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Abstract: Powder metallurgy superalloys are attracting great attention due to their unique perfor-
mance advantages, such as good oxidation resistance, corrosion resistance, excellent tensile behavior,
durability, fatigue properties, and long-term tissue stability. Therefore, powder superalloys show
strong vitality in the field of advanced aerospace engines. However, the cutting force is large, and
the serrated chips lead to poor machinability in the cutting process. The influence of dynamic re-
crystallization softening on serrated chips in the cutting process cannot be ignored. In this paper,
the formation mechanism of serrated chips in the FGH96 cutting process is studied considering
the influence of dynamic recrystallization softening. Firstly, based on the J–C constitutive relation
modified by the recrystallization stress softening established previously, a finite element simulation
model of the right-angle cutting of FGH96 is established. According to the results of the simulation
model, the variation law of the thermal mechanical loading field in the formation process of serrated
chips is quantitatively characterized. The validity of the simulation model is verified by comparison
with the cutting force, chip morphology, and strain rate obtained from the experiment. Simulation
results show that, in the formation process of serrated chips, the temperature field, strain field, and
strain rate field in the first deformation zone show similar distribution characteristics to the shear
band distribution, and with the formation of serrated chips, their values gradually increase. On this
basis, the formation mechanism of serrated chips is revealed, which is the stage of serrated chip
initiation, the stage of generating 50% serrated chips, the stage of generating 75% serrated chips, and
the stage of serrated chip formation.

Keywords: serrated chip; powder metallurgy superalloy; modified constitutive model; cutting
simulation

1. Introduction

Powder metallurgy superalloys have become the preferred materials for hot-end
components of aero-engines because of their excellent performance under high-temperature
conditions [1]. However, due to the characteristics of the low plasticity and poor thermal
conductivity of powder metallurgy superalloys, temperature accumulation in the cutting
deformation zone is fast, the tool wear is serious, and the controllability of the machined
surface quality is poor in the subsequent cutting process [2,3].

The study of chip morphology and its formation mechanism is helpful to better under-
stand the metal cutting process, which is of great significance to improve the machinability
and surface quality of the workpiece [4]. In the cutting process, the powder metallurgy
superalloy experiences severe plastic deformation. The shear, extrusion, and friction phe-
nomena in the cutting deformation zone provide the driving force for the rapid dynamic
recrystallization nucleation of the processed material [5]. The above behavior leads to the
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unstable thermoplasticity of the material, which in turn promotes the formation of adiabatic
shear bands and finally presents a periodically distributed serrated chip.

Compared with the experimental observation method, finite element simulation tech-
nology is an effective means to study the chip formation mechanism [6–8]. The reliability
of finite element simulation depends on the definition of the material constitutive model,
separation criterion, meshing, etc. [9]. B. Wang [10] analyzed the influence of J–C consti-
tutive equation parameters on the accuracy of the finite element simulation model. The
results show that the serrated chip is more sensitive to the coefficients A and m in the
constitutive model. Guigen Ye et al. [11] optimized the constitutive equation parameters
of titanium alloy by the optimization algorithm, which can more accurately describe the
change from continuous chips to discontinuous chips under high-speed cutting. In Tahsin
Tecelli Öpöz’s study [12], the formation of chips is related to many factors, such as material
properties, tool angle, cutting parameters, and so on. In the FEM model of chip formation,
a progressive damage model with damage evolution criterion is adopted. In Aydın M’s
study [13], the importance of mesh setting to the simulation model is proposed, and the
influence of mesh parameters on chip formation is analyzed.

In summary, although researchers have conducted a lot of research on finite element
simulation technology, how to consider the influence of dynamic recrystallization behavior
on chip formation in the cutting process is still a challenge, which is of great significance
for a deeper understanding of the formation mechanism of serrated chips. The change
of material properties caused by dynamic recrystallization can be incorporated in the
constitutive equation [14]. Calamaz et al. [15] considered the influence of strain softening
caused by recrystallization on flow stress. By adding a hyperbolic tangent function after the
original J–C model and applying it to cutting simulation, the accuracy of low-speed cutting
process simulation was improved. The modified model has been extended and applied
to low-speed cutting simulation of materials [16,17]. Nithyaraaj K P et al. [18] conducted
orthogonal cutting finite element simulation of two modified models, JC-TANH and JC-
HOU [19], with the original model and compared the experimental results under various
constitutive parameters. It is pointed out that the original model and JC-TANH cannot
describe the discontinuous cutting phenomenon under high-speed cutting. Although
JC-HOU can accurately describe the chip morphology when discontinuous chips are
generated, the model does not consider the effect of recrystallization softening. Therefore,
how to modify the constitutive model and establish the finite element model of powder
metallurgy superalloys considering dynamic recrystallization behavior has important
theoretical significance for analyzing the chip formation mechanism.

