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Abstract: Copper alloys used in connectors rely significantly on stress relaxation resistance as a
key property. In this study, a heavily deformed Cu-Cr-Ag-Si alloy underwent aging at varying
temperatures, with a subsequent analysis of its mechanical properties and microstructure, with
a particular emphasis on understanding the mechanism of improving stress relaxation resistance.
As the aging temperature rose, the Cr precipitated into a Cr-Si composite element precipitated
phase. Both work hardening and precipitation strengthening played vital roles in enhancing the
stress relaxation resistance of the Cu-Cr-Ag-Si alloy, with the latter exerting a more pronounced
impact. The notable performance enhancement observed after aging at 450 ◦C can be attributed to
the synergistic effects of work hardening and precipitation strengthening. Following aging at 450 ◦C,
the alloy demonstrated optimal performance, boasting a tensile strength of 495.25 MPa, an electrical
conductivity of 84.2% IACS, and a level of 91.12%. These exceptional properties position the alloy as
a highly suitable material for connector contacts.

Keywords: Cu-Cr-Ag-Si alloy; stress relaxation; aging treatment; microstructure evolution

1. Introduction

Connectors are bridges connecting systems, subsystems or components, mainly trans-
mitting signals or energy, and are indispensable products in electrical and electronic as-
pects [1]. Copper alloy is the key conductor material to ensure the stable and reliable
transmission of connectors [2]. During the repeated operation of the connector, its stress
is easy to relax. Therefore, copper for connectors not only requires high strength and
high conductivity but also more attention to its stress relaxation resistance. The service
life of copper contacts is determined by the stress relaxation resistance. For example, for
high-voltage connectors of new energy vehicles, under the coupling effect of long-term
contact pressure and thermal stress, the copper-based materials used in the connectors
undergo stress relaxation [3]. With a decrease in contact pressure, an increase in resistance
and an increase in heat generation, an excessive temperature rise occurs in the contact part
of the connector. The increase in temperature will further aggravate the stress relaxation
of copper-based materials, form a vicious circle, accelerate connector failure, and cause
major safety accidents in vehicles such as new energy vehicles. Therefore, copper alloys for
high-voltage connectors are required to have high electrical conductivity and high stress
relaxation resistance.

The copper alloy is a typical age-strengthened copper alloy, which is widely used in
electronic connectors due to its high strength, excellent electrical conductivity and good
stress relaxation resistance [4,5]. However, with the increasing requirements of connectors
for the stress relaxation resistance of copper alloy contacts, the strength and stress relaxation
resistance of Cu-Cr alloys need to be further improved.
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A large number of scholars have made many efforts to improve the strength and
stress relaxation resistance of copper alloys. Du et al. [6] studied the influence of Zr on
the microstructure and yield strength of Cu-Cr alloys. They found that the precipitation
sequence of Zr-containing precipitates in Cu-Cr-Zr alloys is a supersaturated solid solution
→ Zr-rich atomic clusters → the Cu5Zr phase. The strengthening mechanism of Zr-rich
clusters is coherent strengthening, while the strengthening mechanism of the Cu5Zr phase
is the Orowan bypass mechanism. Sun et al. [7] studied the effect of Mg on the stress
relaxation resistance of a Cu-Cr alloy and found that the stress relaxation rate of the Cu-Cr
alloy was as high as 36% after 100 h at a temperature of 200 ◦C, and the addition of 0.1 wt.%
Mg element reduced the stress relaxation rate of the Cu-Cr alloy to 14.6%. The higher
stress relaxation resistance of Cu-Cr-Mg was attributed to fine grains, precipitates and the
interaction between Mg atoms and dislocations. Watanabe et al. [8] developed a Cu-Cr
Ag alloy with high strength and excellent stress relaxation resistance. They found that
the increase in strength and stress relaxation resistance is attributed to the reduction in Cr
precipitation phase spacing and the inhibition of recovery during aging, as well as the drag
effect of Ag atoms on dislocation movement. In addition, recent studies have shown that
the addition of trace Si significantly refines Cr-rich precipitates, thus effectively improving
the strength and stress relaxation resistance of Cu-Cr alloys [9]. As for the heat treatment
process parameters, in the previous study of our team, it was found that aging temperature
significantly affected the stress relaxation resistance of copper alloys [10]. However, the
effect of Si element on the microstructure and stress relaxation resistance of Cu-Cr-Ag
alloys under different aging parameters is not clear and warrants further exploration.

