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Abstract: The impact of introducing trace transition elements on the thermal stability and conductivity
of pure copper was examined through metallographic microscopy (OM), transmission electron
microscopy (TEM), and electrical conductivity measurements; the interaction between trace transition
element and trace impurity element S in the matrix was analyzed. The results show that the addition
of trace Ti and trace Cr, Ni, and Ag elements significantly enhances the thermal stability of the pure
copper grain size. After high-temperature treatment at 900 ◦C/30 min, the grain sizes of Cu, Cu-Ti-S,
and Cu-Cr-Ni-Ag-S were measured and found to be 200.24 µm, 83.83 µm, and 31.08 µm, respectively,
thus establishing a thermal stability ranking of Cu-Cr-Ni-Ag-S > Cu-Ti-S > Cu. Furthermore, the
conductivities of pure copper remain high even after the addition of trace transition elements, with
recorded values for Cu, Cu-Ti-S, and Cu-Cr-Ni-Ag-S of 100.7% IACS, 100.2% IACS, and 98.5% IACS,
respectively. The enhancement of thermal stability is primarily attributed to the pinning effect of the
TiS and CrS phases, as well as the solid solution dragging of Ni and Ag elements. Trace Ti and Cr
elements can react with S impurities to form a hexagonal-structure TiS phase and monoclinic-structure
CrS phase, which are non-coherent with the matrix. Notably, the CrS phase is smaller than the TiS
phase. In addition, the precipitation of these compounds also reduces the scattering of free electrons
by solute atoms, thereby minimizing their impact on the alloy’s conductivity.

Keywords: pure copper; trace element; thermal stability; conductivity; precipitated phase

1. Introduction

With the advancement of science and technology, the demand for conductor materials
is on the rise [1]. Pure copper, as a crucial conductor material, is extensively utilized in the
fields of electronic information, aerospace, new energy vehicles, electrochemistry, and other
domains [2–5]. As the mentioned fields progress towards high integration, high power, and
miniaturization, the thermal and electrical loads on pure copper materials significantly rise
during processing and service. This can lead to abnormally coarse grain sizes in copper mate-
rials, affecting their service stability; therefore, higher requirements are put forward for the
comprehensive performance of pure copper conductor materials: maintaining high thermal
stability while retaining high conductivity [6]. Thermal stability refers to the capacity of a
material to endure temperature changes without failure due to grain growth or performance
degradation [7]. It is usually hoped that the thermal stability of pure copper grain sizes can
withstand high temperatures above 850 ◦C without significant growth; however, the high
purity of pure copper is conducive to the improvement in conductivity, but an increase in
purity will also weaken the drag effect of impure atoms on grain boundaries, resulting in
unstable grain boundaries. Under heating conditions, the grain boundary diffusion coefficient
increases sharply, accelerating grain boundary migration and leading to abnormal grain
growth as well as decreased thermal stability [8–10]. Therefore, ensuring the conductivity
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and enhancing the thermal stability of copper have gradually become focuses and challenges
in recent years. Breaking through the contradiction is crucial for meeting the demand for
high-performance pure copper materials in advanced fields [11–16].

