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Abstract: Corrosion brings serious losses to the economy annually. Therefore, various corrosion pro-
tection and detection techniques are widely used in the daily maintenance of large metal engineering
structures. The emergence of image recognition technology has brought a more convenient and faster
way for nondestructive testing. Existing image recognition technology can be divided into two cate-
gories according to the algorithm: traditional image recognition technology and image recognition
technology based on deep learning. These two types of technologies have been widely used in the
three fields of metal, coating, and electrochemical data images. A large amount of work has been
carried out to identify defects in metals and coatings, and deep learning-based methods also show
potential for identifying electrochemical data images. Matching electrochemical images with the
detection of defect morphology will bring a deeper understanding of image recognition techniques
for metals and coatings. A database of accumulated morphology and electrochemical parameters
will make it possible to predict the life of steel and coatings using image recognition techniques.

Keywords: corrosion; nondestructive testing; image recognition; defect identification; big data

1. Introduction

Corrosion, a pervasive natural phenomenon, is often referred to as “quiet destruc-
tion” due to its insidious and destructive nature. In 2014, the cost of metal corrosion in
China accounted for 3.34% of the gross domestic product, approximately US $310 bil-
lion [1]. However, with appropriate measures, 25% to 40% of corrosion losses can be
prevented [2]. The ocean, which harbors vast amounts of oil, natural gas, and combustible
ice, necessitates extensive offshore equipment for resource extraction. Offshore oil drilling
platforms [3], transportation ships [4,5], and oil pipelines [6] are particularly susceptible
to corrosion due to the high-temperature, high-humidity, and high-salinity environment
of the ocean [7–9]. To mitigate corrosion, scientists have explored corrosion-resistant ma-
terials [10,11], corrosion inhibitors [12], protective coatings [13–15], and electrochemical
cathodic protection [16,17]. Concurrently, engineers have employed non-destructive testing
(NDT) techniques for metal corrosion detection. NDT techniques, which do not damage the
inspection object, are extensively used to identify corrosion defects [18–21]. Common NDT
methods include visual inspection, ultrasonic testing (UT) [22,23], pulsed eddy current
testing (ECT) [24–26], and radiographic testing (RT) [27,28].

Visual inspection is the simplest and most convenient inspection method, making it
widely used for detecting defects in ships, bridges, pipelines, and other facilities [29,30].
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Engineers identify defects such as cracks and corrosion by sight. However, this method
demands significant labor, materials, and financial resources [31]. Additionally, the identi-
fication results can vary between workers. The advent of Artificial Intelligence (AI) has
introduced new approaches to corrosion detection [32–35], including image recognition
as a non-destructive testing technique with the potential to replace visual inspection [36].
Engineers employ intelligent devices like drones and robots to capture corrosion images of
large steel structures, enabling the efficient and accurate identification of corroded areas
through computer vision. This method does not damage the inspection object and can
preliminarily distinguish the type and degree of corrosion. Importantly, its evaluation is
more objective, as image recognition technology can not only replicate the human eye in
capturing color, shape, texture, and other features, but also quantify these data to make
more accurate judgments based on predefined standards.

Image recognition techniques in corrosion protection are categorized into traditional
image recognition algorithms and deep learning-based image recognition techniques [37–44].
Traditional image recognition techniques can accurately identify corrosion areas and have
been widely used [42,43]. However, they rely on manually designed feature extractors, mak-
ing the tuning process complex and reducing the generalization ability and robustness. By
contrast, deep learning image recognition technology more precisely expresses datasets by
extracting features from vast amounts of data and uncovering deeper associations between
datasets [37–41]. This approach requires large datasets and powerful computing resources.

This paper primarily summarizes three aspects of image recognition technology in
corrosion protection: metal, coating, and electrochemical imaging. The recognition of
metals and coatings focuses on their morphological image features to distinguish between
corrosion types and characteristics. The recognition of electrochemical data images involves
understanding the corrosion mechanism and making predictions based on data images.
Figure 1 provides an overview of the application of image recognition technology in
corrosion protection.
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2. General Steps in Image Recognition Techniques

Traditional image recognition methods typically involve the following steps: im-
age acquisition, image preprocessing, feature extraction, and image classification. Deep
learning-based image recognition algorithms differ significantly. They require a large
amount of labeled data, and their algorithmic architecture is more complex. Figure 2
illustrates the flowcharts of both methods.
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Figure 2. Flowcharts of traditional image recognition techniques and deep learning-based image
recognition techniques.

