Wear Mechanism of an AlCrN-Coated Solid Carbide Endmill Cutter and Machined Surface Quality under Eco-Friendly Settings during Open Slot Milling of Tempered JIS SKD11 Steel
Abstract
:1. Introduction
2. Materials, Cutters, Machine, and Methodology for the Probing Trials
2.1. Trial Preparation
2.2. Thermal and Lubricant Mediums
2.2.1. Dry Medium
2.2.2. Minimum Quantity Lubrication Medium
2.2.3. Cryogenic Cooling Medium with Liquid Nitrogen (LN2)
2.2.4. Cryogenic Cooling Medium with Liquid Carbon Dioxide (LCO2)
2.2.5. Input Variables and Levels for the Probing Trials
2.3. Techniques for Measuring the Output Responses
3. Results and Discussion
3.1. Dissection of Cutting Temperature
3.2. Tool Degradation Patterns
3.3. Surface Finish Quality
3.4. Microhardness (HV)
4. Conclusions
5. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Astakhov, V.P.; Davim, J.P. Machining of Hard Materials; Springer: London, UK, 2011; ISBN 978-1-84996-449-4. [Google Scholar]
- Nakayama, K.; Arai, M.; Kanda, T. Machining Characteristics of Hard Materials. CIRP Ann. 1988, 37, 89–92. [Google Scholar] [CrossRef]
- Koshy, P.; Dewes, R.C.; Aspinwall, D.K. High speed end milling of hardened AISI D2 tool steel (~58 HRC). J. Mater. Process. Technol. 2002, 127, 266–273. [Google Scholar] [CrossRef]
- Coldwell, H.; Woods, R.; Paul, M.; Koshy, P.; Dewes, R.; Aspinwall, D. Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J. Mater. Process. Technol. 2003, 135, 301–311. [Google Scholar] [CrossRef]
- Davim, J.P.; Figueira, L. Comparative evaluation of conventional and wiper ceramic tools on cutting forces, surface roughness, and tool wear in hard turning AISI D2 steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2007, 221, 625–633. [Google Scholar] [CrossRef]
- Tönshoff, H.K.; Arendt, C.; Amor, R.B. Cutting of Hardened Steel. CIRP Ann. 2000, 49, 547–566. [Google Scholar] [CrossRef]
- Gaitonde, V.N.; Karnik, S.R.; Figueira, L.; Davim, J.P. Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. Int. J. Refract. Met. Hard Mater. 2009, 27, 754–763. [Google Scholar] [CrossRef]
- Gaitonde, V.N.; Karnik, S.R.; Maciel, C.H.A.; Rubio, J.C.C.A.; Abrao, A.M. Machinability Evaluation in Hard Milling of AISI D2 Steel. Mater. Res. 2016, 19, 360–369. [Google Scholar] [CrossRef]
- Lima, J.G.; Avila, R.F.; Abrao, A.M.; Faustino, M.; Davim, J.P. Hard turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. J. Mater. Process. Technol. 2005, 169, 388–395. [Google Scholar] [CrossRef]
- Kang, M.C.; Kim, K.H.; Shin, S.H.; Jang, S.H.; Park, J.H.; Kim, C. Effect of the minimum quantity lubrication in high-speed end-milling of AISI D2 cold-worked die steel (62 HRC) by coated carbide tools. Surf. Coat. Technol. 2008, 202, 5621–5624. [Google Scholar] [CrossRef]
- Usca, Ü.A.; Uzun, M.; Sap, S.; Giasin, K.; Pimenov, D.Y.; Prakash, C. Determination of machinability metrics of AISI 5140 steel for gear manufacturing using different cooling/lubrication conditions. J. Mater. Res. Technol. 2022, 21, 893–904. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Kovalev, A.; Gershman, I.; Wainstein, D.; Aguirre, M.H.; Covelli, D.; Paiva, J.; Yamamoto, K.; Vedhuis, S. Complex Behavior of Nano-Scale Tribo-Ceramic Films in Adaptive PVD Coatings under Extreme Tribological Conditions. Entropy 2018, 20, 989. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, J.P.; Koshy, P.; Dewes, R.C.; Aspinwall, D.K. High speed mchining of moulds and dies for net shape manufacture. Mater. Des. 2000, 21, 395–402. [Google Scholar] [CrossRef]
