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Abstract: Zinc biodegradable implants represent a revolutionary advancement in medical technology,
offering a promising alternative to titanium and stainless-steel implants and avoiding the need for
secondary surgeries for removal. In this study, we aimed to fulfil the clinical demand for biodegrad-
able implant materials by applying a coating of double-doped strontium and copper resorbable
tricalcium phosphate (SrCu-TCP) onto a zinc-lithium (Zn-Li) biodegradable alloy using the Pulsed
Laser Deposition method. The coated surfaces were thoroughly characterized using X-ray Diffrac-
tion, Fourier Transform Infrared Spectroscopy, Atomic Force Microscopy, and Scanning Electron
Microscopy coupled with Energy Dispersive X-ray. Microbiology experiments were conducted to
assess the inhibitory effects on the growth of various bacteria strains, including gram-positive Staphy-
lococcus aureus and Enterococcus faecalis, gram-negative Pseudomonas aeruginosa and Escherichia coli,
as well as the fungus Candida albicans. The obtained results showed that the roughness of the Zn-Li
alloy increased from 91.8 ± 29.4 to 651.0 ± 179.5 nm when coated with SrCu-TCP. The thickness
of the coating ranged between 3–3.5 µm. The inhibition of growth for all four bacteria strains and
the fungus was in the range of 24–35% when cultured on SrCu-TCP coated Zn-Li samples. These
findings suggest that the developed coatings are promising candidates for applications requiring
inhibition of microorganisms.

Keywords: coatings; biodegradable coatings; tricalcium phosphate coatings; copper and strontium
doped tricalcium phosphate; copper and strontium co-doped tricalcium phosphate; biodegradable
alloys; Zn-Li alloy

1. Introduction

In the past two decades, biodegradable metals have emerged as promising materials
for various biomedical implant devices, offering the potential to reduce reliance on perma-
nent metallic implants, such as those made of titanium (Ti) alloys, stainless steel, etc. [1–4].
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This advancement aims to mitigate the need for implant removal surgeries and signifi-
cantly decrease associated costs [5–8]. Biodegradable metals, including those used in bone
implants, show advantages such as biocompatibility and controlled degradation [9–12].
However, challenges persist, including the need to address their excessive corrosion rates
compared to the healing rate of host bone tissue and to provide implant surface with
biomimetic properties [13–16].

Recent studies indicate that Zinc (Zn) is a crucial micronutrient for human health, par-
ticularly in bone tissue development and homeostasis [17–20]. It contributes to bone tissue
composition, collagen synthesis, mineralization, and turnover [21–24]. Both in vitro and
in vivo research demonstrate zinc’s diverse effects: promoting osteoblast proliferation and
differentiation while safeguarding osteoblasts from oxidative stress-induced apoptosis, and
inhibiting osteoclastogenesis and impacting osteoclast apoptosis [25–27]. These properties,
combined with its antibacterial activity, have led to successful utilization of zinc in bone
substitutes and implant biomaterials [28]. The incorporation of zinc into various calcium
phosphates like hydroxyapatite, β-TCP, brushite, or monetite holds promise as a beneficial
agent in bone repair [29–31].

Binary Zn alloys with alloying elements such as magnesium (Mg), calcium (Ca),
strontium (Sr), lithium (Li), manganese (Mn), iron (Fe), copper (Cu), and silver (Ag) are
systemically investigated in vitro and in vivo. Li exhibits the most effective strengthening
role in Zn, followed by Mg. Alloying leads to accelerated degradation. Adding elements
such as Mg, Ca, Sr, and Li into Zn improves the cytocompatibility, osteogenesis, and
osseointegration [32,33]. Li becomes toxic from 1.4 mM [34,35], and serum Li quantities are
associated with bipolar disorders (10 mg/L) or risk of death (20 mg/L) [36,37]. However,
in the quantities in which Li is included in implant alloys, it is not toxic [32,38]. Moreover,
Li improved bone mass in mice and enhanced bone formation through the activation of the
canonical Wnt pathway [39]. Additionally, maintenance therapy with lithium carbonate
increased bone mass [40].