2.1. Traditional Image Recognition Steps
2.1.1. Image Acquisition Collection

Three main types of capture devices are used in image recognition technology: video
cameras, digital cameras, and scanning instruments (such as scanning electron microscopes
and scanning acoustic microscopes). These devices can extract digital images (including
moving images) through sampling, and storing the color, shape, texture, and external
sounds of the pictures in computer equipment. Image acquisition is the first step in image
recognition, and the quality of the acquired image affects recognition accuracy.

The quality of an image is generally related to the pixels, resolution, and DPI (dots
per inch) of the capture device. Pixels, the smallest units, can only display one color. The
larger each pixel, the fewer pixels can be displayed per unit area. Resolution refers to the
number of pixels contained in an image, while DPI measures the number of pixels per inch
(1 inch = 25.4 mm) along the length of the image. Therefore, a higher resolution and DPI
typically result in higher image quality, providing more information.

In addition to image quality and clarity, the type of image also affects the choice of
recognition method. Common image types for corrosion recognition include color images,
grayscale images, and black-and-white images. Color images are the most commonly used
and can be employed in both traditional and deep learning image recognition algorithms.
Grayscale and black-and-white images are often derived from color images, although
some scanning instruments, such as scanning electron microscopes, can directly capture
grayscale images.
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2.1.2. Image Pre-Processing

Image preprocessing aims to segment objects in the picture, eliminating unnecessary
information and focusing on the data required for research. This step is crucial before
feature extraction. The task can be accomplished by utilizing either Matlab R2024a or
OpenCV 4.0, both of which offer a variety of functional toolkits specifically designed for
image recognition. Common preprocessing methods include image binarization, noise
reduction, enhancement, and geometric transformation. Image binarization is essential for
traditional image recognition algorithms, converting the grayscale values of an image into
binary (0 and 255) using a specific threshold, facilitating key information extraction. Noise
reduction minimizes interference, while enhancement highlights critical features to improve
image quality. Noise reduction is typically achieved through filtering methods, including
average, median, high-pass, and low-pass filtering. Image enhancement techniques vary
widely, such as contrast adjustment, sharpening, color adjustment, erosion, and dilation.
Geometric transformations, like flipping, panning, rotating, and scaling, do not alter image
information but help computers better understand the picture. These transformations also
increase the amount of image data for more effective deep learning training.

2.1.3. Feature Extraction

Computers process images as numbers, so feature extraction involves obtaining infor-
mation about these numerical or vector data through specific algorithms. Features such as
color, brightness, edges, and texture can be extracted. Various image features, including
edges, corners, ridges, and regions, are used to recognize different types of corrosion.
Feature extraction methods are categorized based on the processing approach, includ-
ing texture-based methods [50,51], color-based methods [52], edge-based methods [44],
grayscale-based methods [45], and model transformation-based methods [23,53].

2.1.4. Image Classification

The core task of image classification is to assign a corresponding label to the picture.
Once processed, the image feature data or vectors are classified using labels through
a classifier. Traditional image recognition algorithms commonly use classifiers such as
Support Vector Machines (SVM) and Random Forests (RF) [46]. The SVM classifier can
perform binary classification and is a linear judgment method used for tasks such as
determining whether there is corrosion in an area. Random forests is a more complex
discrimination system, which can judge very complex problems by judging the results
predicted by multiple decision trees. As the most widely used classifier, SVM is especially
suitable for the classification of small- and medium-sized complex datasets, so its effect is
better than traditional algorithms.

2.2. Deep Learning-Based Image Recognition

Deep learning-based image recognition involves four main steps: image acquisition,
preprocessing, model training, and application. It utilizes convolutional neural networks
(CNNs) to extract high-level features from images, requiring large datasets with accurately
labeled images. The common classification architectures for deep learning include AlexNet,
VGG, and ResNet. Deep learning can address both simple corrosion problems, such as
defects in steel plates and coatings, and the complex image analysis of corrosion data [47,54].