In summary, aiming at the problem that the formation mechanism of serrated chips in
the cutting process of powder superalloy FGH96 is not clear and based on the established
modified constitutive equation, this paper considers the influence of the dynamic recrys-
tallization softening effect on the formation process of serrated chips through the cutting
simulation model and reveals the formation mechanism of serrated chips according to the
simulation results. Firstly, based on the previous research of the research group [20], this
paper establishes a cutting simulation model for powder superalloys. The validity of the
simulation model is verified by comparison with the cutting force, chip morphology, and
strain rate obtained from the experiment. Secondly, based on the simulation result, the
different stages of serrated chip formation are studied, and the thermal–mechanical loading
field at different stages is quantitatively analyzed. Finally, the formation mechanism of
serrated chips is revealed. This study has good guiding significance for the efficient and
high-quality cutting of powder superalloys.

2. Finite Element Simulation Model

To analyze the formation mechanism of serrated chips in the cutting process, the
cutting simulation model of FGH96 is established. The main methods of modeling are
described in detail below.
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2.1. Modified J–C Constitutive Model

The J–C model has been widely used as a cutting simulation model because of its
relatively simple form, which is shown in Equation (1).

σJ−C = (A + Bεn)(1 + C ln
.
ε
.
ε0
)

[
1 −

(
T − T0

Tm − T0

)m]
(1)

where A is the yield strength, B and n are strain-hardening coefficients, C is the strain rate
coefficient, and m is the coefficient of the temperature effect. T0,

.
ε0, Tm are the reference

temperature, the reference strain rate (
.
ε0), and the melting point, respectively. σ, ε, and

.
ε

are the true stress, true strain, and true strain rate, respectively.
A modified J–C constitutive model considering the dynamic recrystallization effect

proposed in previous research [20] is used in this paper, as shown in Equations (2) and (3).

σ = σJ−C ·
[

1 −
(

h0

ε
+ h1 − (

h0

ε
+ h2) ln(

.
ε
.
ε0
)

)
· u(

.
ε, T)

]−1

, u(
.
ε, T) =

{
0, ε < εr
1, ε ≥ εr

(2)

εr = r0 + r1Tr2 + r3
.
ε

r4 + r5Tr2
.
ε

r4 (3)

where in Equation (2), hi (i = 0, 1, 2) are coefficients to be defined by experimentation. εr is
the critical strain of dynamic recrystallization. u(

.
ε, T) is used as a unified equation. The

value of u(
.
ε, T) is set to 1 when recrystallization occurs, and 0 otherwise. In Equation (3), ri

(i = 0, 1, . . ., 5) is the constant to be defined by fitting the algorithm.
Through the dynamic performance test experiment, the parameters of the modified

J–C constitutive equation were solved by the linear fitting method, as shown in Table 1. For
the detailed process, refer to the previous work of our group [20].

Table 1. The modified J–C constitutive model parameters [20].

Parameters Values

A (MPa) 773
B (MPa) 1271

C 0.031
n 0.667
m 8.05 × 104 .

ε + 1.66
h1 −0.015
h2 −0.015
h3 0.046
εr 1.445 − 5.85 × 10−5T1.415 − 0.139

.
ε
0.215

+ 6.45 × 10−6T1.415 .
ε
0.215

The modified J–C constitutive equation is embedded into the simulation model
through the VUHARD subroutine to realize the description of the plastic deformation
behavior of FGH96 considering the dynamic recrystallization softening effect.