Coating biodegradable metal surfaces such as Mg-Ca [41–43] or Zn-Li alloys [44–46],
with biomimetic calcium phosphates represents a significant strategy for enhancing their
properties, including controlling degradation behaviour and improving surface biocompati-
bility. Tricalcium phosphate (TCP), particularly β-tricalcium phosphate (β-TCP), stands out
as a resorbable bioceramic widely used in synthetic bone grafts due to its osteoconductive
and osteoinductive properties [47]. To enhance β-TCP’s osteoinductive ability, metal ions
like Sr2+ [48], Cu2+ [49], Mg2+ [50], Mn2+ [51,52], Fe2+ [53], and Zn2+ [54] are incorporated,
typically by substituting Ca2+ ions. These essential ions have been shown to enhance
the biological performance of β-TCP, promoting osteo- and angiogenesis. Additionally,
copper (Cu2+) [49], manganese (Mn2+) [51], iron (Fe2+) [53], and zinc (Zn2+) [54] exhibit
antimicrobial properties, further bolstering the potential of these coatings in biomedical
applications. In particular, copper is known to exert its antimicrobial effect by damaging
the cell membrane and inducing the production of reactive oxygen species (ROS) that can,
in turn, harm proteins, lipids, and DNA. Additionally, Cu can bind to bacterial enzymes,
impairing their functions and preventing bacterial growth and replication [55,56].

Co-substituted β-TCP-based phosphates with Cu2+/Zn2+, Cu2+/Sr2+, and Sr2+/Mn2+

ion pairs were reported in [57]. In the same study, their antibacterial properties were evalu-
ated. The results obtained demonstrated that all synthesized phases exhibit antibacterial
effects. Notably, experiments using β-TCP-Cu+Sr, which had the highest concentration of
Cu2+ ions among all samples studied and occupied separate crystal sites, showed minimal
bacterial and fungal growth. It was concluded that the active dopant ions must be located
in different crystal sites to provide higher antimicrobial activity.

It is important to highlight that implant-related infections continue to be a leading
cause of implant failure, resulting in significant economic and social burdens [58,59].
Preventing biomaterial-associated infections requires targeted strategies aimed at inhibiting
bacterial adhesion and biofilm formation. Alarmingly high rates of septic complications,
particularly in high-risk patients and procedures, have been documented [60,61].
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Microorganisms such as Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P.
aeruginosa), Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Candida albicans (C.
albicans) are commonly found in hospital environments [62,63]. In particular, S. aureus is
typically present on the skin and in the nostrils, posing a risk of contamination to surgical
and medical instruments, and is a leading cause of nosocomial infections. P. aeruginosa
is present in moist environments, such as sinks, antiseptic solutions, etc. E. coli and E.
faecalis are primarily found in the intestinal and urinary tracts and can contaminate surgical
surfaces and instruments. Meanwhile, C. albicans is frequently present on the skin and
mucous membranes, also posing a contamination risk to medical instruments.

To render implant surfaces antibacterial and mitigate infection risks, coating them with
materials possessing antibacterial properties is a viable approach. Among these materials
are calcium phosphates substituted with ions, like copper (Cu), manganese (Mn), iron (Fe),
and zinc (Zn).

In the present study, for the first time, Zn-Li biodegradable alloy was coated with
double doped Sr and Cu resorbable tricalcium phosphate to address the clinical needs for
biodegradable implant materials as an alternative to traditional titanium and stainless-steel
implants. The alloy was coated by Pulsed Laser Deposition (PLD) to ensure a uniform and
well-adhered coating, which is important for the performance and longevity of the implants.
Coatings characterization was performed using X-ray Diffraction (XRD), Fourier Transform
Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), and Scanning Electron
Microscopy (SEM) coupled with Energy Dispersive X-ray (EDX). Microbiological tests were
conducted on coated Zn-Li alloy samples, targeting gram-positive bacteria strains such as
S. aureus and E. faecalis and gram-negative strains including P. aeruginosa and E. coli, as well
as C. albicans fungus.