- Sebbe, N.P.V.; Fernandes, F.; Silva, F.J.G.; Pedroso, A.F.V.; Sales-Contini, R.C.M.; Barbosa, M.L.; Durao, L.M.; Magalhaes, L.L. Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718. Coatings 2024, 14, 311. [Google Scholar] [CrossRef]
- Khetre, S.; Bongale, A.; Kumar, S.; Ramesh, B.T. Temperature Analysis in Cubic Boron Nitrate Cutting Tool during Minimum Quantity Lubrication Turning with a Coconut-Oil-Based Nano-Cutting Fluid Using Computational Fluid Dynamics. Coatings 2024, 14, 340. [Google Scholar] [CrossRef]
- Chauhan, D.; Makhesana, M.A.; Rahman, R.R.A.; Joshi, V.; Khanna, N. Comparison of Machining Performance of Ti-6Al-4V under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption. Lubricants 2023, 11, 493. [Google Scholar] [CrossRef]
- Gong, L.; Su, L.; Liu, Y.; Zhao, W.; Khan, A.M.; Jamil, M. Investigation on Machinability Characteristics of Inconel 718 Alloy in Cryogenic Machining Processes. Lubricants 2023, 11, 82. [Google Scholar] [CrossRef]
- Şap, S.; Usca, U.A.; Uzun, M.; Kuntoglu, M.; Salur, E.; Pimenov, D.Y. Investigation of the Effects of Cooling and Lubricating Strategies on Tribological Characteristics in Machining of Hybrid Composites. Lubricants 2022, 10, 63. [Google Scholar] [CrossRef]
- Fernández, D.; Sandá, A.; Bengoetxea, I. Cryogenic Milling: Study of the Effect of CO2 Cooling on Tool Wear When Machining Inconel 718, Grade EA1N Steel and Gamma TiAl. Lubricants 2019, 7, 10. [Google Scholar] [CrossRef]
- Kaynak, Y.; Gharibi, A. Progressive Tool Wear in Cryogenic Machining: The Effect of Liquid Nitrogen and Carbon Dioxide. J. Manuf. Mater. Process. 2018, 2, 31. [Google Scholar] [CrossRef]
- Dai, X.; Zhuang, K.; Pu, D.; Zhang, W.; Ding, H. An Investigation of the Work Hardening Behavior in Interrupted Cutting Inconel 718 under Cryogenic Conditions. Materials 2020, 13, 2202. [Google Scholar] [CrossRef]
- Muhamad, S.S.; Ghani, J.A.; Haron, C.H.C.; Yazid, H. Wear Mechanism of Multilayer Coated Carbide Cutting Tool in the Milling Process of AISI 4340 under Cryogenic Environment. Materials 2022, 15, 524. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, D.; Kovalev, A. Tribooxidation as a Way to Improve the Wear Resistance of Cutting Tools. Coatings 2018, 8, 223. [Google Scholar] [CrossRef]
- Iqbal, A.; Suhaimi, H.; Zhao, W.; Jamil, M.; Nauman, M.M.; He, N.; Zaini, J. Sustainable Milling of Ti-6Al-4V: Investigating the Effects of Milling Orientation, Cutter′s Helix Angle, and Type of Cryogenic Coolant. Metals 2020, 10, 258. [Google Scholar] [CrossRef]
- Shah, P.; Khanna, N. Comprehensive machining analysis to establish cryogenic LN2 and LCO2 as sustainable cooling and lubrication techniques. Tribol. Int. 2020, 148, 106314. [Google Scholar] [CrossRef]
- Danish, M.; Gupta, M.K.; Rubaiee, S.; Ahmed, A.; Korkmaz, M.E. Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718. Tribol. Int. 2021, 163, 107178. [Google Scholar] [CrossRef]
- Danish, M.; Rubaiee, S.; Gupta, M.K.; Yildirim, M.B.; Ahmed, A. Technological and tribological characteristics improvement of additively manufactured SS 316L components machined under sustainable cooling conditions. Tribol. Int. 2023, 181, 108329. [Google Scholar] [CrossRef]
- ISO 3685:1993; Tool-Life Testing with Single-Point Turning Tools. ISO: Geneva, Switzerland, 1993.
