitsugu, S. Friction wear characteristics of diamond-like carbon coatings in oils containing molybdenum dialkyldithiocarbamate additive. Wear 2018, 414–415, 118–125. [Google Scholar] [CrossRef]
- Pei, Y.; Bui, X.; Zhou, X.; Hosson, J. Tribological behavior of W-DLC coated rubber seals. Surf. Coat. Technol. 2008, 202, 1869–1875. [Google Scholar] [CrossRef]
- Wei, X.; Cao, X.; Yin, P.; Ding, Q.; Lu, Z.; Zhang, G. Design of a novel superhydrophobic F&Si-DLC film on the internal surface of 304SS pipes. Diam. Relat. Mater. 2022, 123, 108852. [Google Scholar]
- Zou, C.; Wang, H.; Feng, L.; Xue, S. Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings. Appl. Surf. Sci. 2013, 286, 137–141. [Google Scholar] [CrossRef]
- Bui, X.; Pei, Y.; Hosson, J. Magnetron reactively sputtered Ti-DLC coatings on HNBR rubber. The influence of substrate bias. Surf. Coat. Technol. 2008, 202, 4939–4944. [Google Scholar] [CrossRef]
- Pei, Y.; Bui, X.; Hosson, J. Deposition and characterization of hydrogenated diamond-like carbon thin films on rubber seals. Thin Solid Film. 2010, 518, S42–S45. [Google Scholar] [CrossRef]
- Jing, P.; Gong, Y.; Deng, Q.; Zhang, Y.; Huang, N.; Leng, Y. The formation of the “rod-like wear debris” and tribological properties of Ag-doped diamond-like carbon films fabricated by a high-power pulsed plasma vapor deposition technique. Vacuum 2020, 173, 109125. [Google Scholar] [CrossRef]
System | Techniques | Mechanical/Tribological Properties | References |
---|---|---|---|
MoN | Reactive magnetron sputtering | Hardness: ~9.5 GPa–~35 GPa; coefficient of friction: 0.55 | [58] |
MoxN | High-power impulse magnetron sputtering | Coefficient of friction: 0.28; wear rate: 5 × 10−8 mm3/(Nm) | [59] |
Mo2N | Reactive magnetron sputtering | Coefficient of friction: 0.29~0.53; wear rate: 2.1 × 10−6 mm3/Nmm~ 5.3 × 10−7 mm3/Nmm | [60] |
MoNx | Reactive magnetron sputtering | Hardness: ~10.6 GPa–~31.4 GPa; coefficient of friction: 0.5~0.93 | [71] |
MoN | Vacuum arc plasma-assisted | Hardness: ~36 GPa; wear rate: 2.08 × 10−7 mm3N−1 m−1 | [72] |
MoNx | DC magnetron sputtering | Hardness: ~27 GPa | [73] |
MoNx | DC magnetron sputtering | Hardness: ~23 Gpa | [74] |
MoN | High-power impulse magnetron sputtering | Hardness: >~22 GPa; elastic modulus: >300 GPa; coefficient of friction: 0.7 | [75] |
MoNx | DC magnetron sputtering | Hardness: ~18 GPa–~24 GPa; coefficient of friction: 0.04~0.08 | [76] |
MoNx | DC pulsed magnetron sputtering | Hardness: ~16 GPa; elastic modulus: ~180 GPa | [77] |
MoN | Vacuum arc plasma-assisted | Coefficient of friction: 0.3~0.7 | [78] |
System | Techniques | Mechanical/Tribological Properties | References |
---|---|---|---|
VN | Reactive magnetron sputtering | Hardness: ~25–~30 GPa; wear rate: <5 × 10−17 m3/N m | [85] |
VN | Reactive magnetron sputtering | Hardness: ~22.9 GPa; | [86] |
VN | Arc ion plating method | Coefficient of friction: 0.23/0.46; wear rate: (11.41 ± 0.22) × 10–15 m3 N−1 m−1 /(2.27 ± 0.14) × 10–15 m3 N−1 m−1 | [87] |
VN | Reactive magnetron sputtering | Coefficient of friction: 0.5 | [88] |
VxN | Arc evaporated | Coefficient of friction: 0.15–0.20; | [94] |
VN | Reactive magnetron sputtering | Hardness: ~11 GPa–~20 GPa | [103] |
VN | Inductively coupled plasma (ICP)-assisted sputtering | Hardness: ~28.2 GPa | [104] |
VN | Arc evaporation method | Hardness: ~19.00 ± 1.26 GPa; coefficient of friction: 0.30; wear rate: 1.55 × 10−6 mm3/Nm | [105] |