2. Materials and Methods
2.1. Zn-Li Alloy Preparation

Zn-0.4 wt% Li alloy was synthesized from a Zn (99.99%) and Zn-Li master alloy (6 wt%
Li) ingot from the Hunan Rare Earth Metal Material Research Institute (Changsha, China).
For casting, a cast iron mould with ZnO coating was applied. The obtained ingot was
homogenized at 350 ◦C for 48 h, followed by water quenching. Then, it was deformed by
hot extrusion at 260 ◦C with an extrusion ratio of 36:1 at 1 mm/s. The obtained samples
were cut perpendicular to the extrusion direction, resulting in the following geometry:
diameter of 10 mm and a thickness of 3 mm. All the prepared samples were ground
to 2000 grit with SiC and then ultrasonically cleaned in acetone, absolute ethanol, and
distilled water.

2.2. Synthesis of Bulk Target Material—Double Substituted Sr- and Cu- Tricalcium
Phosphate (SrCu-TCP)

(Strontium and Copper)-containing TCP bulk material with formula Ca2.5Cu0.25Sr0.25(PO4)2
was synthesized using the method of mechanochemical activation. The weights of the
initial reagents were calculated according to reaction (1):

2.5Ca(NO3)2 + 2(NH4)2HPO4 + 0.25Cu(NO3)2 + 0.25Sr(NO3)2 + 2NH4OH →
Ca2.5Sr0.25Cu0.25(PO4)2 + 6NH4NO3 + 2H2O

(1)

To begin, 14.00 g CaO, 5.29 g Sr(NO3)2, 6.04 g Cu(NO3)2·3H2O, and 26.41 g (NH4)2HPO4
were placed into the Teflon container with 250 g zirconia balls and activation was carried
out in a planetary mill (material: balls ratio of 1:3). The rotation speed was set at 200 rpm
for 30 min, after which 200 mL of distilled water was added to the container and grinding
was then continued for 30 min. Immediately after the grinding, the resulting precipitate
was filtered out on a Buchner funnel and dried at 105 ◦C until completely dry. After that,
the (copper and strontium)-substituted TCP was calcined at 400 ◦C for 1 h to remove the
reaction by-products (ammonium nitrate and water). From the so-obtained powders, disks
with a diameter of 15 mm were pressed by the method of uniaxial pressing at a specific
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pressure of 200 kg/cm2. After that, the disks were sintered in a chamber furnace with silite
heaters at 1200 ◦C for 2 h.

The weight% of Sr and Cu was calculated as follows:

Ca2.5Sr0.25Cu0.25(PO4)2 Mr = 2.5 × 40.08 + 0.25 × 87.62 + 0.25 × 63.55 + (30.97 + 16.00 × 4) × 2 = 327.94 (2)

wt% Sr = 87.62 × 0.25 × 100/327.94 = 6.68 (3)

wt% Cu = 63.55 × 0.25 × 100/327.94 = 4.84 (4)

The content of Sr and Cu in the prepared ceramic targets was determined using atomic
absorption spectroscopy on an atomic absorption spectrometer (AAS) manufactured by
Thermo Fisher Scientific (Madison, WI, USA), model iCE 3000.

2.3. Pulsed Laser Deposition of Coatings

For thin film deposition, the nanosecond PLD technique supplied with nanosecond
Nd:YAG laser source (λ = 532 nm, 10 Hz, 7 ns) was applied. SrCu-TCP discs of 1 cm
diameter were applied as targets. The ablation and deposition experiments were carried
out in a stainless-steel chamber equipped with a scroll-turbomolecular vacuum system.
Films were grown on Zn-Li and monocrystalline Si(100), the latter being necessary for
coatings’ FTIR and XRD characterizations. Depositions were performed at a laser fluence of
12 J/cm2 (250 mW) and a pressure of 10−4 Pa for 2 h, with the target substrate distance fixed
at 1 cm. The laser beam was incident at an angle of 45◦ on the target surface and focused
by a 35 cm focus lens. All the films were deposited at room temperature of substrate. The
disc target was fixed in a rotating holder in order to minimize the laser craterisation effect.