2.2. Simulation Model

Abaqus software 6.13 was selected to simulate the chip formation process. The simula-
tion orthogonal cutting model consists of a tool model and a workpiece model, as shown in
Figure 1. Since the influence of tool wear is not considered, the tool is set as a rigid body.
To reduce the mesh distortion of the tool–worker contact area in the simulation model,
the rounded corner of the tool is set to 0.01 mm and the chip part is set to a 45◦ oblique
angle structure [18]. The tool is only allowed to move in the direction of the cutting speed,
with no displacement along the Y-axis direction. The workpiece model is set to a layered
structure, which is a chip layer, a joint layer, and a base layer. The bottom and both sides
of the workpiece are completely fixed, limiting its movement along the X-axis and Y-axis
directions. The established cutting simulation model and its setting conditions are shown
in Figure 1.
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Figure 1. Orthogonal cutting model based on Abaqus.

To improve the efficiency, the grid division adopts the strategy of adapting to local
conditions. Smaller quadrilateral grids were used for the cutting area, both for the tool
and workpiece, and the standard quadrilateral mesh was used for the other areas. This
type of element has higher calculation accuracy and operation speed under the condition
of temperature-displacement coupling [21].

The rake angle and clearance angle of the tool is set to 0◦ and 6◦, respectively. The
cutting speed range is 60 m/min–120 m/min. In addition, the initial temperature of the
model is 25 ◦C. The mechanical properties of the tool and workpiece are shown in Table 2.
Considering the influence of temperature changes on the physical properties of materials,
the physical performance of FGH96 at different temperatures is determined, as shown in
Table 3.

Table 2. The mechanical properties of the tool and workpiece.

Density
(kg/m3)

Elastic
Modulus (GPa) Poisson’s Ratio

Thermal
Conductivity
(W/(m·◦C))

Expansion
Coefficient ×

10−5(/◦C)

Specific Heat
(J/(Kg·◦C))

Tool 15,700 705 0.23 24 0.5 178

Workpiece 8320 220 0.33 9.3 1.11 390

Table 3. Physical performance parameters of FGH96 at different temperatures.

Items Parameters

Thermal
conductivity
(W/(m·◦C))

9.3 (25 ◦C) 11.2 (200 ◦C) 14.0 (400 ◦C) 17.2 (600 ◦C) 20.1 (800 ◦C)

Linear
expansion
coefficient

1.11 (25 ◦C) 1.19 (200 ◦C) 13.3 (400 ◦C) 14.4 (600 ◦C) 15.1 (800 ◦C)

Specific heat
(J/(Kg·◦C)) 390 (25 ◦C) 420 (200 ◦C) 455 (400 ◦C) 487 (600 ◦C) 520 (800 ◦C)

The Coulomb friction model is used to describe the frictional contact form of the
tool–work contact area. In the slip region, the shear stress (τ) of the tool–chip contact
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surface is less than the ultimate shear stress (τmax), and the friction stress (τf ) in this region
is shown in Equation (4). In the bonding area, the shear stress (τ) of the tool–chip contact
surface is greater than or equal to the ultimate shear stress (τmax), so the friction stress (τf )
of the tool–chip contact in this area is shown in Equation (5).

τf = µσ, τ < τmax (4)

τf = τmax, τ ≥ τmax (5)

where τf is the friction stress, µ is the friction coefficient, and τmax is the ultimate shear stress.
With the accumulation of equivalent plastic strain, the state variable w is introduced

to determine the damage to the material, as shown in Equation (6).

w = ∑
∆ε

ε f
(6)

where w is the damage state variable, ∆ε is the incremental equivalent plastic strain, and ε f
is the equivalent damage strain under current conditions. The equivalent damage strain is
shown in (7).

ε f =

(
d1 + d2expd3

P
σ

)(
1 + d4ln

.
ε
.
ε0

)[
1 − d5

(
T − T0

Tm − T0

)m]
(7)

where P is the mean stress, σ is Mises stress, P/σ is expressed as the stress triaxiality, and di
represents the damage parameters. The damage model parameters of FGH96 are shown in
Table 4.

Table 4. Damage parameters of FGH96 [22].

d1 d2 d3 d4 d5

−0.239 0.456 0.30 0.07 2.5

3. Orthogonal Cutting Experiment

A right-angle cutting experimental platform is designed to verify the simulation model,
which is shown in Figure 2. Based on the three-axis CNC high-speed cutting experimental
platform, the measurement of force, chip morphology, and strain rate in orthogonal cutting
is realized by adding a dynamometer and DIC (digital image correlation) measurement
system. The dynamometer is installed on the Z-axis column (Figure 2a). The workpiece is
fixed on a moving platform. The cutter with zero rake angle is selected, and orthogonal
cutting is realized when the workpiece is controlled to move rapidly in the Y-axis direction
by a computer (Figure 2b).