Microalloying is an important method for enhancing the thermal stability of copper
materials [15,16]. Numerous studies have demonstrated [17–21] that the addition of alloy-
ing elements to form high-melting-point particles as crystallization cores or incorporating
nano-sized oxides and other strengthening phase particles uniformly into the copper matrix
can effectively impede grain boundary migration at elevated temperatures [22,23], thereby
improving the thermal stability of pure copper. Commonly added microalloying elements
include Cr, Ti, Ag, Sn, and others [24–29]; however, while their addition can enhance the
thermal stability of pure copper, they often require high content levels. Additionally, some
elements may become solely dissolved in the copper matrix, leading to lattice damage,
increased electron wave scattering, and reduced conductivity. This makes it challenging
to achieve the synergistic enhancement of both conductivity and thermal stability. For
example, when 0.05 mass% Sn is added to pure copper, the high-temperature softening
resistance of pure copper significantly improves. The solid dissolution of Sn solute atoms
in copper causes lattice distortion, inhibiting grain boundary migration by resisting disloca-
tion slippage, climbing, and reorganization during the high-temperature process; however,
when the Sn content is increased to 0.015 mass%, conductivity can be reduced by over 3%
IACS [30,31]. Suzuki and Hori [32–35] found that adding trace Ti, Cr, Ag, and Ni elements
individually impacts the heat resistance, recrystallization temperature, and electrical con-
ductivity of pure copper. They observed that the effect of improving the thermal stability
of pure copper was Ti > Cr > Ag > Ni, but the effect of reducing the electrical conductivity
was Ag < Ni < Cr < Ti. Specifically, Ti can increase the softening temperature of pure
copper by 200~300 ◦C, which is about twice as high as that achieved with Cr. The thermal
stability increases with the element content, but excessive addition leads to a significant
decrease in conductivity. Moreover, pure copper usually contains a certain amount of
unavoidable impurity elements, especially sulfur (copper ore mainly exists in the form of
sulfide, and electrolytic refining production uses a sulfuric acid-copper sulfate system),
which significantly affects the conductivity and thermal stability of pure copper [36–40].
Even a small amount of sulfur, at 15 ppm, in pure copper can lead to a reduction in electrical
conductivity to 99.5% IACS. Therefore, it is crucial to achieve synergistic improvement in
the conductance and thermal stability of pure copper while minimizing the adverse effects
of impurity element sulfur on conductance.

In addition, transition group elements, such as titanium and chromium, exhibit a
strong tendency to form sulfides. The Gibbs free energy of sulfide formation by titanium,
chromium, and sulfur impurity elements in copper is significantly lower than that of Cu2S.
This suggests the potential for the formation of fine sulfides through the addition of trace
amounts of titanium and chromium [29–38]. Furthermore, both titanium and chromium
sulfides have high melting points above 1200 ◦C and demonstrate good thermal stability.
They can effectively pin grain boundaries and inhibit grain growth at elevated temperatures.
Additionally, reducing the solid solution impurity sulfur content in a matrix can contribute
to improved conductivity. At the same time, the addition of alloying elements is very
small and there is little solid solution in the matrix, which are conducive to maintaining
high conductivity. In addition, the conductivity of pure copper is reduced less by nickel
and silver elements, and its thermal stability can be improved by solute dragging in the
copper matrix.

In summary, in this paper, the synergistic regulation of the conduction and thermal
stability of pure copper is achieved by adding trace Ti alone and combining it with trace
Cr, Ni, and Ag elements. This involves using trace transition elements to react with an
impurity element, sulfur, to form a micro-nano phase and leveraging the solute dragging
effect of trace solid solution elements to alter the occurrence state of an impurity element,
sulfur, in copper.
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2. Experimental Methods

Pure copper materials with different trace transition elements required by a vacuum
induction furnace were smelted under a vacuum and high-purity argon. In the smelting
process, 4N electrolytic copper was selected as the raw material, with each furnace weighing
2.5 kg, and the melting temperature was controlled at about 1200 ◦C. After the copper
solution was melted, trace S and trace transition elements, Ti, Cr, Ni, and Ag, were added
in the form of a simple substance (the trace elements were wrapped in copper foil and
pressed into a block according to the required content in advance to improve the yield, and
the purity was 99.99%). After the melting is uniform, a cylindrical ingot with a diameter
of Φ80.0 mm was cast. In order to obtain samples with uniform microstructures and
properties, the ingot was treated with a high-temperature solution and hot extrusion. The
ingot was heated to 950 ◦C and held for 2 h before being hot-extruded into a copper sheet
with a size of 300 mm long × 70 mm wide × 15 mm thick using an XJ-500 extruder. It then
air-cooled to room temperature. The thickness of the copper sheet was reduced from its
initial 15 mm to 0.5 mm on a two-high rolling mill. Inductively coupled plasma atomic
emission spectrometry was used to detect the contents of microalloyed elements. The
chemical composition of experimental pure copper with different microalloying elements
is shown in Table 1.

Table 1. Chemical composition of experimental pure copper with different microalloying elements
(mass fraction, %).

No. Ti Cr Ni Ag S Cu

Cu <0.0001 <0.0001 0.0001 0.0011 0.0010 Bal.
Cu-Ti-S 0.0035 - - - 0.0039 Bal.