3. Identification of Metals
3.1. Traditional Methods

Traditional image processing algorithms rely heavily on manually designed feature
extractors, which can meet various needs and have mature application techniques, but
they are also susceptible to interference and noise [55]. By contrast, deep learning can
automatically learn image features during the training process without manual feature
design, offering stronger generalization capabilities. Common traditional methods include
wavelet variation-based methods, fractal theory-based methods, and grayscale image-based
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methods. Table 1 summarizes traditional algorithms for metal recognition, while Table 2
outlines their advantages and disadvantages.

Table 1. Summary of image recognition based on conventional algorithms.

Method Materials Main Content Author/Ref. Year

Method based on
wavelet transform

Al 7075-T76

The electrochemical noise signal was
analyzed to reveal the characteristics
of the potential signal in detail and

monitor the occurrence of
local corrosion

Liu [23] 2001

Aero-aluminum alloy

The formation and growth of
corrosion pits were modeled and

simulated. The corroded panels were
evaluated by wavelet-based

image processing

Pidaparti [53] 2007

Weathering steel

The corrosion state of
weathering-resistant steel was

evaluated by combining wavelet
transform with the

PSO-SVM technique

Yan [50] 2014

Methods based on
fractal theory

Inconel alloy 600 The fractal dimension of pitting pits
hardly changes with temperature Park [56] 2003

Reinforced Concrete (RC)

The relationship between the crack
fractal dimension, corrosion rate and
steel bar diameter was established to

evaluate the corrosion behavior of
steel bars in degraded reinforced

concrete structures

Li [57] 2022

X80 steel

The two-dimensional/three-
dimensional fractal dimension of
corrosion pit increased with the

increase of AC density, showing linear
and exponential

relationships, respectively

Fu [58] 2019

Method based
on grayscale Galvanized high strength steel

The elliptic parameters of the binary
image of the corrosion pit were

extracted, and it was found that the
elliptic parameters of the corrosion pit
satisfy the Gaussian distribution along

all directions

Xu [59] 2016

Table 2. Advantages and disadvantages of image recognition based on traditional algorithms.

Method Advantage Disadvantage

Methods based on wavelet variations The low-frequency region responds to the
color spatial distribution and brightness

differences of the image, while the
high-frequency region is able to respond

to the local features of corrosion.

Differences in the calculation of wavelet
energy entropy may lead to differences in

corrosion image processing

Approach based on typing theory It has the ability to recognize features of
non-traditional Euclidean geometry in an
image and to distinguish differences in

roughness in image information.

The fractal dimension may be the same
for different images and cannot be used
alone as a criterion for judging images
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Table 2. Cont.

Method Advantage Disadvantage

Gray scale image based approach It has the ability to reduce complexity,
increase computing speed, and improve

detail clarity.

Incomplete representation of information
and inability to process corrosion with

color characteristics

3.1.1. Wavelet Transform-Based Approach

Wavelet transform, an image processing algorithm, decomposes an image into multiple
sub-images by transforming the image’s time domain into the frequency domain, enabling
better feature extraction. Electrochemical noise signals can be studied using metal corrosion
textures [50,51], wavelet transforms [23], corrosion pits [53], and more. Yan [50] assessed
the corrosion state of weathering steel bridges using wavelet variations on corrosion texture
images. Jahanshahi [51] evaluated the effect of parameters such as the color space, color
channel, and sub-image block size on the color wavelet-based texture analysis algorithm to
detect corrosion properties. Liu [23] used wavelet transform to decompose electrochemical
noise signals into a series of sub-signals in the time–frequency domain to study localized
corrosion. Pidaparti [53] evaluated the corrosion damage of aerospace materials using
wavelet transform processing, investigating material loss and residual strength prediction
with Artificial Neural Networks (ANNs). Based on this, ANN-based life prediction under
corrosion fatigue conditions was also accomplished.

Wavelet transform can effectively extract the features of time–frequency maps of
corrosion images. The low-frequency region corresponds to the color spatial distribution
and brightness differences of the image, while the high-frequency region responds to
the local features of corrosion. However, differences in the calculation of wavelet energy
entropy may lead to variations in corrosion image processing. Additionally, the acquisition
of corrosion image features by wavelet methods is often affected by the dataset size.