The powder superalloy FGH96 used in this paper is prepared by the Hot Isostatic
Pressing (HIP) + Hot Isostatic Forging (HIF) forming process. The chemical composition of
superalloy FGH96 is shown in Table 5. The hardness of FGH96 is 47.5 HRC. The received
FGH96 block was machined into a rectangular sample (25 mm × 20 mm × 1.5 mm) by wire
cutting. In order to avoid abnormal tool breakage at the beginning of cutting, the starting
position of the rectangular sample was processed into a 45◦ guide angle (Figure 2c). Then,
the sample was polished and sandblasted to obtain the results of the DIC system.
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Table 5. Chemical composition of superalloy FGH96.

Element C Al Ti Cr Co Nb Mo W Ni

Quality fraction (%) 0.02 2.2 3.7 16 13 0.8 4 4 Bal

The DIC system consists of a high-speed camera, camera lens, and laser light source
(Figure 2a,d). The parameters of DIC (Correlated Solutions, Inc VRI ’s Phantom @ v2012
model, Columbia, SC, USA) are shown in Table 6. To reduce the influence of machine tool
vibration, a high-speed camera is installed on a stable bracket at a certain distance from the
experiment platform. To improve the clarity under high-speed cutting, a high-frequency
pulsed laser source (CAVILU HF of Cavitar, Tampere, Finland) was selected.

Table 6. High-speed camera system parameters.

Items Parameters Unit

Lens magnification 9 X
Camera resolution 512 × 320 pixels
Spatial resolution 3 µm/pixel

Frame rate 100,000 FPS
Exposure time 0.19 µs

To ensure that the cutting deformation strictly follows the plane strain, the cutting
depth must be within the range of 0.05–0.15 times the workpiece thickness (1.5 mm). In
this paper, the experimental cutting depth is set to 0.15 mm.

4. Model Validation
4.1. Cutting Force

A comparison between the simulation result and the experimental result of the in-
stantaneous cutting force when the cutting speed is 60 m/min is performed. Figure 3 is
the experimental value of the instantaneous cutting force components (main cutting force
Fc, radial force Fp, and axial force Ff). Figure 4 is the predicted value of the instantaneous
cutting force components (main cutting force Fc and radial force Fp).
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Figure 4. The simulation value of instantaneous cutting force when cutting speed is 60 m/min.

From Figure 3, the experimental value of axial force Ff changes slightly near zero,
which proves that the cutting experiment meets the orthogonal requirements. At the cutting
speed of 60 m/min, the range of the main cutting force Fc experimental value is 586 N–1112
N, and the range of the radial force Fp experimental value is 149 N–688 N. From Figure 4,
the range of the predicted main cutting force Fc is 456 N–1185 N, and the range of the
predicted radial force Fp is 138 N–693 N.

The average cutting force of stable cutting (time range is 6.035 s–6.057 s) is compared,
as shown in Figure 5. Figure 5a,b are the change trend of the main cutting force and the
radial force at different cutting speeds, respectively. From Figure 5, with the increase in
cutting speed, the experimental average values of the main cutting force Fc and radial force
Fp increase with the increase in cutting speed, and the predicted average values of the main
cutting force Fc and radial force Fp show the same trend.

According to the relative error between the simulation and the experimental result,
the accuracy of the finite element simulation prediction is quantitatively evaluated. Table 7
shows the experimental average and simulation average of the cutting force and their
relative errors. From Table 7, the relative errors between the experimental average and the
predicted average of the main cutting force Fc are 2.71%, 3.42%, and 3.63%, respectively,
and the relative errors between the experimental average and the predicted average of the
radial force Fp are 9.50%, 5.01%, and 4.01%, respectively.
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Table 7. Relative errors between the predicted average value and the experimental average value of
cutting force.

Cutting Speed vc
(m/min)

Experimental Mean Force Predict Mean Force.