2.4. Physico-Chemical Characterization of Coatings

For XRD, a Siemens 5000D (Bruker, Billerica, MA, USA), operating at 40 kV and 32 mA
and using CuKα radiation (λ = 1.5405600 Å, 2θ = 10◦–60◦, step size 0.040◦, time per step
4 s), was employed.

FTIR spectra were acquired by a Jasco 460Plus interferometer (Jasco, Tokyo, Japan). For
each sample, 100 spectra were collected at resolution of 4 cm−1 in the 4000–400 cm−1 range.

AFM measurements were performed using a Bruker Dimension Icon system equipped
with a Nanoscope V controller. AFM images were acquired in tapping mode, using n-doped
Si probes (Bruker RTESP300) with a resonant frequency of 300 kHz at a scan rate 0.3–1 Hz.
The scanned areas were from 1 × 1 µm2 to 10 × 10 µm2. Different regions were scanned
for each sample.

Morphological characterization and cross-section were made by means of an FE-SEM
(Auriga-Zeiss, Oberkochen, Germany) equipped with an EDS analyzer (Bruker).

2.5. Microbiology Tests

The antimicrobial activity of pure TCP and SrCu-TCP coatings on Zn-Li substrates
was assessed. The samples were autoclaved at 121 ◦C for 20 min at a pressure of 1.1 bar
and then immersed in BHI broth (Brain Heart Infusion, DIFCO, Sparks, NV, USA). Five
different microorganisms were used: four bacteria (S. aureus, P. aeruginosa, E. coli, and
E. faecalis) and one fungus (C. albicans). The microorganisms were cultured under slow
agitation, with bacteria at 37 ◦C and the fungus at 24 ◦C. The positive control for each test
consisted of the growth of each individual microorganism alone. After 24 h, the growth
of the microorganisms was assessed by measuring the OD600 nm of the growth medium
using a D30 Biophotometer (Eppendorf, Hamburg, Germany).

2.6. Statistical Analysis

The antimicrobial activity experiment was performed in triplicate. Microorganisms’
growth was quantified as the mean O.D 600 ± standard deviation (S.D.) and analysed using
the non-parametric Dunnett test for multiple comparisons (SAS JMP Statistical Discovery
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software v14 pro, Milan, Italy). p values of ≤0.05, ≤0.01, and ≤0.001 were considered
statistically significant, as indicated in the figure legends.

3. Results and Discussion

The coatings were initially deposited on Si(100) substrates to enable more accurate
characterization by XRD and FTIR, excluding any interference from the Zn-Li alloy sub-
strate. Additionally, non-substituted tricalcium phosphate (β-TCP) coatings were deposited
alongside SrCu-TCP coatings for comparative analysis.

Figure 1 illustrates the XRD diffraction pattern of the TCP coating and its correspond-
ing target material, as well as the SrCu-TCP coating and its corresponding target material.
As evident from the diffraction patterns, both coatings exhibit an amorphous background,
indicating their partial crystallinity.
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Figure 1. XRD patterns of (a) TCP coating deposited on Si substrate and corresponding target material,
(b) SrCu-TCP coating deposited on Si substrate and corresponding target material.

Table 1 presents the 2θ position values of the most intense 21 peaks for both β-TCP
and SrCu-TCP targets derived from their respective XRD patterns. The table also includes
the shift position (∆2θ) in degrees, calculated by subtracting the SrCu-TCP and β-TCP 2θ
peak centre values. Additionally, the hkl Miller Index and the relative intensity (R.I.%) of
each reflection are provided [64].

Table 1. The shifts for the main Bragg reflections of β-TCP and of double substituted SrCu-TCP.

Peak Number β-TCP 2θ Peak
Position (◦)

SrCu-TCP 2θ Peak
Position (◦) ∆2θ hkl Miller Index [64] R.I.%

1 13.52 13.56 0.04 1 0 4 16
2 16.88 16.92 0.04 1 1 0 20
3 21.76 21.80 0.04 0 2 4 16
4 25.68 25.68 0.00 1 0 10 25
5 26.40 26.52 0.12 1 2 2 10
6 27.72 27.80 0.08 2 1 4 55
7 29.56 29.68 0.12 3 0 0 16
8 30.96 31.00 0.04 0 2 10 100
9 32.36 32.48 0.12 1 2 8 20

10 34.28 34.44 0.16 2 2 0 65
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Table 1. Cont.