Cu-Cr-Ni-Ag-S - 0.0036 0.0088 0.0030 0.0036 Bal.

The experimental process is shown in Figure 1.
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Figure 1. Experimental process.

The sample was intercepted at the same position along the width of the copper
plate and tested for electrical conductivity as well as thermal stability. A Sigma 2008B
eddy current conductivity meter was used to conduct an electrical conductivity test. The
surface of the sample was polished with W5 metallograph sandpaper first, and then the
Sigma 2008B eddy current conductivity meter was calibrated and the conductivity of
each sample was measured at room temperature, and each sample was tested no less
than ten times. After the maximum and minimum values of each sample were removed,
the average value obtained is the measured conductivity of the sample. To assess the
thermal stability of experimental pure copper, the grain size change before and after high-
temperature treatment (900 ◦C/30 min) was utilized as a criterion. Initially, the sample
underwent treatment at 900 ◦C in a vacuum tube furnace, followed by immediate water
cooling after a 30 min hold. Subsequently, both pre and post high-temperature treatment
samples were mechanically ground and polished before being subjected to corrosion using
a corrosive liquid (composition: 3 g of FeNO3, 15 mL of HCl, 15 mL of distilled water)
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for approximately 8 s. Finally, tissue images were captured using an OLYMPUS PMG 3
inverted optical microscope, employing the area method. Image-Pro Plus 6.0 was used to
count the total area and number of grains in five photographs taken from different locations
on each sample. Subsequently, the average area of a single grain was obtained, allowing
for the calculation of the average equivalent diameter of grains as well as a comparison
between grain growth before and after high-temperature treatment.

FEI Talos F200X transmission electron microscopy (TEM) and an energy-dispersive
spectrometer (EDS) were used to observe the presence of trace transition elements in the
cold-rolled copper matrix. After mechanical grinding and electrolysis, TEM samples were
further thinned using a Gatan 695 precision ion grinding system under a 3 kV Ar+ ion
beam. The precipitated phase was observed and analyzed by TEM, selected area electron
diffraction (SAD), and EDS at an acceleration voltage of 200 kV.

3. Results and Analyses
3.1. Effect of Trace Element Interactions on the Electrical Conductivity of Pure Copper

The impact of trace transition group elements on the conductivity of pure copper is
illustrated in Figure 2. As can be seen from Figure 2, the addition of trace Ti has minimal
influence on the conductivity of pure copper, and the conductivity of Cu-Ti-S pure copper
remains above 100% IACS, comparable to that of Cu pure copper. The combined addition
of trace Cr, Ni, and Ag can marginally decrease the conductivity of pure copper. The
conductivity of Cu-Cr-Ni-Ag pure copper approaches 100% IACS with still-favorable
conductivity; however, it is noted that the conductivity of Cu-Cr-Ni-Ag pure copper is
lower than that of Cu-Ti pure copper due to high solid solubility effects from Ni and Ag
in the copper matrix. Atoms dissolved in the copper matrix will disrupt lattice integrity,
increase electron wave scattering, and reduce conductivity. Additionally, because Ni and
Ag elements are added in small amounts, their impact on reducing electrical conductivity
is limited. In summary, adding microalloying elements such as Ti or Cr, along with Ni and
Ag, to pure copper can still ensure high levels of electrical conductivity.
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Figure 2. Effect of trace elements on the cold-rolled conductivity of 4N pure copper.

The influence of trace transition group elements on the conductivity of pure copper
under various temperatures is depicted in Figure 3. It can be observed from Figure 3 that
the conductivity rises with the ascending of temperature ranging from 100 ◦C to 300 ◦C.
Within the range of 300 ◦C to 800 ◦C, the conductivity undergoes a minor fluctuation, yet
the fluctuation is relatively insignificant. According to the temperature-dependent study
of electrical conductivity (mobility), it is found [41,42] that impurity atoms and lattice
vibration will have scattering effects on carriers, hindering their transport and affecting
the mobility of carriers, thus affecting the conductivity. At low temperatures, the impurity
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scattering and lattice vibration effects are relatively weak, the carrier mobility is higher,
and the influence on the conductivity is small, so the conductivity increases linearly with
the increase in temperature at low temperatures. With the increase in temperature, the
impurity scattering and lattice vibration effects are enhanced, and the carrier mobility is
reduced, which has a relatively large impact on the electrical conductivity. Therefore, as
the temperature rises, the upward trend of conductivity is not remarkable, and even shows
a minor downward tendency.
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temperatures.