In this work, Cu-Cr-Ag alloys containing trace amounts of Si were aged at different
temperatures, and the relationship between the microstructure and strength, conductivity
and stress relaxation resistance of the materials was explored. The evolution of the precipi-
tate phase and the change law of stress relaxation resistance at different aging temperatures
are mainly explored. The results of this experiment can provide theoretical guidance for the
heat treatment process design and the determination of the properties and microstructure
control of Cu-Cr alloys containing trace Si.

2. Materials and Methods

The Cu-Cr-Ag-Si alloy ingots were obtained by a vacuum induction melting furnace.
The raw materials included 6N electrolytic copper, pure chromium (99.99%), pure silver
(99.99%), pure iron (99.99%), pure titanium (99.995%), and pure silicon (99.9999%). The
surface oxide layer of the ingot was removed by turning on a lathe, and the turned ingot
was then subjected to a solution treatment at 980 ◦C for 2.5 h. After the solution treatment
was completed, the material was subjected to hot extrusion and hot rolling. The hot-rolled
material was immediately water-quenched to form a supersaturated solid solution. The
composition of the hot-rolled plate was tested, and the test results are shown in Table 1. The
hot-rolled copper plate was subjected to cold rolling, which was divided into four passes,
and the final thickness was 0.9 mm, with a total reduction of approximately 83%. The
samples for tensile testing were cut from the cold-rolled strip using wire-electrode cutting.
The samples had a gauge length of 50 mm and a width of 12.5 mm. The next step is to
conduct aging treatment on the tensile samples in a vacuum tube furnace while filling the
furnace with Ar protective atmosphere. The aging temperatures were room temperature
(natural aging, approximately 25 ◦C), 300 ◦C, 450 ◦C, and 600 ◦C, and the aging time was
uniformly set to 1 h.

Table 1. Chemical composition of experimental material (wt.%).

Alloying Element Cr Si Fe Ti Ag Cu

Cu-Cr-Ag-Si 0.26 0.021 0.018 0.034 0.2 Bal.



Coatings 2024, 14, 909 3 of 14

The samples in different aging states were subjected to conductivity, hardness, strength,
and stress relaxation testing experiments. The eddy current testing method was used for
conductivity testing, and the result was measured five times to obtain the average value.
The microhardness testing method was used for hardness testing, with a load of 100 gf and
a holding time of 10 s. Measurements were performed seven times, and the final result was
obtained by taking the average value after excluding the maximum and minimum values.
The tensile test was conducted at a temperature of 25 ◦C and a tensile rate of 0.75 mm/s.
The yield strength Rp0.2 of the alloy was calculated from the force—displacement curve.
The stress relaxation test was conducted using a tensile-type relaxation testing method
with the same sample size as that of the tensile sample. The initial stress of the stress
relaxation test was set to 50% of the yield strength. The relaxation test was conducted
in an environment of 195 ◦C for 24 h, and the temperature was raised to the specified
temperature and held for 30 min to ensure sample stability and thermal equilibrium.

The orientation information of the samples was collected using EBSD (OXFORD
NordlysMax3, OXFORD INSTRUMENTS Companies, Oxford, UK). The EBSD samples
were prepared by electrolytic polishing using an electrolyte solution with a ratio of alcohol,
phosphoric acid, and deionized water of 1:1:1. The experimental conditions were 15 V,
10 s, and 25 ◦C. The microstructure of the experimental samples was observed and ana-
lyzed using TEM (FEI Talos F200X, FEI Company, Hillsboro, OR, USA). The TEM sample
preparation was performed using an electrolytic double-jet polisher (MPT-1A) and using a
corrosion solution with a ratio of alcohol, phosphoric acid, and deionized water of 1:1:1.
The voltage was set to 20 V, and the temperature was −5 ◦C.

