Chemical and UV Durability of Hydrophobic and Icephobic Surface Layers on Femtosecond Laser Structured Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Laser Processing
2.3. Surface Characterization
2.4. Wettability Acceleration Treatment
2.5. Wettability Properties and De-Icing
2.6. Chemical Durability
2.7. Optical Durability Setup (UV)
3. Results and Discussion
3.1. Surface Structures
- Nanostructures (type 1)—LIPSS: This structure can be described as parallel channels with a sine-wave-like cross-section, a depth of several 10–100 nm, and a spatial period tied to the wavelength of the laser light used to create it [56,57,58]. A FFT of SEM micrographs was used to determine the spatial frequency of the LIPSS. Our case resulted in a mean spatial period of 560 nm, consistent with previous findings for this laser/material combination [59]. Further analysis of these structures using atomic force microscopy (FEI Quanta 250 FEG + GeTEC AFSEM) revealed a vertical depth of 300 nm.
- Microstructures (types 2, 3, and 4)—grid, dimple, and triangle: In contrast to LIPSS, three different microstructures were applied with a laser fluence in the ablation regime of the substrate material. Because of the Gaussian intensity distribution and linear polarization of the used laser beam, the created microstructures are superimposed by LIPSS nanostructures and can be regarded as hierarchical structures. By creating a rough surface, attempts were made to favor the Cassie–Baxter wetting mode, in which vapor is “trapped” under the water fraction in the interface, over the Wenzel wetting mode, in which the entire surface under the liquid is wetted, thereby increasing hydrophobicity [60].
3.2. Acetone Durability
3.3. Ethylene Glycol Solution Durability
3.4. XPS Analysis
3.5. Optical Durability (UV)
3.6. Summary
4. Conclusions
- Increasing the non-polar carbon components on the laser-structured surface leads to a higher static contact angle and lower ice adhesion. This can be achieved by petrol immersion or vacuum treatment.
- The overall carbon content increases with increasing accumulated laser fluence for direct laser-ablated structure types, excluding LIPSS, where the carbon content increased despite the low accumulated laser fluence used.
- The contact angle hysteresis does not directly correlate with the icephobic properties.
- The chemical resistance depends mainly on the type of post-laser treatment and only to a limited extent on the applied structure type.
- Vacuum-treated laser-structured stainless steel surfaces are not permanently durable against ethylene glycol or acetone. They lose their superhydrophobic properties and show increased ice adhesion after 1 h of immersion.
- Re-exposure to vacuum after immersion in acetone can recover the hydrophobic wettability of those surfaces and partially their icephobic properties.
- Petrol-treated laser-structured stainless steel surfaces retain their hydrophobic properties with only minor deterioration after 48 h of immersion in ethylene glycol or acetone, although the ice adhesion increases significantly.
- None of the investigated surfaces are long-term resistant to UV irradiation, although LIPSS nanostructures maintain a hydrophobic wettability after 100 h of exposure.
- LIPSS combined with petrol treatment showed the best results in terms of hydrophobicity, lowered ice adhesion, and durability.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudecz, A.; Koss, H.; Hansen, M.O.L. Ice accretion on wind turbine blades. In Proceedings of the 15th International Workshop Atmospheric Icing of Structures (IWAIS XV), St. John’s, NL, Canada, 8–13 September 2013. [Google Scholar]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Seifert, H.; Wsterhellweg, A.; Kröning, J. Risk Analysis of Ice Throw from Wind Turbines. BOREAS 6, 2003 (Conference Paper, Presented at BOREAS 6, 9 to 11 April 2003, Pyhä, Finland. Available online: https://www.researchgate.net/publication/237537084_Risk_Analysis_of_Ice_Throw_from_Wind_Turbines (accessed on 15 July 2024).