3.2. Effect of Trace Elements on Thermal Stability

Using the conventional cold-rolling process, 4N pure copper with trace transition
elements in an extruded state was rolled into a 0.5 mm copper sheet by a two-high rolling
mill through multiple passes. Figure 4 shows an optical micrograph of pure copper with a
trace amount of transition group element 4N added in a cold-rolled state. As can be seen
from Figure 4, after cold-rolling for 4NCu, 4N Cu-Ti-S, and 4N Cu-Cr-Ni-Ag-S pure copper
samples for multiple passes, the grain elongation along the rolling direction presents a
banded structure.
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Figure 4. Optical micrographs of pure copper with trace element 4N added in a cold-rolled state:
(a) optical micrograph of 4Ncu; (b) 4N Cu-Ti-S optical micrograph; and (c) 4N Cu-Cr-Ni-Ag-S
optical micrograph.

Based on the change in grain size after high-temperature treatment at 900 ◦C/30 min,
the influence of trace transition group elements on the thermal stability of pure copper was
investigated. Figure 5 shows the optical micrograph and average grain size of cold-rolled
4N pure copper after high-temperature treatment with different trace transition elements.
Figure 5 indicates that the addition of trace transition group elements can significantly
refine the grain size of pure copper compared to that of pure copper without these additions.
After treatment at 900 ◦C/30 min, it is observed that the grain size of 4N Cu-Ti-S and 4N
Cu-Cr-Ni-Ag-S is much smaller than that of 4N Cu, especially with an average grain size as
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low as 31.08 µm for 4N Cu-Cr-Ni-Ag-S. Furthermore, post high-temperature heat treatment,
it is evident from Figure 5 that the grains in cold-rolled 4Ncu pure copper are coarse, with
an average grain size measuring approximately 200.24 µm and individual grains reaching
up to 400 µm. Both 4N Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S exhibit significantly smaller grain
sizes following high-temperature heat treatment than those of 4N Cu pure copper. The
average grain size of 4N Cu-Ti-S is 83.83 µm, which represents a reduction of 58% compared
to that of 4N Cu pure copper. Meanwhile, the average grain size of 4N Cu-Cr-Ni-Ag-S
measures approximately 31.08 µm, indicating an impressive decrease of 84% in comparison
to that of 4N Cu pure copper. These findings demonstrate that the addition of the trace
transition group element Ti and the combined addition of trace transition group elements
Cr, Ni, and Ag can effectively improve the thermal stability of grain size in cold-rolled 4N
pure copper. After high-temperature treatment, the average grain size of 4N Cu-Cr-Ni-Ag-S
is only 16% of that of 4N Cu pure copper. This indicates that the compound addition of
trace transition elements Cr, Ni, and Ag has the most significant effect on enhancing the
thermal stability of cold-rolled pure copper grain size.

Coatings 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

was investigated. Figure 5 shows the optical micrograph and average grain size of cold-
rolled 4N pure copper after high-temperature treatment with different trace transition el-
ements. Figure 5 indicates that the addition of trace transition group elements can signif-
icantly refine the grain size of pure copper compared to that of pure copper without these 
additions. After treatment at 900 °C/30 min, it is observed that the grain size of 4N Cu-Ti-
S and 4N Cu-Cr-Ni-Ag-S is much smaller than that of 4N Cu, especially with an average 
grain size as low as 31.08 µm for 4N Cu-Cr-Ni-Ag-S. Furthermore, post high-temperature 
heat treatment, it is evident from Figure 5 that the grains in cold-rolled 4NCu pure copper 
are coarse, with an average grain size measuring approximately 200.24 µm and individual 
grains reaching up to 400 µm. Both 4N Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S exhibit signifi-
cantly smaller grain sizes following high-temperature heat treatment than those of 4N Cu 
pure copper. The average grain size of 4N Cu-Ti-S is 83.83 µm, which represents a reduc-
tion of 58% compared to that of 4N Cu pure copper. Meanwhile, the average grain size of 
4N Cu-Cr-Ni-Ag-S measures approximately 31.08 µm, indicating an impressive decrease 
of 84% in comparison to that of 4N Cu pure copper. These findings demonstrate that the 
addition of the trace transition group element Ti and the combined addition of trace tran-
sition group elements Cr, Ni, and Ag can effectively improve the thermal stability of grain 
size in cold-rolled 4N pure copper. After high-temperature treatment, the average grain 
size of 4N Cu-Cr-Ni-Ag-S is only 16% of that of 4N Cu pure copper. This indicates that 
the compound addition of trace transition elements Cr, Ni, and Ag has the most significant 
effect on enhancing the thermal stability of cold-rolled pure copper grain size. 