3. Results and Discussion
3.1. The Influence of Aging Temperature on Grain Characteristics

Figure 1a–d show the Euler angle renderings of the Cu-Cr-Ag-Si alloy at different
aging temperatures, including room temperature (approximately 25 ◦C), 300 ◦C, 450 ◦C,
and 600 ◦C, respectively. The grain characteristics in Figure 1a–c are elongated grains with
a length of about 200 µm and a width of about 40 µm. The grain features in Figure 1d are
equiaxed recrystallized grains, with a smaller equiaxed grain size and a diameter of about
20 µm, where the number of grain boundaries increases significantly.
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Figure 2a–e show the distribution and proportion statistics of recrystallized, sub-
structured, and deformed microstructures of the Cu-Cr-Ag-Si alloy at different aging
temperatures. The aging temperatures are room temperature, 300 ◦C, 450 ◦C, and 600 ◦C,
respectively. The proportion of twinned crystals in the Cu-Cr-Ag-Si alloy is additionally
calculated in Figure 2e. In Figure 2a–d, the red region represents the deformed microstruc-
ture, the yellow region represents the substructured microstructure, and the blue region
represents the recrystallized microstructure. The values of the red, yellow, and blue bars
in the bar chart of Figure 2e represent the proportions of deformed, substructured, and
recrystallized microstructures, respectively, while the value of the green bar represents the
proportion of twinned grains. After natural aging, the proportion of deformed, substruc-
tured, and recrystallized microstructures is 97.33%, 0.68%, and 1.99%, respectively. The
proportion of deformed microstructure exceeds 95%, and the proportion of recrystallized
and substructured microstructures is very low. After aging at 300 ◦C, the proportion of
recrystallized, substructured, and deformed microstructures is 2.77%, 0.62%, and 96.61%,
respectively. After aging at 450 ◦C, the proportion of recrystallized, substructured, and de-
formed microstructures is 1.62%, 0.28%, and 98.10%, respectively. The proportion changes
in the three microstructures are small compared with those of the samples after natural
aging. However, after aging at 600 ◦C, the proportion changes in the three microstructures
in the sample are significant. The proportion of the recrystallized microstructure is as high
as 85.27%, and the proportion of the deformed microstructure is only 4.35%, while the
proportion of the substructured microstructure is 10.38%. In addition, it is found that a
large number of annealing twins appear in the sample after aging at 600 ◦C based on the
twinned crystal data statistics in Figure 2e, while there are almost no twins in the samples
aged at other temperatures.
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3.2. The Influence of Aging Temperature on Dislocations and Schmid Factor

The local misorientation distribution diagrams of the alloy at different aging tem-
peratures are shown in Figure 3a–d. The local misorientation can qualitatively reflect the
uniformity of plastic deformation, and the larger its value, the higher the defect density [11].
From Figure 3a–c, it can be found that the alloys aged at 25 ◦C, 300 ◦C, and 450 ◦C all have
higher average local misorientation values. This indicates that all three samples have high
dislocation density and a strong dislocation enhancement effect. However, when the alloy
is aged at 600 ◦C, the average local misorientation of the sample is 0.25, indicating that the
dislocation density in the material is very low and the dislocation strengthening effect is
weak [12,13].
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Figure 3. Distribution of local misorientation of Cu-Cr-Ag-Si alloy at different aging temperatures:
(a) room temperature; (b) 300 ◦C; (c) 450 ◦C; (d) 600 ◦C.

Figure 4a–d show the microstructures of dislocations in the Cu-Cr-Ag-Si alloy at differ-
ent aging temperatures observed under transmission electron microscopy (TEM), including
room temperature, 300 ◦C, 450 ◦C, and 600 ◦C. After undergoing severe plastic deformation
through cold rolling, the alloy produces a large number of dislocation structures such as
dislocation walls, dislocation cells, and dislocation tangles, which can generate a work
hardening effect, increase the flow stress of the alloy, and enhance its mechanical prop-
erties [14]. As shown in Figure 4a–c, a large number of dislocation tangles, dislocation
walls, and dislocation cells were found after aging. However, as shown in Figure 4d, no
dislocation interaction structure was found in the sample aged at 600 ◦C; only scattered
dislocations were present. Combining the results of Figures 3 and 4, it can be seen that
the dislocation interaction structures generated by plastic deformation can be preserved
after aging at room temperature, 300 ◦C, and 450 ◦C, thereby preserving the dislocation
strengthening effect. However, after aging at 600 ◦C, dislocations undergo annihilation,
resulting in a sharp decrease in dislocation density and the disappearance of the dislocation
strengthening effect.
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Figure 5 shows the distribution of Schmid factors on the {111} [1–10] slip system in the
Cu-Cr-Ag-Si alloy after different aging temperatures. The essence of plastic deformation in
alloys is the slip and climb of dislocations, and the higher the Schmid factor, the greater
the probability of slip system activation [15]. Analyzing the changes in Schmid factor
values under different aging temperatures can predict the material’s plastic deformation
ability to some extent. According to Figure 5, an increase in aging temperature can cause
an increase in the high-value Schmid factor frequency. The higher the high-value Schmid
factor frequency, the softer the material, and the easier it is for dislocations to move under
stress. After aging at 300 ◦C, the frequency of the Schmid factor values within the range
of 0.40–0.48 noticeably increases, while after aging at 600 ◦C, the frequency of the Schmid
factor values within the range of 0.45–0.50 noticeably increases. However, the distribution
of the Schmid factor values after aging at 450 ◦C shows little change compared to that after
natural aging. From the relationship between the Schmid factor and plastic deformation,
it can be seen that after aging at 300 ◦C and 600 ◦C, dislocations in the material are more
likely to move, making the material more prone to plastic deformation.