- Wang, K.; Xue, Y.; Tian, H.; Wang, M.; Wang, X. The impact of icing on the airfoil on the lift-drag characteristics and maneuverability characteristics. Math. Probl. Eng. 2021, 16, 5568740. [Google Scholar] [CrossRef]
- Bragg, M.B.; Broeren, A.P.; Blumenthal, L.A. Iced-airfoil aerodynamics. Prog. Aerosp. Sci. 2005, 41, 323–362. [Google Scholar] [CrossRef]
- Hasager, C.B.; Vejen, F.; Skrzypiński, W.R.; Tilg, A.-M. Rain erosion load and its effect on leading-edge lifetime and potential of erosion-safe mode at wind turbines in the north sea and baltic sea. Energies 2021, 14, 1959. [Google Scholar] [CrossRef]
- Han, W.; Kim, J.; Kim, B. Study on correlation between wind turbine performance and ice accretion along a blade tip airfoil using CFD. J. Renew. Sustain. Energy 2018, 10, 023306. [Google Scholar] [CrossRef]
- Kyle, R.; Wang, F.; Forbes, B. The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade. Wind. Energy 2019, 23, 953–966. [Google Scholar] [CrossRef]
- Maissan, J.F. Wind power development in sub-arctic conditions with severe rime icing. In Proceedings of the Circumpolar Climate Change Summit and Exposition, TSYE Corporation: Circumpolar Climate Change Summit, Whitehorse, YT, Canada, 19–21 March 2001. [Google Scholar]
- Battisti, L.; Fedrizzi, R.; Brighenti, A.; Laakso, T. Sea ice and icing risk for offshore wind turbines. In Proceedings of the OWEMES, Citavecchia, Italy, 20–22 April 2006; pp. 20–22. [Google Scholar]
- Fakorede, O.; Feger, Z.; Ibrahim, H.; Ilinca, A.; Perron, J.; Masson, C. Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis. Renew. Sustain. Energy Rev. 2016, 65, 662–675. [Google Scholar] [CrossRef]
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Prog. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Yadav, B. Design and analysis of a new type of aircraft wing leading edge against bird-impact. J. Eng. Sci. 2017, 6, 23–47. [Google Scholar]
- Airbus, S.A.S. Single Aisle, Technical Training Manual, Maintenance Course—T1, Structure; Blagnac, France, 2005. [Google Scholar]
- Özen, I.; Gedikli, H.; Öztürk, B. Improvement of solid particle erosion resistance of helicopter rotor blade with hybrid composite shield. Eng. Fail. Anal. 2021, 121, 105175. [Google Scholar] [CrossRef]
- Edwards, K.L.; Davenport, C. Materials for rotationally dynamic components: Rationale for higher performance rotor-blade design. Mater. Des. 2006, 27, 31–35. [Google Scholar] [CrossRef]
- SAE Standard AS6285E; SAE International Technical Standard, Aircraft Ground Deicing/Anti-Icing Processes, Revised May 2023, Issued August 2016. SAE International: Warrendale, PA, USA, 2023. [CrossRef]
- SAE Standard AMS1424/2A; SAE International Material Specification, Deicing/Anti-Icing Fluid, Aircraft SAE Type I Non-Glycol Based, Revised December 2023, Issued May 2016. SAE International: Warrendale, PA, USA, 2023. [CrossRef]
- ISO Standard 11075:2007; ISO International Standard, Aircraft—De-Icing/Anti-Icing Fluids—ISO Type I. Available online: https://www.iso.org/standard/44185.html (accessed on 15 July 2024).
- SAE Standard AMS1428/1A; SAE International Material Specification, Fluid, Aircraft Deicing/Anti-Icing, Non-Newtonian (Pseudoplastic), SAE Types II, III, and IV Glycol (Conventional and Nonconventional) Based, Revised December 2023, Issued February 2017. SAE International: Warrendale, PA, USA, 2023. [CrossRef]
- ISO Standard 11078:2007; ISO International Standard, Aircraft—De-Icing/Anti-Icing Fluids—ISO Types II, III, IV. Available online: https://www.iso.org/standard/44186.html (accessed on 15 July 2024).