3.1.2. Approaches Based on Fractal Theory

The structural features in corrosion images often do not conform to traditional Eu-
clidean geometry, and fractal theory can describe these irregular shapes effectively. There-
fore, the features of each localized corrosion region can be extracted using fractal theory. By
studying the fractal dimension of corrosion images, researchers can analyze the corrosion
development pattern of steel, the growth change of corrosion pits, and the corrosion rate
of reinforced concrete [56–58]. Park [56] studied the fractal dimension of SEM (scanning
electron microscope) images of corrosion pits using fractal theory and found that the frac-
tal dimension increases with increasing solution temperatures. The growth of corrosion
pits at different solution temperatures satisfies certain fractal geometric features. Li [57]
used the fractal dimension of the cracked shape of reinforced concrete surfaces to study
the relationship between the cracked texture and the corrosion rate and diameter size of
reinforced concrete prisms. He found that the fractal dimension was closely related to the
corrosion rate and the diameter of the reinforcement. Fu [58] studied the effect of different
alternating current densities on the development of the corrosion morphology of X80 steel
in a coastal soil solution. He found that at low alternating current densities, X80 steel was
mainly corroded uniformly; when the alternating current density reached 150 A/m2, the
corrosion morphology gradually transformed into irregular pitting corrosion, and the two-
dimensional/three-dimensional fractal dimensions increased linearly and exponentially,
respectively, with the increase in alternating current density. Fractal theory can identify the
features of non-traditional Euclidean geometry in images and detect roughness differences
in image information. However, it often cannot be used alone as a criterion for judging
images, because the fractal dimension may be the same for different images.
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3.1.3. Methods Based on Grayscale Images

Grayscale-based image processing is also a common method, utilizing differences in
the gray values of images to determine the optimal gray threshold and create a binary image.
Zhu et al. [24] used scanning acoustic microscopy (SAM) in C-mode with tomographic
acoustic microimaging (TAMI) to determine the morphology and depth of corrosion pits on
7050 aluminum alloy. They examined the results using an optical microscope and calculated
the pitting area using a binary image. Figure 3 shows the results of the binary calculation.
Additionally, they plotted the 3D morphology of an aluminum alloy sample after removing
the corrosion products (Figure 4) to visualize the difference in the distribution of the
corrosion depth. The area share of defective areas (such as cracks) can be clearly extracted
using the binarized image. Xu et al. [59] proposed an image processing-based method for
the visual modeling of pits on the surface of high-strength steel wires by binarizing the
image of the pit depth and extracting the parameters of corrosion ellipses. They statistically
found that the direction of the long axis of the pits on the corroded surface is consistent with
the circumferential direction and that the planar geometric features satisfy the Gaussian
distribution. Qian et al. [60] investigated the image differences in corrosion morphology
of AerMet100 Steel at different corrosion stages. They preprocessed the original images
using median filtering, grayscale variation, and fuzzy enhancement. After determining
the optimal threshold for image binarization, they extracted image features to calculate
the degree of corrosion based on the separation theory grayscale threshold calculation
method. It was found that AerMet100 Steel (a high-strength martensitic alloy steel) initially
showed pitting corrosion in the accelerated test, which then gradually developed into
uniform corrosion.
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Figure 4. 3D image of 7050 aluminum alloy sample after removal of corrosion products [24]. (a) Upper-
left region; (b) lower-right region.

3.2. Deep Learning-Based Approach

Algorithms used for metal image recognition are often enhanced versions of Con-
volutional Neural Networks (CNNs). These optimized models effectively identify and
detect crack defects on metal surfaces. For instance, Zhao [61] improved the Faster R-CNN
algorithm by reconfiguring the network structure and introducing multi-scale fusion and
deformable convolutional networks. This enhancement increased the detection accuracy
of steel surface defects to an average of 0.752, which is 0.128 higher than the original algo-
rithm. Similarly, Xiao et al. [54] detected zinc bloom defects on galvanized steel surfaces by
combining the Transformer model with the YOLO-v5 backbone feature extraction network.
Figure 5a–c illustrate the architecture, recognition performance, and results of this hybrid
algorithm, YOLOv5-TB. By employing a weighted bidirectional feature pyramid network
(Bi-FPN) for multi-scale feature fusion, the YOLOv5-TB model surpasses most existing
mainstream target-detection algorithms in both detection accuracy and efficiency.
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4. Recognition and Mining of Corrosion Data Images