 
Figure 5. Optical micrograph and average grain size of 4N pure copper with different trace elements 
added after high-temperature treatment in a cold-rolled state: (a) 4NCu optical micrograph; (b) 4N 
Cu-Ti-S optical micrographs; (c) 4N Cu-Cr-Ni-Ag-S optical micrograph; and (d) average grain size. 

3.3. Changes in Recrystallization Temperature 
Figure 6 shows the recrystallization temperature curve of pure copper with different 

trace transition elements added. As depicted in Figure 6, the addition of trace transition 
group element Ti and the compound addition of trace transition group elements Cr, Ni, 
and Ag can effectively elevate the recrystallization temperature of pure copper. The initial 
hardness of 4N Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S is higher than that of 4N pure copper. The 
hardness of 4NCu, 4N Cu-Ti-S, and 4N Cu-Cr-Ni-Ag-S pure copper decreases linearly and 
slowly at 30~130 °C. Within the range of 130~160 °C, recrystallization occurs in 4N pure 

Figure 5. Optical micrograph and average grain size of 4N pure copper with different trace elements
added after high-temperature treatment in a cold-rolled state: (a) 4Ncu optical micrograph; (b) 4N
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3.3. Changes in Recrystallization Temperature

Figure 6 shows the recrystallization temperature curve of pure copper with different
trace transition elements added. As depicted in Figure 6, the addition of trace transition
group element Ti and the compound addition of trace transition group elements Cr, Ni,
and Ag can effectively elevate the recrystallization temperature of pure copper. The initial
hardness of 4N Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S is higher than that of 4N pure copper. The
hardness of 4Ncu, 4N Cu-Ti-S, and 4N Cu-Cr-Ni-Ag-S pure copper decreases linearly and
slowly at 30~130 ◦C. Within the range of 130~160 ◦C, recrystallization occurs in 4N pure
copper, leading to a rapid decrease in hardness, while the hardness of 4N Cu-Ti-S and 4N
Cu-Cr-Ni-Ag-S decreases slowly. In the range of 160~190 ◦C, the hardness of 4N Cu-Ti-S
and 4N Cu-Cr-Ni-Ag-S pure copper begins to decrease rapidly after recrystallization. Sub-
sequently, the hardness of all three samples tends to stabilize with a slower rate of decline
as the annealing temperature is increased. Figure 5 illustrates that the recrystallization
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temperature for 4N pure copper falls within the range of 130~160 ◦C, while for both 4N
Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S, it lies in the range of 160~190 ◦C.
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Figures 7–9 show optical micrographs of 4N pure copper with different trace transition
elements added at various annealing temperatures. It can be seen from Figures 7–9 that
after annealing at 160 ◦C/1 h, 4N Cu pure copper has undergone recrystallization, while 4N
Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S remain banded. Following annealing at 190 ◦C/1 h, 4N Cu-
Ti-S and 4N Cu-Cr-Ni-Ag-S were recrystallized. Based on the recrystallization temperature
curve, it is evident that adding trace transition group element Ti and the compound
addition of trace transition group elements Cr, Ni, and Ag can effectively increase the
recrystallization temperature of pure copper and further improve its thermal stability.
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Figure 7. Optical micrographs of 4N Cu pure copper at different annealing temperatures: (a) optical
micrograph at 30 ◦C/1 h; (b) optical micrograph at 160 ◦C/1 h; (c) optical micrograph at 190 ◦C/1 h;
and (d) optical micrograph at 280 ◦C/1 h.
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Figure 8. Optical micrographs of 4Ncu-Ti-S at different annealing temperatures: (a) optical micro-
graph at 30 ◦C/1 h; (b) optical micrograph at 160 ◦C/1 h; (c) optical micrograph at 190 ◦C/1 h; and
(d) optical micrograph at 280 ◦C/1 h.
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Figure 9. Optical micrographs of 4Ncu-Cr-Ni-Ag-S at different annealing temperatures: (a) optical
micrograph at 30 ◦C/1 h; (b) optical micrograph at 160 ◦C/1 h; (c) optical micrograph at 190 ◦C/1 h;
and (d) optical micrograph at 280 ◦C/1 h.