- Bowman, G.; Corsi, S.R.; Ferguson, L.; Geis, S.W.; Gold, H.; Joback, H.; Mericas, D. Alternative Aircraft and Pavement Deicers and Anti-Icing Formulations with Improved Environmental Characteristics; Transportation Research Board: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- Ferrari, M.; Cirisano, F. Superhydrophobic coating solutions for deicing control in aircraft. Appl. Sci. 2023, 13, 11684. [Google Scholar] [CrossRef]
- Hu, H.; Liu, Y.; Gao, L. Wind Turbine Icing Physics and Anti-/De-Icing Technology; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-824532-3. [Google Scholar]
- Volpe, A.; Gaudiuso, C.; Ancona, A. Laser fabrication of anti-icing surfaces: A review. Materials 2020, 13, 5692. [Google Scholar] [CrossRef]
- Lytvynenko, I.V.; Maruschak, P.O. Analysis of the state of the modified nanotitanium surface with the use of the mathematical model of a cyclic random process. Optoelectron. Instrument. Proc. 2015, 51, 254–263. [Google Scholar] [CrossRef]
- Hutsaylyuk, V.; Lytvynenko, I.; Maruschak, P.; Dzyura, V.; Schnell, G.; Seitz, H. A new method for modeling the cyclic structure of the surface microrelief of titanium alloy Ti6Al4V after processing with femtosecond pulses. Materials 2020, 13, 4983. [Google Scholar] [CrossRef]
- Sataeva, N.E.; Boinovich, L.B.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors. Surf. Coat. Technol. 2020, 397, 125993. [Google Scholar] [CrossRef]
- Memon, H.; Wang, J.; Hou, X. Interdependence of surface roughness on icephobic performance: A review. Materials 2023, 16, 4607. [Google Scholar] [CrossRef]
- Fortin, G.; Perron, J. Ice adhesion models to predict shear stress at shedding. J. Adhes. Sci. Technol. 2012, 26, 523–553. [Google Scholar] [CrossRef]
- Jung, Y.S.; Baeder, J. Simulations for effect of surface roughness on wind turbine aerodynamic performance. J. Phys. Conf. Ser. 2020, 1452, 012055. [Google Scholar] [CrossRef]
- Vercillo, V.; Tonnicchia, S.; Romano, J.-M.; García-Girón, A.; Aguilar-Morales, A.I.; Alamri, S.; Dimov, S.S.; Kunze, T.; Lasagni, A.F.; Bonaccurso, E. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Funct. Mater. 2020, 30, 1910268. [Google Scholar] [CrossRef]
- Fürbacher, R.; Liedl, G. Investigations on the wetting and deicing behavior of laser treated hydrophobic steel surfaces. In Proceedings of the Laser-Based Micro- and Nanoprocessing XV, Online, 6–11 March 2021. [Google Scholar] [CrossRef]
- Fürbacher, R.; Liedl, G.; Otto, A. Fast transition from hydrophilic to superhydrophobic, icephobic properties of stainless steel samples after femtosecond laser processing and exposure to hydrocarbons. Procedia CIRP 2022, 111, 643–647. [Google Scholar] [CrossRef]
- Fürbacher, R.; Liedl, G.; Grünsteidl, G.; Otto, A. Icing wind tunnel and erosion field tests of superhydrophobic surfaces caused by femtosecond laser processing. Wind 2024, 4, 155–171. [Google Scholar] [CrossRef]
- Bouchard, F.; Soldera, M.; Baumann, R.; Lasagni, A.F. Hierarchical microtextures embossed on PET from laser-patterned stamps. Materials 2021, 14, 1756. [Google Scholar] [CrossRef]
- Velten, T.; Bauerfeld, F.; Schuck, H.; Scherbaum, S.; Landesberger, C.; Bock, K. Roll-to-roll hot embossing of microstructures. Microsyst. Technol. 2010, 17, 619–627. [Google Scholar] [CrossRef]
- Xu, J.; Su, Q.; Shan, D.; Guo, B. Sustainable micro-manufacturing of superhydrophobic surface on ultrafine-grained pure aluminum substrate combining micro-embossing and surface modification. J. Clean. Prod. 2019, 232, 705–712. [Google Scholar] [CrossRef]