Peak Number β-TCP 2θ Peak
Position (◦)

SrCu-TCP 2θ Peak
Position (◦) ∆2θ hkl Miller Index [64] R.I.%

11 35.04 35.22 0.18 2 2 3 8
12 35.52 35.60 0.08 2 1 10 12
13 37.24 37.40 0.16 1 2 11 10
14 39.76 39.76 0.00 1 0 16 10
15 41.00 41.18 0.18 4 0 4 14
16 41.60 41.68 0.08 3 0 12 12
17 46.88 47.08 0.20 4 0 10 20
18 47.88 48.12 0.24 2 3 8 16
19 48.28 48.52 0.24 4 1 6 14
20 52.92 52.92 0.00 2 0 20 25
21 59.48 59.68 0.20 5 1 7 12

Observing the calculated shift position values (∆2θ column), it can be inferred that
nearly all Bragg reflections of the SrCu-TCP target are shifted toward higher angles, with
∆2θ values ranging from 0◦ to 0.24◦. This suggests that the SrCu-TCP lattice generally
exhibits shorter planar distances. Notably, lattice planes with Miller indexes h = 1, k = 0,
and l with relatively high values (10, 16) (peak numbers 4, 14, 20) remain unaffected by any
angular shift, demonstrating a calculated ∆2θ of 0◦.

In Figure 2, the FTIR patterns collected from β-TCP and SrCu-TCP targets (A) and
coatings (B), respectively, are presented. Within the main plot of each pattern, an inset
showing the spectral window ranging from 500 to 1500 cm−1 is presented, where the most
prominent bands are highlighted.
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Figure 2. FTIR spectra collected on TCP and SrCu-TCP compositions as targets (A) and coatings
deposited on Si substrate (B). The 500–1500 cm−1 spectral window is highlighted. The centre
position of the most significant bands is evidenced by a straight black line (TCP) and a dashed red
line (SrCu-TCP).

Figure 2A shows a general decreased degeneracy relative to the SrCu-TCP pattern
compared to pure TCP. This difference is particularly evident for the IR absorption bands at
945–1087 cm−1, attributable to the ν1 and ν3 modes of the PO4

3− group, respectively [65,66].
Furthermore, the presence of Cu and Sr ions within the TCP matrix induced a shift in the
position of all the observed main bands, as evidenced by the black straight line (TCP) and
red dashed line (SrCu-TCP), allowing for the appreciation of the displacement in positions.
The specific value for each band shift is reported in Table 2.



Coatings 2024, 14, 1073 7 of 15

Table 2. FTIR band positions and band shifts for TCP and SrCu-TCP targets.

Mode TCP Target (cm−1) SrCu-TCP Target (cm−1) Band Shift (cm−1)

ν3 1120 1125 5
ν1 1042 1027 −15
ν4 605 590 15
ν4 549 554 −6

In Figure 2B, the patterns collected from TCP and SrCu-TCP coatings are reported
and compared. It is possible to observe that the shape of the bands differs from those in
the targets’ IR spectra. In particular, both coatings’ FTIR patterns exhibit narrower bands
compared to those of the targets. Similar to what was observed for the targets, the presence
of Sr and Cu in the TCP coating induced a variation in degeneracy, particularly evident
for the bands at 557–604 cm−1, (the ν4 mode of the PO4

3− group) [66,67] where two sharp
bands characterize the SrCu-TCP coating pattern. Finally, no significant shift was detectable
from the comparison of pure TCP and SrCu-TCP coatings bands relative to the ν1 mode of
the PO4

3−. For both compositions, the band is centred at around 1038 cm−1.
In Figure 3, typical 2D and 3D topographies of Zn-Li alloy, TCP coatings, and SrCu-

TCP coatings on Zn-Li alloys are shown. Due to the deposition of particles of different
sizes, it was observed that the surface of the Zn-Li sample is smoother than the others
due to the absence of the coating. After coating, the average roughness of the TCP sample
increases from 91.8 ± 29.4 to 481.0 ± 136.4 nm. Furthermore, it was found that the
coating incorporated with Sr and Cu showed a further increase in roughness, reaching
651.5 ± 179.5 nm.
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Figure 3. AFM 2D and 3D images of Zn-Li substrate and TCP and SrCu-TCP coatings on Zn-Li
substrate.