- Umbrello, D.; Micari, F.; Jawahir, I.S. The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining. CIRP Ann. 2012, 61, 103–106. [Google Scholar] [CrossRef]
- Abu Bakar, H.N.; Ghani, J.A.; Haron, C.H.C.; Ghazali, M.J.; Kasim, M.S.; Al-Zubaidi, S.; Jouini, N. Wear mechanisms of solid carbide cutting tools in dry and cryogenic machining of AISI H13 steel with varying cutting-edge radius. Wear 2023, 523, 204758. [Google Scholar] [CrossRef]
- Pereira, O.; Rodriguez, A.; Fenandes-Abia, A.I.; Barreiro, J.; Lopez de Lacalle, L.N. Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J. Clean. Prod. 2016, 139, 440–449. [Google Scholar] [CrossRef]
- Chetan; Ghosh, S.; Rao, P.V. Comparison between sustainable cryogenic techniques and nano-MQL cooling mode in turning of nickel-based alloy. J. Clean. Prod. 2019, 231, 1036–1049. [Google Scholar] [CrossRef]
- Albertelli, P.; Strano, M.; Monno, M. Simulation of the effects of cryogenic liquid nitrogen jets in Ti6Al4V milling. J. Manuf. Process. 2023, 85, 323–344. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Yan, P.; Zhou, T.; Jiao, L.; Teng, L.; Zhao, B. The effects of cryogenic cooling on tool wear and chip morphology in turning of tantalum-tungsten alloys Ta-2.5W. J. Manuf. Process. 2023, 86, 152–162. [Google Scholar] [CrossRef]
- Wu, S.; Liu, G.; Zhang, W.; Chen, W.; Wang, C. High-speed milling of hardened steel under minimal quantity lubrication with liquid nitrogen. J. Manuf. Process. 2023, 95, 351–368. [Google Scholar] [CrossRef]
- Llanos, I.; Urresti, I.; Bilbatua, D.; Zelaieta, O. Cryogenic CO2 assisted hard turning of AISI 52100 with robust CO2 delivery. J. Manuf. Process. 2023, 98, 254–264. [Google Scholar] [CrossRef]
- Iqbal, A.; Saelzer, J.; Abu Bakar, M.S.; Biermann, D.; Khan, A.M.; Sicking, M.; Nauman, M.M. Side-milling of Incoloy 825 under pulsed and continuous modes of cryogenic cooling. J. Manuf. Process. 2023, 104, 246–256. [Google Scholar] [CrossRef]
- Wu, J.; He, L.; Wu, Y.; Zhou, C.; Zou, Z.; Zhan, G.; Zhou, T.; Du, F.; Tian, P.; Zou, Z.; et al. Enhancing Wear Resistance and Cutting Performance of a Long-Life Micro-Groove Tool in Turning AISI 201. Coatings 2021, 11, 1515. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Beake, B.D.; Yamamoto, K.; Aguirre, M.H.; Aguirre, M.H.; Veldhuis, S.C.; Dosbaeva, D.; Elfizy, A.; Biksa, A.; Shuster, L.S. Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys. Surf. Coat. Technol. 2010, 204, 3698–3706. [Google Scholar] [CrossRef]
- Liu, W.; Chu, Q.; Zeng, J.; He, R.; Wu, H.; Wu, Z.; Wu, S. PVD-CrAlN and TiAlN coated Si3N4 ceramic cutting tools—1. Microstructure, turning performance and wear mechanism. Ceram. Int. 2017, 43, 8999–9004. [Google Scholar] [CrossRef]
- Mo, J.L.; Zhu, M.H.; Leyland, A.; Matthews, A. Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surf. Coat. Technol. 2013, 215, 170–177. [Google Scholar] [CrossRef]
- Jawaid, A.; Sharif, S.; Koksal, S. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy. J. Mater. Process. Technol. 2000, 99, 266–274. [Google Scholar] [CrossRef]
- Liu, G.; Huang, C.; Wang, X.; Zhao, B.; Ji, M. Friction and Wear of Cutting Tools and Cutting Tool Materials. Lubricants 2024, 12, 192. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Pan, D.; Niu, J.; Fu, X.; Qiao, Y. Tool Wear and Surface Integrity of γ-TiAl Cryogenic Coolant Machining at Various Cutting Speed Levels. Lubricants 2023, 11, 238. [Google Scholar] [CrossRef]
- Khanna, N.; Shah, P.; Lopez de Lacalle, L.N.; Rodriguez, A.; Pereira, O. In pursuit of sustainable cutting fluid strategy for machining Ti-6Al-4V using life cycle analysis. Sustain. Mater. Technol. 2021, 29, e00301. [Google Scholar] [CrossRef]
- Ross, N.S.; Ganesh, M.; Srinivasan, D.; Gupta, M.K.; Korkmaz, M.E.; Korlczyk, J.B. Role of sustainable cooling/lubrication conditions in improving the tribological and machining characteristics of Monel-400 alloy. Tribol. Int. 2022, 176, 107880. [Google Scholar] [CrossRef]
- Khanna, N.; Agrawal, C.; Pimenov, D.Y.; Singla, A.K.; Machado, A.R.; Ribeiro da Silva, L.R.; Gupta, M.K.; Sarikaya, M.; Krolczyk, G.M. Review on design and development of cryogenic machining setups for heat resistant alloys and composites. J. Manuf. Process. 2021, 68, 398–422. [Google Scholar] [CrossRef]
- ISO 1997:2018; Granulated Cork and Cork Powder—Classification, Properties and Packing. ISO: Geneva, Switzerland, 2018.