Corrosion detection of coatings, a phenomenon influenced by various factors, can be
approached through multiple methods. Electrochemical Impedance Spectroscopy (EIS)
is an ideal non-destructive testing method that captures information about the electro-
chemical reactions caused by coating damage. The magnitude of the modal value reflects
the protective performance of the coating and supports coating life prediction. Machine
learning methods can analyze EIS spectra effectively. Ma et al. [46] proposed a method for
predicting the lifetime of multilayer Cr/GLC coatings using in situ EIS data, combined
with an established equation linking the coating impedance and lifetime. Their modi-
fied mechanistic–empirical model demonstrated that low-frequency impedance and the
exposure time of multilayer Cr/GLC coatings at different hydrostatic pressures follow a
linear empirical relationship. This combined approach of mechanistic–empirical methods
and mechanistic-learning models effectively differentiates various types of electrochemical
impedance spectra, correlating the coating performance with coating life. The overall
structure of this model is shown in Figure 6. A comparative analysis of multiple models
revealed that the ANN + RF integrated machine learning model achieved the highest
combined prediction accuracy of 97.9% for coating performance and lifetime, as illustrated
in Figure 7.
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Figure 6. (a) Schematic of the process of synthesizing the empirical method of the mechanism and a
machine learning model; (b) schematic of the BP-ANN algorithm; (c) schematic of the RF algorithm;
(d) multi-layer Cr/GLC coatings on the sub-surface of a plunger; (e) the surface morphology of the
multilayered Cr/GLC coatings; and (f) cross-sectional morphology [46].

EIS analysis is challenging because different corrosion types correspond to differ-
ent equivalent circuits. It requires a deep understanding of corrosion reactions to build
appropriate equivalent circuit diagrams and fit corresponding parameters using compu-
tational software. Some studies have attempted to analyze electrochemical impedance
spectra with machine learning models to identify their corresponding equivalent circuits.
Bongiorno et al. [47] investigated the effect of the dataset size on the parsing performance
of machine learning models, considering classification and fitting cases. The training and
test datasets were numerically simulated using the Labview™ programming language and
a large number of EIS spectra were generated using an in-house developed program. First,
an equivalent circuit was determined, then the range of fitting parameter values was given,
the data were randomly selected and allocated to the circuit components, and then their
equivalent circuit was simulated. They found that a dataset of 200 samples is sufficient for
training models with up to five equivalent circuit components. When used for fitting, the
model achieved 95% accuracy with high recall. For classification, the accuracy was around
75%, though recall varied significantly across different circuits.
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5. Identification of Coatings
5.1. Traditional Methods

Using a computer vision system to extract specific characteristics from images of coat-
ing conditions allows engineers to assess the extent of coating corrosion more rapidly. This
system can analyze the primary factors causing corrosion based on the degree of rusting
and determine if recoating is necessary. Momber [52] utilized color-based digital image
processing techniques to evaluate the degree of coating deterioration. Figure 8a illustrates
the image recognition results for some coating areas on an offshore wind energy device,
while Figure 8b shows the color changes in the coating, indicating equipment coating
deterioration. In this figure, labels 1 and 2 represent the color distribution of a new coating,
whereas labels 3 and 4 fall outside the acceptable range, signaling that the coating does not
meet the specifications. Figure 8c presents the HSV (Hue–Saturation–Value) histogram of
the corroded area, where the distribution differences in these features distinguish between
heavy and light rust. The analysis of the damage causes, corresponding to each image
type, revealed that most coating damage is due to inappropriate structural design and
mechanical loading.

Monitoring coating quality is another critical application. Lu et al. [44] developed a
hybrid algorithmic framework that effectively recognizes three different thermal barrier
coating (TBC) images. By integrating image analysis techniques with statistical methods,
their model accurately identifies the upper and lower boundaries of the TCL layer and
generates masks for TBC images. This method achieved a classification accuracy of 98%
for identifying these boundaries. Accurately differentiating the coating boundary helps
calculate the coating’s porosity. Compared to their previous porosity measurement method
based on adaptive local thresholding [62], the new algorithm extends the range of TBC
species recognized.