Main Cutting
Force Fc (N)

Radial
Force
Fp (N)

Main Cutting
Force Fc (N)

Relative
Errors

Radial Force
Fp (N)

Relative
Errors

60 788.66 ± 47.56 388.34 810.05 2.71% 351.57 9.50%
90 830.94 ± 40.52 475.41 859.36 3.42% 499.21 5.01%

120 940.10 ± 52.45 522.45 926.21 3.63% 574.95 4.01%

4.2. Chip Geometry

Figure 6 shows the chip morphology obtained by the cutting experiment and the
simulation model when the cutting speed is 60 m/min. From Figure 5, the chip morphology
obtained by the finite element simulation is similar to that of the cutting experiment, both
showing a regular sawtooth shape.
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Five geometric characterization parameters (tooth addendum height H, tooth valley
height h, tooth spacing d, tooth addendum angle α1, and tooth bottom angle α2) were
selected to characterize chip morphology, and the relative error of the characterization
parameters was calculated, as shown in Table 8. The average value of 10 sets of data at each
cutting speed is selected as the final chip morphology characterization result.

Table 8. Relative error of chip morphology characterization parameters between finite element
simulation and cutting experiment.

Items Cutting Speed vc
(m/min) Experiment Values Predict Values Relative Errors

tooth addendum height,
H (mm)

60 0.271 ± 0.018 0.265 2.21%
90 0.291 ± 0.023 0.295 2.06%

120 0.312 ± 0.020 0.319 2.24%

tooth valley height, h (mm)
60 0.157 ± 0.010 0.139 11.4%
90 0.145 ± 0.012 0.130 10.3%

120 0.116 ± 0.010 0.121 4.31%

tooth spacing, d (mm)
60 0.108 ± 0.010 0.101 6.48%
90 0.129 ± 0.011 0.121 6.20%

120 0.135 ± 0.012 0.139 2.96%

tooth addendum angle,
α1 (◦)

60 56.3 ± 3.1 57.4 1.95%
90 54.4 ± 4.8 55.6 2.21%

120 51.3 ± 5.2 52.9 3.12%

tooth bottom angle, α2 (◦)
60 65.4 ± 4.1 66.9 2.29%
90 54.1 ± 4.8 57.0 5.26%

120 47.5 ± 3.9 49.2 4.82%

According to Table 8, compared with the experimental values of the chip characteriza-
tion parameters, the maximum relative errors of tooth addendum height H, tooth valley
height h, tooth spacing d, tooth addendum angle α1, and tooth bottom angle α2 obtained by
simulation are 2.24%, 11.4%, 6.48%, 3.12%, and 5.26%, respectively.

In addition, based on the geometric characterization parameters of the chip, the
serrated degree Gs and the serrated frequency f of the chip can be obtained according to
Equations (8) and (9).

Gs = 1 − h
H

(8)

f =
2vc

d(H + h)
(9)

where vc is the cutting speed.
Figure 7 is the comparison between the experimental value and the simulation value

of the chip serration degree Gs at different cutting speeds. From Figure 7, when the cutting
speed increased from 60 m/min to 120 m/min, the relative errors of the chip serration
degree Gs obtained by the simulation model are 13.0%, 8.34%, and 1.20%, respectively.

Figure 8 shows the comparison between the experimental result and the simulation
result of the chip serration frequency. From Figure 8, when the cutting speed increased
from 60 m/min to 120 m/min, the relative errors of the chip serration frequency f obtained
by simulation are 13.2%, 12.1%, and 5.53%, respectively.
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4.3. Strain Rate

Figure 9 is the comparison between the experimental result and the simulation result
of the strain rate field in the cutting deformation area. From Figure 9, compared with the
distribution characteristics of the strain rate field obtained by the cutting experiment (the
red high strain rate region is banded along the shear band), the strain rate distribution field
obtained by the simulation has similar distribution characteristics. It is worth noting that
with closer tool–workpiece contact, the strain rate becomes greater.
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Figure 10 shows the comparison results and relative errors between the experimental
maximum strain rate and the simulated maximum strain rate in the cutting deformation
region. From Figure 10, the maximum strain rate of the cutting deformation area obtained
by finite element simulation is slightly higher than that of the experimental strain rate
at three cutting speeds, and the relative errors are 11.3%, 12.8%, and 5.45%, respectively.
When the speed reached 90 m/min, the relative error of the maximum strain rate obtained
by the simulation model is highest, which is 12.8%.
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5. Results
5.1. Temperature Field Characterization