- Fu, Y.; Soldera, M.; Wang, M.; Milles, S.; Deng, K.; Voisiat, B.; Nielsch, K.; Lasagni, A.F. Wettability control of polymeric microstructures replicated from laser-patterned stamps. Sci. Rep. 2020, 10, 22428. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Gupta, M.C. Hot embossed micro-textured thin superhydrophobic Teflon FEP sheets for low ice adhesion. Surf. Coat. Technol. 2017, 313, 17–23. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farzaneh, M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 2009, 25, 8854–8856. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 8153–8157. [Google Scholar] [CrossRef]
- Janjua, Z.A.; Turnbull, B.; Choy, K.-L.; Pandis, C.; Liu, J.; Hou, X.; Choi, K.-S. Performance and durability tests of smart icephobic coatings to reduce ice adhesion. Appl. Surf. Sci. 2017, 407, 555–564. [Google Scholar] [CrossRef]
- Momen, G.; Jafari, R.; Farzaneh, M. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Appl. Surf. Sci. 2015, 349, 211–218. [Google Scholar] [CrossRef]
- Choi, W.; Tuteja, A.; Mabry, J.M.; Cohen, R.E.; McKinley, G.H. A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interface Sci. 2009, 339, 208–216. [Google Scholar] [CrossRef]
- Yang, C.; Chao, J.; Zhang, J.; Zhang, Z.; Liu, X.; Tian, Y.; Zhang, D.; Chen, F. Functionalized CFRP surface with water-repellence, self-cleaning and anti-icing properties. Coll. Surf. A Physicochem. Eng. Asp. 2020, 586, 124278. [Google Scholar] [CrossRef]
- Cardoso, J.T.; Garcia-Girón, A.; Romano, J.M.; Huerta-Murillo, D.; Jagdheesh, R.; Walker, M.; Dimov, S.S.; Ocaña, J.L. Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy. RSC Adv. 2017, 7, 39617–39627. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. Adv. Colloid Interface Sci. 2019, 533, 268–277. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Huhtamäki, T.; Ikkala, O.; Ras, R.H.A. Reliable measurement of the receding contact angle. Langmuir 2013, 29, 3858–3863. [Google Scholar] [CrossRef]
- Meuler, A.J.; Smith, J.D.; Varanasi, K.K.; Mabry, J.M.; McKinley, G.H.; Cohen, R.E. Relationships between Water Wettability and Ice Adhesion. ASC Appl. Mater. Interfaces 2010, 2, 3100–3110. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Siva, A.; Tiea, D.; Wynne, K.J. Laboratory test for ice adhesion strength using commercial instrumentation. Langmuir 2014, 30, 540–547. [Google Scholar] [CrossRef]
- Goraj, Z. An overview of the deicing and antiicing technologies with respects for the future. In Proceedings of the 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, 29 August–3 September 2004. [Google Scholar]
- FAA Holdover Time Guidelines, Winter 2023–2024, Issued in August 2023. Available online: https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/deicing (accessed on 15 July 2024).
- ASTM Standard D7869-17; ASTM International Standard, Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings. Available online: https://www.astm.org/d7869-17.html (accessed on 15 July 2024).
- IEC Technical Specification, Measurement Procedures for Materials Used in Photovoltaic Modules—Part 7-2: Environmental Exposures—Accelerated Weathering Tests of Polymeric Materials, IEC Technical Specification IEC TS 62788-7-2:2017. Available online: https://webstore.iec.ch/en/publication/33675 (accessed on 15 July 2024).