The morphology of the SrCu-TCP coating on the Zn-Li substrate exhibits the typical
characteristics observed in Pulsed Laser Deposited films, featuring droplets of varying
sizes dispersed within a compact matrix. SEM images in Figure 4 demonstrate the compact
globular morphology of the deposited SrCu-TCP coatings.
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To assess the thickness of the deposited coatings, cross-section SEM images were
acquired. As depicted in the SEM images shown in Figure 5, the coatings exhibit a thickness
within the range of a few micrometres, specifically 3–3.5 µm.
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SEM-EDX measurements were conducted to analyse the composition of the coatings,
with the results presented in Figure 6 and Table 3. The data indicate that the coatings
contain approximately 4.10 ± 0.18 wt% of Cu and 6.54 ± 0.33 wt% of Sr. Additionally, a
minor amount of Zn is detected, originating from the Zn-Li substrate.
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Figure 6. SEM-EDX spectrum of SrCu-TCP coating on Zn-Li substrate.

Table 3. Sr and Cu content in targets and deposited SrCu-TCP coatings.

Sr, wt% Cu, wt%

EDX
(Coatings) AAS (Targets)

Theoretical Value, in
Ca2.5Sr0.25Cu0.25(PO4)2

Powder

EDX
(Coatings) AAS (Targets)

Theoretical Value, in
Ca2.5Sr0.25Cu0.25(PO4)2

Powder

6.54 ± 0.33 6.68 ± 0.05 6.71 4.10 ± 0.18 4.78 ± 0.05 4.84

The results related to the growth of microorganisms (S. aureus, P. aeruginosa, E. coli,
E. faecalis, and C. albicans) in the presence and absence of SrCu-TCP coatings on Zn-Li



Coatings 2024, 14, 1073 10 of 15

alloys are reported in Table 4 and illustrated in Figure 7. The data provided in the table
include the mean OD600 values, standard deviations (SD), percentage of growth, and
percentage of growth inhibition derived from three independent experiments. The growth
of each organism was assessed after 24 h of incubation at their respective optimal growth
temperatures. The microorganisms cultured alone (without the coated substrates) served
as the positive control of the experiment (CTR+).
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Figure 7. Growth rate of S. aureus, P. aeruginosa, E. coli, and E. faecalis bacteria strains and C. albicans
fungus grown in the presence of control sample and TCP and SrCu-TPC coatings on Zn-Li alloy
substrate. The growth percentage is calculated on the OD600 resulting from three independent
experiments and presented as mean values ± standard deviation (SD), compared to the values
of the positive control corresponding to 100%. p values (Dunnett test): p < 0.001 *** compared to
positive control.
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Table 4. Growth rate of bacteria (S. aureus, P. aeruginosa, E. coli and E. faecalis) and a fungus (C. albicans)
grown in the presence of control sample, TCP, and SrCu-TPC coatings on Zn-Li alloy substrate. The
growth percentage was calculated on the OD600 resulting from three independent experiments and
presented as mean values ± standard deviation (SD).