Detecting the damage morphology on coating surfaces is also significant for evaluation.
Blistering, a common coating defect, is primarily detected through visual inspection, which
is labor-intensive and time-consuming. Machine learning algorithms enable computers
to detect broken coating layers efficiently. ISO 4628-2 [63] provides standard images for
grading the size and frequency of blistering using image methods, forming a basis for
monitoring coating surface aging with artificial intelligence. Nadia Moradi et al. [45]
created a three-dimensional graph of pixel gradient variations in blistered coatings by
analyzing the reflected light differences from blistered areas, as shown in Figure 9a. Their
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method separately detects large and small blisters to accurately assess various blister sizes.
Subsequently, the frequency of bulges in the entire image is calculated and compared
with standard image frequencies to determine its rating. Figure 9b displays the calculated
frequency for the standard image, and Figure 9c shows the coating rating results using
this method compared with manual ratings. The algorithm achieves a 95% identification
accuracy for blisters larger than 5 mm in diameter, surpassing manual visual monitoring
methods. It effectively identifies white and light gray coating blisters but is less effective
for dark gray and black coatings.
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Figure 8. Effectiveness of coating evaluation on Offshore Wind Energy Installation (OWEA) [52].
(a) Example of evaluating the coating condition with digital image processing techniques; the numbers
below the picture indicate the degree of coating deterioration. (b) Coating color chart. (c) Histogram
of HSV for two steel corrosion stages.

Image recognition can also simultaneously detect coating defects and corrosion in
steel plates. Po-Han Chen et al. [64] implemented image recognition technology to evaluate
the effectiveness of steel bridge coatings. They used multi-resolution pattern classification
(MPC) to identify rust and calculate defect percentages, determining whether the coating
quality meets acceptance criteria. This method offers a more accurate means of detection.
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Figure 9. Identification of coating bubbles [45]. (a) 3D graph of the blister image and its gradient
magnitude. Because of the differences in the intensity of the reflected light from the bubbles of
different sizes, the image can be drawn based on their grayscale gradient changes. (b) Frequency
criterion values used by the algorithm for grading standardized images according to ISO 4628. They
are found by calculating the proportion of differently sized bubbles in the standard image proposed
in [63] to the image area. (c) Comparison of the mean value of the inspector size assessment with the
sample size assessment algorithm. Error bars indicate the standard deviation of the inspector results.

5.2. Deep Learning Image Recognition Algorithm

Deep learning-based methods require clear labeling of coating images to accurately
determine the coating quality and types of damage. Hu et al. [65] improved the SSERes-
Net101 regression model to predict surface roughness through images using feature fusion
methods based on the SSEResNet101 backbone. Additionally, they developed an enhanced
Cascade R-CNN model that effectively identifies flame changes produced during the laser
cleaning of aircraft coatings, allowing for the precise evaluation of cleaning quality. The
mean square error (MSE) loss during the SSEResNet101 model training was 0.0249, and
the mean absolute error (MAE) was 0.278 µm. The improved Cascade R-CNN model
achieved a mean accuracy (mAP) value of 93.6% at an intersection over union (IoU) of
0.6. Several studies have utilized CNN networks for the multi-layer extraction of the
morphological features of coatings. Liu et al. [66] developed an intelligent evaluation
system that includes a region-based convolutional neural network (FAST R-CNN) and
a deep migratory learning Vgg19 model, which efficiently identifies coating breakdown
and corrosion (CBC) on surfaces, edges, and welds. Holm [67] compared the performance
of different convolutional neural networks (CNNs) for automatically classifying bridge
structural corrosion and coating damage in images. The VGG-16-trained convolutional
neural network demonstrated the best overall performance, with recall, precision, accuracy,
and F1 scores of 95.45%, 95.61%, 97.74%, and 95.53%, respectively.

Convolutional neural networks are adept at extracting the surface topography and
thickness features of coatings, which can be compared with data from electrochemical
tests. Samide et al. [68] conducted electrochemical tests with scanning electron microscopy
(SEM) observations on PVA and nAg/PVA coatings immersed in 0.1 mol-L-1 HCl solution.
Their image features were extracted using convolutional neural networks to evaluate the
performance of PVA and nAg/PVA in retarding copper corrosion. The CNN data were
compared with results from electrochemical measurements and SEM, showing high surface
coverage in the presence of PVA (0.94) and nAg/PVA (0.98). Schmitz et al. [69] combined
FEA numerical simulations with a deep learning approach to characterize coating thickness
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and uniformity through dispersion curves. Features were extracted by transforming
transient guided waves into dispersion plots, showing feasibility for classifying coating
thickness. Yu et al. [70] proposed a novel method combining a deep convolutional neural
network (CNN) with an improved data fusion approach based on Dempster–Shafer (D-S)
theory to evaluate corrosion and coating defects in coal transmission and washing plants.
This method accurately recognizes coating defects and is robust against various types and
intensities of noise interference.