- Gurevich, E.L.; Gurevich, S.V. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 2014, 302, 118–123. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Phys. A Hadron. Nucl. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Zhou, K.; Jia, X.; Jia, T.; Cheng, K.; Cao, K.; Zhang, S.; Feng, D.; Sun, Z. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging. J. Appl. Phys. 2017, 121, 104301. [Google Scholar] [CrossRef]
- Fuerbacher, R.; Liedl, G.; Murzin, S. Experimental study of spatial frequency transition of laser induced periodic surface structures. J. Phys. Conf. Ser. 2021, 1745, 012017. [Google Scholar] [CrossRef]
- Milne, A.J.B.; Amirfazli, A. The Cassie equation: How it is meant to be used. Adv. Colloid Interface Sci. 2012, 170, 48–55. [Google Scholar] [CrossRef]
- Hauschwitz, P.; Jagdheesh, R.; Rostohar, D.; Brajer, J.; Kopeček, J.; Jiřícek, P.; Houdková, J.; Mocek, T. Hydrophilic to ultrahydrophobic transition of Al 7075 by affordable ns fiber laser and vacuum processing. Appl. Surf. Sci. 2020, 505, 144523. [Google Scholar] [CrossRef]
- Jagdheesh, R.; Pathiraj, B.; Karatay, E.; Römer, G.R.B.E.; in’t Veld, A.J.H. Laser-induced nanoscale superhydrophobic structures on metal surfaces. Langmuir 2011, 27, 8464–8469. [Google Scholar] [CrossRef]
- Nistal, A.; Sierra-Martin, B.; Fernandez-Barbero, A. On the durability of icephobic coatings: A review. Materials 2024, 17, 235. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Liu, X.; Liu, H.; Zhang, D. Development of high-efficient synthetic electric heating coating for anti-ice/de-icing. J. Surf. Coat. Technol. 2018, 349, 340–346. [Google Scholar] [CrossRef]
- Janus, R.; Kolomanski, K.; Wadrzyk, M.; Lewandowski, M. Degradation of petroleum diesel fuel accelerated by UV irradiation: The impact of ageing on chemical composition and selected physicochemical properties. E3S Web. Conf. 2019, 108, 02003. [Google Scholar] [CrossRef]
Structure Type | Laser Fluence [J/cm2] | Spot Diameter [µm] | Hatch Distance [µm] | Number of Laser Pulses Per Area |
---|---|---|---|---|
LIPSS | 1 | 150 | 150 | 15 |
Grid | 30 | 35 | 100 | 18 |
Dimple | 40 | 35 | 50 | 40 |
Triangle | 20 | 35 | 100 | 18 |
Structure Type | λc [nm] | Sa [µm] | Sq [µm] | Sz [µm] | Sdr [%] |
---|---|---|---|---|---|
LIPSS | 75 | 0.1 | 0.2 | 4.0 | 0.5 |
Grid | 150 | 4.7 | 6.2 | 41.0 | 203 |
Dimple | 300 | 16.2 | 18.3 | 77.7 | 1235 |
Triangle | 150 | 3.6 | 4.7 | 32.9 | 116 |
Sample ID | Structure Type | Treatment Method | Initial SCA [°] | SCA 48 h [°] | SCA 48 h + 4 h vac. [°] | Initial IA [kPa] | IA 48 h [kPa] | IA 48 h + 4 h vac. [kPa] |
---|---|---|---|---|---|---|---|---|
C#1 | LIPSS | Vacuum | 148 | 42 | 148 | 102 | 1084 | 567 |
Grid | 164 | 12 | 153 | 469 | 1042 | 678 | ||
Dimple | 164 | 10 | 151 | 947 | 926 | 1359 | ||
Triangle | 162 | 15 | 149 | 310 | 914 | 687 |
Sample ID | Structure Type | Survey | C1s | Performance | ||
---|---|---|---|---|---|---|
Fe/C Change to C#Ref [%] | NP/P Change to Storage in Ambient Air (C#Ref) [%] | Mean NP/P Change [%] | SCA [°] | Ice Adhesion [kPa] | ||
C#1 Vacuum treated, Acetone immersion | LIPSS | −62 | 16 | 24 | 44 | 1022 |
Grid | −59 | 18 | 10 | 1001 | ||
Dimple | −58 | 36 | 10 | 906 | ||