OD 600 nm SD % Growth % Inhibition

S. aureus
CTR+ 1.009 0.03 100.0 0.0
TCP 0.980 0.05 97.1 2.9

SrCu-TCP 0.695 0.04 68.9 31.1

P. aeruginosa
CTR+ 0.984 0.03 100.0 0.0
TCP 0.983 0.09 99.9 0.1

SrCu-TCP 0.753 0.08 76.5 23.5

E. coli
CTR+ 1.204 0.17 100.0 0.0
TCP 1.179 0.11 97.9 2.1

SrCu-TCP 0.858 0.21 71.3 28.7

E. faecalis
CTR+ 0.995 0.17 100.0 0.0
TCP 0.973 0.07 97.8 2.2

SrCu-TCP 0.643 0.21 64.7 35.3

C. albicans
CTR+ 0.810 0.15 100.0 0.0
TCP 0.792 0.09 97.8 2.2

SrCu-TCP 0.611 0.12 75.4 24.6

The growth of all microorganisms on TCP is statistically comparable to the growth
of the positive control (without samples). Statistically significant growth inhibition was
observed in all tested microorganisms when grown in the presence of SrCu-TPC. In par-
ticular, the inhibition of the growth of microorganisms is 31.1% for S. aureus, 23.5% for P.
aeruginosa, 28.7% for E. coli, 35.3% for E. faecalis, and 24.6% for C. albicans.

In contrast, our previous study [57], focused on double-substituted tricalcium phos-
phate powder—SrCu-TCP, revealed notably higher growth inhibition rates. The SrCu-TCP
powder exhibited a remarkable inhibition of growth, reaching 92.0%, 95.5%, 64.9%, 96.3%,
and 70.9% against S. aureus, P. aeruginosa, E. coli, E. faecalis, and C. albicans, respectively.
Such a considerable difference could potentially be attributed to the reduced amount of
material present in the coating.

In our previous study [44], focusing on double-substituted tricalcium phosphate
coatings applied to the same Zn-Li alloys but containing Strontium and Manganese
substitution—SrMn-TCP, the inhibition of 12.2% of S. aureus, 9.4% of P. aeruginosa, and
9.0% of E. coli, 9.7% of E. faecalis was registered. The SrMn-TCP-coated Zn-Li alloys were
effective in inhibiting the growth of fungus C. albicans, achieving approximately a 50%
inhibition rate.

Also in this case, for SrMn-TCP powder [57], a higher inhibition growth was registered
compared to the coatings. Indeed, SrMn-TCP powder demonstrated a substantial inhibition
of growth, with rates of 57.8% for S. aureus, 92.9% for P. aeruginosa, 19% for E. coli, 67.4% for
E. faecalis, and 41.9% for C. albicans.

Table 5 below summarizes the results on microorganisms’ inhibition obtained in the
present study and reported in the cited above literature.
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Table 5. Summary of the results on microbial inhibition obtained in the present study and reported in
the literature.

% Inhibition

Sample S. aureus P. aeruginosa E. coli E. faecalis C. albicans Reference

SrCu-TCP (coating) 31.1 23.5 28.7 35.3 24.6 present study
SrCu-TCP (powder) 92.0 95.5 64.9 96.3 70.9 [57]
SrMn-TCP (coating) 12.2 9.4 9.0 9.7 50.0 [44]
SrMn-TCP (powder) 57.8 92.9 19.0 67.4 41.9 [57]

4. Conclusions

Partially-crystalline SrCu-TCP coatings were deposited by Pulsed Laser Deposition
technique onto the Zn-Li alloy substrates. The composition analysis revealed approximately
6.5 wt% Sr and 4.1 wt% Cu within the coatings. The incorporation of Sr and Cu into the
crystal lattice was evidenced by observed shifts in diffraction peaks and IR bands.

Morphological examination exhibited compact micro-globular structures in the coat-
ings. The average surface roughness of the TCP coating was measured at 481.0 ± 136.4 nm,
while the SrCu-TCP coating exhibited a further increase, reaching 651.5 ± 179.5 nm. The
thickness of the coatings, determined by SEM, ranged between 3–3.5 µm.

Our study showed statistically significant inhibition of the growth in all tested mi-
croorganisms in the presence of SrCu-TCP coatings, while microorganisms cultured solely
on TCP coatings did not exhibit significant growth inhibition.

The SrCu-TCP surface demonstrated good antimicrobial efficacy, achieving inhibition
of the growth ranging between 23.5% and 35.3%. Specifically, for S. aureus, the inhibition
was at 31.1%, for P. aeruginosa at 23.5%, for E. coli at 28.7%, for E. faecalis at 35.3%, and for C.
albicans at 24.6%. These results highlight the antimicrobial characteristics of the SrCu-TCP
surface on Zn-Li alloy, making it a promising candidate for applications requiring inhibition
of both bacterial and fungal growth.
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