3.4. Analysis of the Existence Form of Trace Elements

To clarify the influence of trace elements on the electrical conductivity and thermal
stability of pure copper, the forms of added Ti, Cr, Ni, and Ag in cold-rolled pure copper
were analyzed using TEM. The results are shown in Figures 10–15. Upon the addition of
trace Ti and Cr elements, a reaction with the S element in pure copper occurs, resulting in
the formation of the TiS phase and CrS phase in 4N Cu-Ti-S and 4N Cu-Cr-Ni-Ag-S samples,
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with the size of the CrS phase notably smaller than that of the TiS phase. Meanwhile, no Ni
and Ag precipitates were found in the 4N Cu-Cr-Ni-Ag-S samples.
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Figure 10. Dislocation and precipitated phase analysis of cold-rolled-state 4N Cu-Ti-S: (a) dislocation
wall; (b) dislocation cells; (c) HAADF-STEM images at the grain boundary; and (d) HAADF-STEM
images within the grains.
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Figure 11. Precipitated phase analysis of cold-rolled 4N Cu-Ti-S at the grain boundary: (a) BF-TEM
image; (b) EDS surface scan of titanium; (c) EDS surface scan of sulfur elements; (d) EDS spot
scanning of precipitated phase; (e) SAD image of precipitated phase; and (f) TEM high-resolution
morphology of the interface between the TiS phase and Cu matrix.
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Figure 12. Precipitated phase analysis of cold-rolled 4N Cu-Ti-S within the grain boundary: (a) BF-
TEM image; (b) EDS surface scan of titanium; (c) EDS surface scan of sulfur elements; (d) EDS spot
scanning of precipitated phase; (e) SAD image of precipitated phase; and (f) TEM high-resolution
morphology of the interface between the TiS phase and Cu matrix.
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Figure 14. Precipitated phase analysis of cold-rolled 4N Cu-Cr-Ni-Ag-S at the grain boundary: (a) BF-
TEM image; (b) EDS surface scan of copper elements; (c) EDS surface scan of chromium elements;
(d) EDS surface scan of nickel elements; (e) EDS surface scan of silver elements; (f) EDS surface scan
of sulfur elements; (g) EDS spot scanning of precipitated phase; (h) SAD image of precipitated phase;
and (i) TEM high-resolution morphology of the interface between the CrS phase and Cu matrix.

Figure 10 shows the distribution of dislocations and precipitated phases in cold-
rolled 4N Cu-Ti-S. As depicted in Figure 10a,b, bright-field scanning transmission electron
microscopy reveals an increase in dislocation density due to cold-rolling with large defor-
mation. The dislocations accumulate and intertwine, forming dislocation walls and cells
within the grain. In Figure 10c,d, high-angle annular dark-field scanning transmission
electron microscopy reveals the distribution of precipitates formed in 4N Cu-Ti-S on and
within the grain boundaries, with some precipitates also anchored to the dislocation walls.
These precipitates exhibit clear ellipsoidal or spherical shapes, with a size of approximately
267 nm at the grain boundary and about 354 nm within the grains.
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Figure 15. Precipitated phase analysis of cold-rolled 4N Cu-Cr-Ni-Ag-S within the grain boundary:
(a) BF-TEM image; (b) EDS surface scan of copper elements; (c) EDS surface scan of chromium
elements; (d) EDS surface scan of nickel elements; (e) EDS surface scan of silver elements; (f) EDS
surface scan of sulfur elements; (g) EDS spot scanning of precipitated phase; (h) SAD image of
precipitated phase; and (i) TEM high-resolution morphology of the interface between the CrS phase
and Cu matrix.