Triangle | −2 | 35 | 15 | 914 | ||
C#2 Petrol treated, Acetone immersion | LIPSS | −83 | 96 | 88 | 125 | 888 |
Grid | −50 | 69 | 120 | 777 | ||
Dimple | −74 | 138 | 153 | 972 | ||
Triangle | −10 | 54 | 109 | 862 | ||
C#3 Vacuum treated, Ethylene glycol immersion | LIPSS | −65 | 41 | 32 | 63 | 852 |
Grid | −13 | 43 | 40 | 989 | ||
Dimple | −40 | 52 | 30 | 917 | ||
Triangle | 33 | −8 | 43 | 893 | ||
C#4 Petrol treated, Ethylene glycol immersion | LIPSS | −77 | 42 | 44 | 126 | 758 |
Grid | −58 | 28 | 146 | 744 | ||
Dimple | −64 | 52 | 141 | 1108 | ||
Triangle | −34 | 53 | 145 | 868 | ||
C#RefVac, Vacuum treated | LIPSS | −80 | 129 | 190 | 152 | 172 |
Grid | −74 | 174 | 152 | 526 | ||
Dimple | −81 | 219 | 160 | 1193 | ||
Triangle | −68 | 276 | 153 | 330 | ||
C#RefPet, Petrol treated | LIPSS | −72 | 110 | 187 | 150 | 680 |
Grid | −72 | 232 | 166 | 328 | ||
Dimple | −78 | 248 | 164 | 1027 | ||
Triangle | −52 | 220 | 163 | 282 | ||
C#Ref untreated | LIPSS | 66/133 * | 805 ** | |||
Grid | 0/26 * | 951 ** | ||||
Dimple | 0/106 * | 902 ** | ||||
Triangle | 0/21 * | 861 ** | ||||
Reference | 69 | 821 |
Sample ID | Structure Type | Laser Fluence [J/cm2] | Accumulated Laser Fluence [J/cm2] | Fe/C Change to C#Ref [%] |
---|---|---|---|---|
C#RefVac | Dimple | 40 | 815 | −81 |
C#RefPet | Dimple | 40 | 815 | −78 |
C#RefVac | Grid | 30 | 382 | −74 |
C#RefPet | Grid | 30 | 382 | −72 |
C#RefVac | Triangle | 20 | 382 | −68 |
C#RefPet | Triangle | 20 | 382 | −52 |
C#RefVac | LIPSS | 1 | 17 | −80 |
C#RefPet | LIPSS | 1 | 17 | −72 |
Sample ID | Structure Type | Treatment Method | Initial | After 100 h UV Exposure | Change | |||
---|---|---|---|---|---|---|---|---|
SCA [°] | IA [kPa] | SCA [°] | IA [kPa] | SCA | IA | |||
C#5 | LIPSS | 4 h vacuum | 152 | 179 | 147 | 648 | −3% | 263% |
Grid | 158 | 337 | 49 | 867 | −69% | 157% | ||
Dimple | 159 | 1147 | 121 | 945 | −24% | −18% | ||
Triangle | 155 | 292 | 63 | 926 | −59% | 217% | ||
C#6 | LIPSS | 4 h petrol | 144 | 661 | 126 | 772 | −13% | 17% |
Grid | 163 | 535 | 0 | 907 | −100% | 69% | ||
Dimple | 166 | 1566 | 6 | 823 | −96% | −47% | ||
Triangle | 163 | 309 | 12 | 895 | −93% | 190% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fürbacher, R.; Grünsteidl, G.; Otto, A.; Liedl, G. Chemical and UV Durability of Hydrophobic and Icephobic Surface Layers on Femtosecond Laser Structured Stainless Steel. Coatings 2024, 14, 924. https://doi.org/10.3390/coatings14080924
Fürbacher R, Grünsteidl G, Otto A, Liedl G. Chemical and UV Durability of Hydrophobic and Icephobic Surface Layers on Femtosecond Laser Structured Stainless Steel. Coatings. 2024; 14(8):924. https://doi.org/10.3390/coatings14080924
Chicago/Turabian StyleFürbacher, Roland, Gabriel Grünsteidl, Andreas Otto, and Gerhard Liedl. 2024. "Chemical and UV Durability of Hydrophobic and Icephobic Surface Layers on Femtosecond Laser Structured Stainless Steel" Coatings 14, no. 8: 924. https://doi.org/10.3390/coatings14080924
APA StyleFürbacher, R., Grünsteidl, G., Otto, A., & Liedl, G. (2024). Chemical and UV Durability of Hydrophobic and Icephobic Surface Layers on Femtosecond Laser Structured Stainless Steel. Coatings, 14(8), 924. https://doi.org/10.3390/coatings14080924