Figure 11 is the cutting temperature distribution result with the formation of the
sawtooth unit at 60 m/min. As shown in Figure 11, the high-temperature region of cutting
deformation is consistent with the shear band region, and the temperature range is between
550 ◦C and 600 ◦C (red region). In the chip formation process, the shear zone is the main
area of heat generation and accumulation. In the serrated chip initiation stage (Figure 11a),
the slip of the shear band mainly occurs at the contact position between the tool tip and
the workpiece, and the temperature of the contact point is the highest. In the 50% serrated
chip formation stage (Figure 11b) and 75% serrated chip formation stage (Figure 11c), the
shear band continues to slip and extend, and the higher temperature region also extends.
When the serrated chip is completely formed (Figure 11d), an adiabatic shear band that
penetrates the shear surface is formed, and the higher temperature region penetrates the
entire shear surface.
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serrated chip formation stage; (d) 100% serrated chip formation stage (serrated chip in completely
formed stage).

Nine points evenly distributed on the adiabatic shear band path are selected to obtain
the variation law of cutting temperature along the path, as shown in Figure 12. At the
serrated chip initiation stage, the heat is mainly concentrated near the tool area, and the
temperature of reference point 1 is the highest, which is 489 ◦C. Along the shear band path,
the cutting temperature gradually decreases, and the temperature of reference point 9 is
the lowest, which is 79 ◦C. In the 50% serrated chip formation stage and 75% serrated chip
formation stage, the shear band extends, and the reference point temperature also increases.
When the serrated chip is formed completely, a high-temperature zone that is consistent
with the adiabatic shear band is formed through the shear plane, and the temperature is
higher than 600 ◦C.
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(serrated chip in completely formed stage).

5.2. Strain Field Characterization

Figure 13 is the strain distribution result at 60 m/min. In the serrated chip initiation
stage and the 50% serrated chip formation stage, as shown in Figure 13a,b, the equivalent
plastic strain of the material is low, and it is mainly concentrated near the tool–workpiece
contact point, indicating that obvious plastic deformation occurred. As the cutting process
continues, when 75% serrated chips are formed (Figure 13c), the high deformation region
extends along the shear band extension direction, indicating that the material undergoes
significant plastic deformation and flow in the shear band region. When the serrated chip
is completely formed, as shown in Figure 13d, the high strain region runs through the
entire shear surface, and the adiabatic shear region undergoes severe plastic deformation.
In the serrated chip formation, the change of strain is consistent with the change of temper-
ature, and the high plastic strain region extends correspondingly with the extension of the
shear band.

Similarly, nine points evenly distributed on the adiabatic shear band path are selected
to obtain the variation law of plastic strain along the path (Figure 14). In the serrated chip
initiation stage, the plastic strain value is less than 1. In the 50% serrated chip stage and 75%
serrated chip stage, plastic strain is significantly increased compared to the first stage, and
the plastic strain value is the largest near the tool, which is 3.07 and 3.88, respectively. When
the serrated chips are completely formed, the plastic strain values are greater than 3.66.
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Figure 14. Evolution law of strain along the path under different serration formation stages
(vc = 60 m/min).

5.3. Strain Rate Field Characterization

Figure 15 is the change of shear strain rate distribution obtained by the simulation
model at 60 m/min. In the serrated chip initiation stage (Figure 15a), the shear strain
rate decreases gradually along the shear band from the blade edge. At the 50% serrated
chip stage (Figure 15b), a high strain rate region extends along the shear band direction,
showing a spatially non-uniform distribution of the shear strain rate. When the saw-tooth
unit slips, that is, from 75% saw-tooth chips to the complete formation of saw-tooth chips
(Figure 15c,d), the shear strain rate shows a uniform distribution trend.
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(a) 25% serrated chip formation stage (initiation stage); (b) 50% serrated chip formation stage; (c) 75%
serrated chip formation stage; (d) 100% serrated chip formation stage (serrated chip in completely
formed stage).

6. Discussion

The serrated chip formation process is divided into four stages, namely, 25% serrated
chip stage, 50% serrated chip formation stage, 75% serrated chip formation stage, and
100% serrated chip formation stage. From the above simulation results, it can be seen
that the adiabatic shear band plays a key role in the formation of serrated chips. With
the advancement of the cutting process, the size and distribution of temperature, strain,
and the strain rate in the adiabatic shear band area gradually evolve until a complete
adiabatic shear band is formed, the shear fracture is completed, and finally the serrated
chips are formed.