Based on the changes in local misorientation, precipitation behavior, and Schmid factor
at different aging temperatures, it can be concluded that the precipitation strengthening
effect is insufficient when the Cu-Cr-Ag-Si alloy is aged at 300 ◦C. The hindering effect
on dislocations during the aging process is relatively small, and dislocation annihilation
occurs in the material. So, the average value of local misorientation decreases, while the
Schmid factor increases. After aging at 450 ◦C, the precipitated phases effectively prevent
dislocation annihilation during the aging process. The average local misorientation remains
the same as the value after natural aging, effectively preserving a strong work hardening
effect. After aging at 600 ◦C, the dislocation density decreases rapidly, resulting in the
disappearance of work hardening in the material. The Schmid factor shows a sharp increase.
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3.3. The Influence of Aging Temperature on Precipitated Phases

Figure 6 illustrates the TEM microstructures of the Cu-Cr-Ag-Si alloy at different
scales, with the aging temperature at room temperature. In Figure 6a–c, the scales are 1 µm,
500 nm, and 200 nm, respectively. Based on the TEM micrographs, no apparent precipitated
phases were observed in the microstructure with a scale of 1 µm. Further magnification
was employed to search for precipitated phases, but no significant presence of precipitated
phases was detected at scales of 500 nm and 200 nm. Characterization results revealed the
presence of high dislocation density and abundant dislocation interaction structures, such
as dislocation walls, dislocation cells, and dislocation tangles. The material was subjected
to a solution treatment (water quenching) to form a supersaturated solid solution. Due
to the low temperature of natural aging, the supersaturated solid solution is unable to
decompose and form precipitated phases. Therefore, the presence of precipitated phases in
the material is rarely observed.
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Figure 7 presents the TEM microstructure and elemental distribution maps of the
Cu-Cr-Ag-Si alloy after aging at 300 ◦C. The presence of precipitated phases is observed
after aging, with the main constituent being Cr. Randomly selected precipitated phases
were analyzed, and a semi-quantitative atomic fraction analysis of Si in the precipitated
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phases was performed. The results, indicated in Figure 7a, show a Si atomic fraction of
1.16% and 1.90%, respectively. This indicates that the Si content in the Cr precipitated phase
is relatively low after aging at 300 ◦C.
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Figure 8 depicts the TEM microstructure and elemental distribution maps of the Cu-Cr-
Ag-Si alloy after aging at 450 ◦C. Based on Figure 8, it is evident that a significant number
of precipitate phases appear in the alloy after aging. The precipitated phases primarily
consist of Cr, but in some of the precipitated phases, an enrichment of Si is observed,
forming the Cr-Si composite precipitated phase. Randomly selected precipitated phases
in Figure 8a,d were analyzed for a semi-quantitative atomic fraction percentage of Si. The
results indicate Si atomic fraction percentages of 2.35%, 1.67%, and 1.31% in Cr precipitated
phases with low Si content and a Si atomic fraction percentage of 8.97% in Cr-Si precipitated
phases with high Si content. This suggests a noticeable increase in Si content in some Cr
precipitated phases after aging at 450 ◦C. The material exhibits two types of coexisting
precipitate phases: one with lower Si content, identified as Cr precipitates, and the other
with higher Si content, identified as Cr-Si precipitates.
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alloy after aging at 450 ◦C.