VN | Arc evaporation method | Hardness: ~37 GPa; wear rate: 1.7 × 10−6 mm3/Nm | [106] |
System | Techniques | Mechanical/Tribological Properties | References |
---|---|---|---|
WNx | High-power impulse magnetron sputtering | Coefficient of friction: 0.33; hardness: ~31.5 GPa | [117] |
WN | DC magnetron sputtering | Coefficient of friction: 0.21–0.3 | [118] |
WN | Reactive magnetron sputtering | Coefficient of friction: 0.61 (12 at.%N); wear rate: 0.09 × 10−6 mm3/Nm (55 at.%N); hardness: ~40 GPa | [119] |
WNx | Reactive magnetron sputtering | Hardness: ~28 GPa | [124] |
WNx | Reactive magnetron sputtering | Hardness: ~27.7/38.7 GPa | [125] |
WN | Reactive magnetron sputtering | Hardness: ~23 GPa | [126] |
Systems | Techniques | Mechanical/Tribological Properties | References |
---|---|---|---|
TiN/Ag | Reactive magnetron sputtering | Hardness: ~29 GPa (Ag 0.8 at.%); wear rate: 1.3 × 10−7 mm3/(mm.N)(Ag 0.8 at.%) | [130] |
ZrN/Ag | Reactive magnetron sputtering | Hardness: ~29 GPa; coefficient of friction: 0.62 (Ag 26.6 at.%); wear rate: 1.3 × 10−7 mm3 N−1mm−1 (Ag 26.6 at.%) | [131] |
TaN/Ag | Reactive magnetron sputtering | Hardness: ~36.1 GPa (Ag1.2 at. %); wear rate: 1.9 × 10−6 mm3/Nm | [133] |
VN/Ag | Magnetron sputtering | Hardness: ~24.5 GPa (≤~5 at.% Ag); Coefficient of friction: 0.04 | [134] |
NbN/Ag | Reactive magnetron sputtering | Coefficient of friction: 0.4–046 (Ag 9.2–13.5 at.%); wear rate: 1.1 × 10−8~1.7 × 10−8 mm3/(mm N) | [136] |
TiN/Cu | Reactive magnetron sputtering | Hardness: 40.4 GPa | [139] |
MoN/Cu | DC magnetron sputtering | Coefficient of friction: 0.58; wear rate: 2.1 × 10−7 mm3(Nm)−1/3.2 × 10−7 mm3(Nm)−1 | [140] |
NbN/Cu | Reactive magnetron sputtering | Hardness: 40 GPa (Cu 1 at.%); coefficient of friction: 0.93 | [141] |
TiN/Au | Magnetron sputtering | Coefficient of friction: 0.12 | [142] |
Systems | Technique | Mechanical/Tribological Properties | Reference |
---|---|---|---|
W/DLC | Magnetron sputtering | Coefficient of friction: 0.2 | [169] |
Ni/DLC | Magnetron Sputtering | Coefficient of friction: 0.17; wear rate: 1.6 × 10−17 mm3/Nm | [170] |
Cr-DLC | Magnetron Sputtering | Coefficient of friction: 0.17; wear rate: 1.6 × 10−17 mm3/Nm | [171] |
Ti/DLC | PECVD(Plasma-Enhanced Chemical Deposition) | Coefficient of friction: 0.15 (19 at.% of Ti) | [172] |
W-DLC/Ti-DLC | PECVD | Coefficient of friction: 0.21 for Ti-DLC coefficient of friction: 0.22 for W-DLC | [173] |
Ag/DLC | Magnetron sputtering | Coefficient of friction: 0.16; wear rate: 14 × 10−17 mm3/Nm (2.99 at.% of Ag) | [174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Luan, J.; Xie, F.; Zhang, Z.; Evaristo, M.; Cavaleiro, A. The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review. Coatings 2024, 14, 828. https://doi.org/10.3390/coatings14070828
Kong F, Luan J, Xie F, Zhang Z, Evaristo M, Cavaleiro A. The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review. Coatings. 2024; 14(7):828. https://doi.org/10.3390/coatings14070828
Chicago/Turabian StyleKong, Fanlin, Jing Luan, Fuxiang Xie, Zhijie Zhang, Manuel Evaristo, and Albano Cavaleiro. 2024. "The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review" Coatings 14, no. 7: 828. https://doi.org/10.3390/coatings14070828
APA StyleKong, F., Luan, J., Xie, F., Zhang, Z., Evaristo, M., & Cavaleiro, A. (2024). The Green Lubricant Coatings Deposited by Physical Vapor Deposition for Demanding Tribological Applications: A Review. Coatings, 14(7), 828. https://doi.org/10.3390/coatings14070828