We analyze the formation of serrated chips in four stages. The 25% serrated chip
stage is the initial stage of serrated chip formation. At this stage, with the increase in the
extrusion effect of the tool on the material, the actual cutting layer thickness increases from
0, and the material does not produce obvious extrusion deformation, which is manifested
as a slight protrusion of the free surface of the chip. With accumulation of shear extrusion,
shear slip occurs, and the initial shear plane is formed in the shearing deformation zone.
The temperature, strain, and strain rate on the initial shear plane begin to increase, and the
flow stress begins to rise (Figures 11a, 13a and 15a). The process of generating 50% serrated
chips is the second stage of serrated chip formation. This stage shows that the actual
cutting thickness continues to increase, the surface of the machined layer is completely
raised, the shear slip extends along the direction pointing to the free surface, and the
initial shear surface also increases. At this time, the shear surface continues to extend, and
thermal–mechanical loading of the shear plane continues to increase. Under the action
of strain hardening and strain rate hardening, the flow stress continues to rise (Figures
11b, 13b and 15b). The production of 50% serrated chips is the third stage of serrated chip
formation. At this time, the chip free surface is separated from the surface of the cutting
layer, and the shear surface of the first deformation zone is formed. Under the action of high
temperature, high strain, and a high strain rate (Figures 11c, 13c and 15c), some areas of the
material reach a critical condition of dynamic recrystallization. Recrystallization causes
flow stress to decrease, which causes plastic instability and leads to geometric instability
of the initial shear surface. The chip morphology shows that the new serrated unit is
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completely formed and gradually separated from the cutting layer. The fourth stage of
serrated chip formation is the production of 100% serrated chips. At this stage, an adiabatic
shear band throughout the shear surface is formed. Grains of the adiabatic shear band
undergo complete dynamic recrystallization under the action of high temperature and
strain rate. The flow softening caused by recrystallization makes the material on the whole
shear surface completely plastically unstable, thus forming a new sawtooth unit. The new
sawtooth element is completely separated along the shear plane, and the sawtooth element
is about to leave the first deformation zone. At the same time, the next serrated unit enters
the first stage, so that the reciprocation finally forms a continuous serrated chip (Figures
11d, 13d and 15d). Based on the above analysis of the influence of the thermal–mechanical
loading field on serrated element formation, the formation mechanism of serrated chips is
proposed (Figure 16).
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7. Conclusions

The finite element simulation model of the cutting process of FGH96 is established
with a modified J–C constitutive model. Based on the verification of the simulation model,
the variation of the thermal–mechanical loading field during the formation of serrated
elements is characterized. The formation mechanism of serrated chips is proposed. The
main conclusions are as follows.

1. The simulation model was verified by the cutting force, chip morphology, and strain
rate using the orthogonal cutting experimental platform. For the cutting force, the
maximum relative errors between the experimental average and the predicted average
of the main cutting force Fc and the radial force Fp are 3.63% and 9.50%, respectively.
Compared with the experimental values of the chip characterization parameters, the
maximum relative errors of the tooth top height, tooth valley height, tooth spacing,
tooth top angle, and tooth bottom angle are 2.24%, 11.4%, 6.48%, 3.12%, and 5.26%,
respectively. For the strain rate, the simulation value of the maximum strain rate in
the cutting deformation area is slightly higher than the experimental value, and the
maximum error is 12.8%. In summary, the finite element simulation model has good
predictability.

2. The variation law of serrated chip formation is revealed. During the serrated chip
formation process, the temperature field, strain field, and strain rate field in the first
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deformation zone show similar distribution characteristics to the distribution of shear
bands, and the values gradually increase with the serrated chip formation process.

3. A formation model of serrated chips is proposed. Specifically, in the stage of serrated
chip initiation, the material does not produce obvious extrusion deformation. As
the shear surface continues to extend, the temperature, strain. and strain rate of the
shear surface continue to increase during the generation of 50% serrated chips. At
the stage of producing 75% serrated chips, the chips are separated from the surface of
the cutting layer, and the shear surface of the first deformation zone is formed. The
coupling effect of the temperature, strain, and strain rate on the shear band promotes
dynamic recrystallization, which leads to complete plastic instability on the adiabatic
shear band and then forms serrated chips with periodic distribution.
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