Figure 9 displays the TEM microstructure and elemental distribution maps of the
Cu-Cr-Ag-Si alloy after aging at 600 ◦C. After aging, the alloy exhibits both Cr precipitated
phases and Cr-Si precipitated phases. There is a significant presence of Cr-Si precipitated
phases in the material, with Si atomic fraction percentages of 9.43% and 9.71%, respectively.
Additionally, the copper matrix shows a noticeable enrichment of Fe and Ti elements. This
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indicates a pronounced enrichment of Cr, Fe, Si, and Ti elements after aging at 600 ◦C and
the occurrence of numerous Cr-Si composite precipitate phases with high Si content.
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3.4. Relationship between Microstructure and Properties at Different Aging Temperatures

Figure 10 represents the variation in the microhardness and electrical conductivity of
the Cu-Cr-Ag-Si alloy at different aging temperatures. From the column chart in Figure 10,
it can be observed that the microhardness of the Cu-Cr-Ag-Si alloy initially increases and
then decreases with the increase in aging temperature. The highest microhardness value of
178.72 HV is achieved after aging at 450 ◦C. There is no significant increase in microhardness
after aging at 300 ◦C, which is related to the variation in the dislocation strengthening
effect. After aging at 600 ◦C, the microhardness significantly decreases to only 85.96 HV,
which is associated with recrystallization. Combining the changes in the microstructure
discussed in Sections 3.1–3.3, it can be concluded that at 300 ◦C, the aging temperature is
relatively low, resulting in weak age-hardening effects. Moreover, dislocation annihilation
occurs, partially weakening the work hardening effect. These combined factors contribute
to the lack of significant improvement in microhardness after aging at 300 ◦C. At 600 ◦C,
the high aging temperature leads to recrystallization, resulting in the loss of dislocation
strengthening effect, leading to a sharp decrease in microhardness [16,17].

According to the linear graph in Figure 10, the electrical conductivity of the Cu-Cr-Ag-
Si alloy shows an increasing trend with higher aging temperatures. After aging at 450 ◦C,
the electrical conductivity of the Cu-Cr-Ag-Si alloy reaches a high value of 84.2% IACS. The
rise in electrical conductivity can be primarily attributed to the precipitation of solute atoms
in the matrix after aging as the formation of precipitated phases reduces the scattering
of electrons by solute atoms. On the other hand, it is also related to the number of grain
boundaries in the material. Previous studies [18] have investigated the influence of grain
boundaries on the electrical conductivity of copper wires, indicating a significant impact of
the number of grain boundaries on resistivity, exhibiting an exponential relationship. The
resistivity increases with an increase in the number of grain boundaries. Additionally, the
resistivity is influenced by the type of grain boundary structure, with the highest resistivity
observed in low-angle grain boundaries, which is twice as high as that of high-angle tilt
boundaries. After aging at 600 ◦C, the average electrical conductivity is 83.7% IACS, which
is lower than that after aging at 450 ◦C. This is because recrystallization occurs in the
material after aging, resulting in an increased number of grain boundaries and an increased
scattering of electrons [19,20].
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Figure 10. Variation in microhardness and electrical conductivity of Cu-Cr-Ag-Si alloy at different
aging temperatures.

Figure 11 illustrates the variations in the tensile strength, yield strength, and remaining
stress of Cu-Cr-Ag-Si alloy at different aging temperatures. The stress relaxation experiment
was conducted with an initial stress of 0.5%Rp0.2 at a temperature of 194.7 ◦C for a loading
time of 24 h. It is observed that the tensile strength and yield strength of the Cu-Cr-Ag-Si
alloy exhibit an increasing trend followed by a decreasing trend with increasing aging
temperature. After aging at 450 ◦C, the tensile strength and yield strength reach their
maximum values of 495.25 MPa and 473.54 MPa, respectively, indicating a significant
age-hardening effect. After aging at 300 ◦C, there is no significant improvement in tensile
strength and yield strength. This cause of phenomenon is consistent with the previously
mentioned microhardness changes and may be attributed to the simultaneous occurrence
of under-aging precipitation and dislocation annihilation at relatively low temperatures,
resulting from the interaction of these two phenomena.
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After aging at 600 ◦C, the tensile strength and yield strength decrease significantly
to 282.97 MPa and 147.94 MPa, respectively, compared to the samples aged at 450 ◦C.
This decline in mechanical properties is due to recrystallization that occurs at the high
aging temperature of 600 ◦C, resulting in the disappearance of the strengthening effect of
dislocations and weakening of the age-hardening effect. Furthermore, the yield ratio is
approximately 95% for samples aged at 25 ◦C, 300 ◦C, and 450 ◦C, while it decreases to only
about 52% for samples aged at 600 ◦C. This indicates that the material retains the effect of
work hardening effectively after aging at relatively low temperatures ranging from 25 ◦C
to 450 ◦C. However, the effect of work hardening disappears after aging at 600 ◦C, leading
to a drastic decrease in the mechanical properties of the experimental material.