Figures 11 and 12 show the typical TEM characteristics of the TiS phase in 4N Cu-Ti-S
on the grain boundary and within the grains, respectively. As seen in Figures 11 and 12a–d,
the precipitated phases of 4N Cu-Ti-S at the grain boundary and within the grains are
TiS phases. The electron diffraction analysis of Figures 11 and 12e confirms that these
precipitated phases exhibit a hexagonal structure. Additionally, Figures 11 and 12f display
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high-resolution TEM morphologies at the interface between the TiS phase and Cu matrix.
The lattice mismatch between the precipitated phase and Cu matrix interface is calculated
using Formula (1):

δ
(hkl)Cu
(hkl)MxS

=

∣∣∣d[hkl]Cu − d[hkl]MxS

∣∣∣
d[hkl]MxS

× 100% (1)

where δ: mismatch between compound and the Cu matrix;
(hkl)Cu: low exponential crystal face of the Cu matrix;
(hkl)MxS: low exponential crystal face of the MxS phase;
d[hkl]: (hkl) crystal face spacing.
The lattice mismatch between the precipitated TiS phase and Cu matrix at the grain

boundary is as follows:

δ =
|0.2366 − 0.1802|

0.1802
× 100% = 31.30% (2)

The lattice mismatch between the precipitated TiS phase and Cu matrix within the
grain boundary is as follows:

δ =
|0.2344 − 0.1768|

0.1768
× 100% = 32.58% (3)

The results show that the interface between the precipitated phase and the copper ma-
trix is non-coherent. In a cold-rolled state, the precipitates in 4N Cu-Ti-S are distributed at
the grain boundary and within the grain boundary. Particularly, the precipitates distributed
at the grain boundary can effectively impede grain boundary migration, contributing to
the good thermal stability of 4N Cu-Ti-S at high temperatures.

Figure 13 shows the dislocation and precipitated phase distribution of 4N Cu-Cr-Ni-
Ag-S in a cold-rolled state. As shown in Figure 13a,b, bright-field scanning transmission
electron microscopy reveals that cold-rolling induces an increase in dislocation density,
resulting from large deformation. The dislocations pile up to form a dislocation wall,
with these walls intertwining to create dislocation cells. As shown in Figure 13c,d, under
high-angle annular dark-field scanning transmission electron microscopy, the precipitates
formed in 4N Cu-Cr-Ni-Ag-S are distributed at the grain boundary and within the grains,
exhibiting a clearly spheroidal morphology. The size of the precipitated phase is small,
approximately 55 nm at the grain boundary and about 80 nm within the grain boundary.

Figures 14 and 15 show the typical TEM characteristics of the CrS phase in 4N Cu-Cr-
Ni-Ag-S at the grain boundary and within the grain boundary, respectively. Based on the
EDS surface map and EDS point map of elements in Figures 14 and 15a–g, it is observed
that the precipitated phase of 4N Cu-Cr-Ni-Ag-S consists of Cr and S elements at both
the grain boundary and within the boundary, while Ni and Ag elements are uniformly
distributed in the Cu matrix without being found on the precipitated phase. Electron
diffraction analysis confirms that these precipitated phases are monoclinal CrS phases.
Figures 14 and 15i depict the high-resolution TEM morphologies at the interface between
the TiS phase and Cu matrix. The lattice mismatch between the precipitated phase and Cu
matrix interface is calculated according to Formula (1).

The lattice mismatch between the precipitated CrS phase and Cu matrix at the grain
boundary is as follows:

δ =
|0.2383 − 0.1739|

0.1739
× 100% = 37.03% (4)

The lattice mismatch between the precipitated CrS phase and Cu matrix within the
grain boundary is as follows:

δ =
|0.1812 − 0.2918|

0.2918
× 100% = 37.90% (5)
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The results indicate that the precipitated phase exhibits a non-coherent relationship
with the copper matrix interface. The precipitates generated in cold-rolled 4N Cu-Cr-Ni-
Ag-S also have very small sizes. The size of 4N Cu-Cr-Ni-Ag-S precipitates is 0.2 times
smaller than that of 4N Cu-Ti-S precipitates, suggesting that the former exerts a stronger
pinning force on grain boundary migration. Furthermore, its thermal stability surpasses
that of 4N Cu-Ti-S at high temperatures.