These advancements in deep learning algorithms significantly enhance the ability to
detect and analyze coating defects and corrosion, providing more precise and efficient
tools for maintaining structural integrity. Table 3 summarizes traditional and deep learning
methods for coating identification.

Table 3. Summary of image recognition methods of coatings.

Method Concrete Algorithm Materials Main Content Ref.

Traditional method

Method based
on grayscale Alkyd paint

The bubble size and area ratio are
determined based on the gray image, so

as to determine the bubble grade
[45]

Method based on
color space

Coatings on offshore
wind platforms

Quantitative recording and rating of
coating deterioration processes [52]

Method based
on grayscale

Coatings on
steel bridge

Multiresolution pattern classification
(MPC) was used to analyze the surface
coating images of steel bridges, and the
proportion of coating and rust in gray

images was calculated

[64]

Methods based on
deep learning

Deep transfer
learning techniques

The coating on the
ballast tank

An AI-based aided CBC evaluation
system (A-CAS) was developed to

identify different types of coating damage
and corrosion

[66]

Convolutional neural
networks (CNN)

PVAsilver
nanoparticles
(nAg/PVA)

The CNN data were compared with
electrochemical measurements and

scanning electron microscopy (SEM) data
[69]

6. Future Outlook

Current image recognition methods in the field of corrosion predominantly focus
on identifying defects in steel plates and coatings. While morphological analysis helps
recognize and classify various defect features and damage characteristics, it does not
provide deeper insights into corrosion electrochemical information. Therefore, the analysis
of corrosion data is crucial. Li [71] proposed a “corrosion big data” approach, advocating for
the establishment of a standardized data warehouse for corrosion, along with data modeling
and the use of this data for corrosion process simulation and experimental validation. This
approach aims to simulate the corrosion process and validate it experimentally, and also
suggests that corrosion data be visualized and displayed more intuitively.

Deep learning has significant potential for data image parsing. Electrochemical infor-
mation obtained through testing can be visualized and displayed in images, which can then
be analyzed using convolutional neural networks to extract features from various corrosion
images. Linking this extracted feature information with the morphological changes in steel
or coatings allows for the creation of a controlled database, enhancing the understanding
of corrosion images. The application of image recognition technology can accelerate the
accumulation of corrosion data and images, thereby broadening its engineering appli-
cations. By continuously linking various defect images with electrochemical images, it
will be possible to establish a “corrosion big data” repository containing electrochemical
information, offering great potential for predicting the lifespan of steel or coatings.
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7. Conclusions

Traditional detection methods mainly rely on manual visual inspection, which is
inefficient and costly, requiring significant human, material, and financial resources. By
contrast, image processing technology can improve the speed and accuracy of identifying
metal or coating defects. This paper summarizes the application of image recognition
technology in metals, corrosion data, and coatings:

1. Traditional methods have been effectively used for detecting cracks, pitting, and other
defects in steel structures. By analyzing collected images of corroded steel, extracting
corrosion features, and applying mathematical methods to mine the deep features of
grayscale images, it is possible to distinguish between various corrosion morpholo-
gies. However, these models often lack generalization, meaning that changes in the
environment and the recognition object can greatly affect the accuracy. Additionally,
selecting the right model and extracting features can be complex. Deep learning
methods, which require a large number of steel surface topography images, offer a
solution where different application scenarios can use the same model, albeit with
different datasets.

2. By analyzing images of changes in electrochemical parameters during metal corrosion,
deeper corrosion information can be extracted, such as determining equivalent circuit
diagrams and predicting the lifetime of coatings.

3. Traditional image recognition methods for coatings are similar to those used for
metals. However, deep learning image recognition algorithms show more potential in
recognizing the boundary, thickness, and uniformity of coatings.

Combining data from electrochemical testing with image recognition technology is a
promising research direction. This integration allows the results of image recognition to
be supported by electrochemical information. Although it requires a substantial amount
of data accumulation and workload, it offers a faster method for corrosion detection
and rating.
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