From the linear graph in Figure 11, it can be observed that the remaining stress of the
Cu-Cr-Ag-Si alloy exhibits an increasing trend followed by a decreasing trend with increas-
ing aging temperature, and after aging at 450 ◦C, the residual stress after 24 h of loading still
reaches the maximum value of 91.12% of the initial stress. Here, compared with the ratio of
the remaining stress to the initial stress of the Cu-Cr alloy and the Cu-Cr-Si alloy developed
by Du et al. [9] after 14 h of loading under the same working condition, which is 81.04% and
84.73%, the stress relaxation resistance of the Cu-Cr-Ag-Si alloy under the control of aging
process parameters is significantly improved. The increase in the remaining stress is mainly
attributed to the formation of precipitated phases due to the precipitation of solute atoms
in the matrix after aging. These precipitated phases increase the resistance to dislocation
motion, thereby enhancing the deformation resistance and improving the stress relaxation
performance [21,22]. However, after aging at 600 ◦C, the remaining stress decreases sharply.
This could be attributed to the disappearance of dislocation strengthening, resulting in
a reduction in the resistance to dislocation motion in the material and a drastic decrease
in deformation resistance, leading to easier stress relaxation. Furthermore, the material
exhibits optimal properties after aging at 450 ◦C. The microhardness reaches 178.72 HV, the
tensile strength is 495.25 MPa, the electrical conductivity is 84.2% IACS, and the remaining
stress is 91.12%. These exceptional performance indicators make it highly suitable for
connector contact materials.

3.5. Analysis of Stress Relaxation Resistance

To investigate the influence of different temperatures on the stress relaxation behavior
of the Cu-Cr-Ag-Si alloy, a comprehensive analysis was conducted, focusing on the effects
of strengthening mechanisms on the flow stress and threshold stress at various aging tem-
peratures. Performance and microstructural analysis revealed that the main strengthening
mechanisms present in the material are work hardening and precipitation hardening, both
of which contribute to the enhancement of the alloy’s flow stress [23–26]. Flow stress refers
to the minimum stress required for the continuous movement of dislocations through a crys-
tal and is generally similar to the material’s yield strength. A higher flow stress indicates
greater resistance to dislocation motion in the material, resulting in higher yield strength
and improved stress relaxation resistance. Work hardening is essentially the enhancement
of flow stress through an interaction between dislocations, whereas precipitation hardening
involves an interaction between the precipitated phase and dislocations, leading to an
increase in the material’s rheological stress.

The Taylor equation expresses the influence of dislocation density on the flow stress
of a material. The contribution of dislocation density to the flow stress is given by
Equation (1) [27].

∆σ(ε) = αMGbρ(ε)
1
2 (1)

where ∆σ(ε) is the true flow stress, ε is the true strain, α is a hardening parameter, M is
the Taylor factor of the Cu matrix, G is the shear modulus and b is the magnitude of the
Burgers vector.

After aging at 450 ◦C, the precipitation phase in the alloy consists of the Cr precipitated
phase and Cr-Si precipitated phase. These precipitated phases are known to exhibit cutting
and bypass mechanisms, respectively. The contribution of the cutting mechanism to the
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flow stress of the alloy is typically calculated using the coherency strengthening formula.
The contribution of the coherency-strengthening mechanism to the flow stress of the alloy
is represented by Equation (2) [28].

∆σc = αMG|ε|
3
2

(
fr
b

) 1
2

(2)

where ∆σc represents the increment in flow stress caused by the cutting mechanism
(MPa) [28]. G stands for the shear modulus of the matrix, ε denotes the mismatch strain,
and f represents the volume fraction of precipitated phases.

The contribution of the bypass mechanism to the flow stress can be represented by
Equation (3) [29].