In summary, the enhancement of thermal stability in Cu-Ti-S and Cu-Cr-Ni-Ag-S
microalloyed pure copper is primarily attributed to the formation of a hexagonal-structured
TiS phase, monoclinic-structured CrS phase, and the solid solution of Ni and Ag solutes.
The mechanism illustrating how trace alloying elements influence the thermal stability
of pure copper is illustrated in Figure 16. Trace alloying elements Ti and Cr can react
with an impurity element, S, in the pure copper matrix to form the TiS phase and CrS
phase, respectively. These phases exhibit a non-coherent relationship with the matrix and
exert a pinning effect at high temperatures, thereby improving the thermal stability of
grain size in pure copper and transforming the impurity element, S, into beneficial forms.
Additionally, Cu-Cr-Ni-Ag-S exhibits superior thermal stability compared to Cu-Ti-S due
to the smaller size of the CrS phase in a monoclinic structure as opposed to the TiS phase
in a hexagonal structure. Previous studies [43] have indicated that the pinning force of
precipitation relative to grain boundary migration is inversely proportional to its size.
Thus, introducing more precipitated phases into the copper matrix results in higher thermal
stability when these phases are smaller. Furthermore, trace amounts of Ni and Ag dissolved
in copper create a solute dragging effect that cooperatively enhances the thermal stability
of Cu-Cr-Ni-Ag pure copper; however, due to their scattering effect on electron transport
within copper, Ni and Ag atoms reduce its conductivity to some extent.
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4. Conclusions

In this chapter, the impact of trace elements on the thermal stability of cold-rolled
pure copper was investigated through an analysis of grain size following high-temperature
treatment at 900 ◦C/30 min. Furthermore, the mechanism for improving the thermal
stability of pure copper grain size was established. The primary conclusions are as follows:

1. After the addition of trace elements, the conductivity of pure copper remains high,
especially the conductivity of the Cu-Ti-S sample, essentially equivalent to that of
the Cu sample. The conductivities of 4N Cu, 4N Cu-Ti-S, and 4N Cu-Cr-Ni-Ag-S
are 100.7% IACS, 100.2% IACS, and 98.5% IACS, respectively. This can be primarily
attributed to the fact that trace transition elements Ti and Cr can react with S in copper
to form the TiS phase and CrS phase, effectively reducing the solid solution of trace
elements in the copper matrix and minimizing electron wave scattering, thus having
little impact on electrical conductivity. However, a significant decrease in electrical
conductivity was observed for 4N Cu-Cr-Ni-Ag-S due to the solid solution of trace Ni
and Ag elements.

2. The thermal stability of grain size in cold-rolled pure copper can be significantly
improved by adding trace elements, with the order of thermal stability being Cu-Cr-
Ni-Ag-S > Cu-Ti-S > Cu. Following heat treatment at 900 ◦C/30 min, the average grain
sizes of 4N Cu, 4N Cu-Ti-S, and 4N Cu-Cr-Ni-Ag-S were 200.24 µm, 83.83 µm, and
31.08 µm, respectively. In particular, the cold-rolled 4N Cu-Cr-Ni-Ag exhibited the
best thermal stability with a grain size of 31.08 µm after high-temperature treatment.

3. The enhancement of thermal stability following the addition of trace elements is
primarily attributed to the pinning effect of TiS and CrS phases, as well as the solute
drag exerted by Ni and Ag. The trace elements Ti and Cr can react with an impurity
element, S, to form the hexagonal-structure TiS phase and monoclinic-structure CrS
phase, which are distributed at the grain boundary and within the grain boundary.
They exhibit a non-coherent relationship with the copper matrix interface, producing
strong pinning force at high temperature and hindering grain boundary migration. In
particular, CrS is smaller and more numerous than TiS, which contributes to enhancing
the thermal stability of pure copper. Additionally, trace Ni and Ag solid solutions in
copper can produce a solute drag effect that further improves its thermal stability.
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