- ISO 8688–2:1989; Tool Life Testing in Milling—Part 2: End Milling. ISO: Geneva, Switzerland, 1989.
Input Variables | Details |
---|---|
Workpiece material | JIS SKD11, HRC 58–60, 200 × 60 × 20 mm |
Cutter | PVD coated solid carbide endmill with an AlCrN coating, 554100Z4.0-SIRON-A, SECO TOOLS |
Cutting speed (m/min) | 80, 100 m/min |
Cutting feed (mm/min) | 204, 318.5 mm/min |
Depth of cut (mm) | 0.1 mm |
Machining medium | Dry, MQL, cryogenic cooling with liquid nitrogen (LN2), cryogenic cooling with liquid carbon dioxide (LCO2) |
Machining dimensions of an open slot milling operation (mm) | 200 × 50 × 0.3 mm |
No. | Cutting Speed (m/min) | Cutting Feed (mm/min) | Machining Medium |
---|---|---|---|
1 | 80 | 204 | Dry |
2 | 80 | 318.5 | Dry |
3 | 100 | 204 | Dry |
4 | 100 | 318.5 | Dry |
5 | 80 | 204 | MQL |
6 | 80 | 318.5 | MQL |
7 | 100 | 204 | MQL |
8 | 100 | 318.5 | MQL |
9 | 80 | 204 | Cryogenic cooling with liquid nitrogen (LN2) |
10 | 80 | 318.5 | Cryogenic cooling with liquid nitrogen (LN2) |
11 | 100 | 204 | Cryogenic cooling with liquid nitrogen (LN2) |
12 | 100 | 318.5 | Cryogenic cooling with liquid nitrogen (LN2) |
13 | 80 | 204 | Cryogenic cooling with liquid carbon dioxide (LCO2) |
14 | 80 | 318.5 | Cryogenic cooling with liquid carbon dioxide (LCO2) |
15 | 100 | 204 | Cryogenic cooling with liquid carbon dioxide (LCO2) |
16 | 100 | 318.5 | Cryogenic cooling with liquid carbon dioxide (LCO2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trung, L.C.; Phuc, T.T. Wear Mechanism of an AlCrN-Coated Solid Carbide Endmill Cutter and Machined Surface Quality under Eco-Friendly Settings during Open Slot Milling of Tempered JIS SKD11 Steel. Coatings 2024, 14, 923. https://doi.org/10.3390/coatings14080923
Trung LC, Phuc TT. Wear Mechanism of an AlCrN-Coated Solid Carbide Endmill Cutter and Machined Surface Quality under Eco-Friendly Settings during Open Slot Milling of Tempered JIS SKD11 Steel. Coatings. 2024; 14(8):923. https://doi.org/10.3390/coatings14080923
Chicago/Turabian StyleTrung, Ly Chanh, and Tran Thien Phuc. 2024. "Wear Mechanism of an AlCrN-Coated Solid Carbide Endmill Cutter and Machined Surface Quality under Eco-Friendly Settings during Open Slot Milling of Tempered JIS SKD11 Steel" Coatings 14, no. 8: 923. https://doi.org/10.3390/coatings14080923
APA StyleTrung, L. C., & Phuc, T. T. (2024). Wear Mechanism of an AlCrN-Coated Solid Carbide Endmill Cutter and Machined Surface Quality under Eco-Friendly Settings during Open Slot Milling of Tempered JIS SKD11 Steel. Coatings, 14(8), 923. https://doi.org/10.3390/coatings14080923