∆σc =
0.18Gb

2π(1 − ν)
1
2

ln
( 2r

b
)

λ − 2r
(3)

where ∆σc is the increase in flow stress caused by the Orowan mechanism (MPa) [29]. G is
the matrix shear modulus, r is the radius of the precipitated phase, ν is the Poisson’s ratio, b
is the size of the Burgers vector of the copper matrix, and λ is the average spacing between
the precipitated phases.

An analysis of the variables in the three strengthening formulas mentioned above
reveals that flow stress is primarily influenced by dislocation density, precipitate diameter,
and volume fraction. The changes in yield strength at different temperatures generally
reflect the variations in flow stress. Based on the analysis of the strengthening formulas
and the changes in yield strength, it can be observed that stronger work hardening and
precipitation strengthening effects result in higher flow stress. Figure 11 illustrates the
variations in yield strength and stress relaxation resistance of the material at different
temperatures. Using the material’s properties after natural aging as the control group,
in the case of the Cu-Cr-Ag-Si alloy aged at 300 ◦C, the yield strength did not show a
significant increase, while the remaining stress significantly increased. Analyzing the
characterization results of the microstructure, the decrease in the average value of local
misorientation represents a decrease in the work hardening effect to some extent. The
formation of precipitated phases represents the occurrence of precipitation strengthening,
and the increase in the Schmid factor indicates an increase in the mobility of dislocations.
The comprehensive results show that the change in flow stress of the material is small,
while the precipitates act as pinning points, and the threshold stress increases. Therefore,
the yield strength of the material is not significantly improved, but the stress relaxation
resistance is significantly improved. The effect of precipitation strengthening on stress
relaxation resistance is more significant.

For the Cu-Cr-Ag-Si alloy aged at 450 ◦C, both the yield strength and remaining stress
increase significantly. There is little change in the average value of local misorientation and
the Schmid factor, but a large number of precipitated phases are formed in the material.
The performance improvement is attributed to the significant precipitated phase hindering
the annihilation of existing dislocations during the aging process, resulting in the combined
effects of work hardening and precipitation strengthening [30–33]. Consequently, both
the flow stress and threshold stress of the material are effectively enhanced. After aging
at 600 ◦C, the yield strength and remaining stress of the Cu-Cr-Ag-Si alloy experience a
sudden decline. The significant reduction in the average value of local misorientation
and the significant increase in the frequency of the Schmid factor indicates that the work
hardening effect is minimal at 600 ◦C, causing the material to soften and the flow stress
and threshold stress to decrease sharply.

Based on the experimental results and analysis mentioned above, both work harden-
ing and precipitation strengthening can enhance the yield strength and stress relaxation
resistance of a Cu-Cr-Ag-Si alloy. These two types of reinforcement essentially increase
the resistance to dislocation motion, thereby improving the mechanical properties of the
material. The stress relaxation behavior of the material is fundamentally the transition from
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elastic deformation to plastic deformation, which is caused by dislocation motion. The
synergistic effect of work hardening and precipitation strengthening raises the threshold
stress for dislocation motion and increases the resistance to dislocation initiation.

4. Conclusions

In this paper, taking a Cu-Cr-Ag-Si alloy for connectors as the research object, the
effect of aging temperature on the microstructure and stress relaxation resistance of the Cu-
Cr-Ag-Si alloy was studied. The effects of precipitate phase and dislocation evolution on
stress relaxation performance is emphatically analyzed. This paper can provide theoretical
guidance for the development of a copper alloy with high stress relaxation resistance for
connectors. The key findings of the present study are summarized as follows:

(1) Under the experimental parameters in this paper, the Cu-Cr-Ag-Si alloy shows supe-
rior properties after aging at 450 ◦C. The alloy has a tensile strength of 495.25 MPa,
an electrical conductivity of 84.2% IACS, and a residual stress of 91.12% at 195 ◦C,
making it very suitable as a connector contact sheet material.

(2) When aging at a low temperature, the precipitates of the alloy are mainly the Cr phase.
With the increase in aging temperature, the proportion of Cr-Si composite precipitates
in the alloy increases significantly. The strengthening mechanism after aging at 450 ◦C
is the synergistic effect of work hardening and precipitation.

(3) Work hardening and precipitation strengthening increased the flow stress and en-
hanced the deformation resistance of the alloy. Precipitation strengthening raised
the threshold stress of the alloy, enhanced the resistance of dislocation motion, and
significantly improved the stress relaxation resistance of the alloy.
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