Aging Behaviors of Organic Electrophoretic Coating on Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Tensile Tests
2.2.2. Gravimetric Test
2.2.3. Adhesion Tests
2.2.4. EIS Tests
3. Results
3.1. Gravimetric Results for Electrophoretic Coatings
3.2. Adhesion Test Results for Electrophoretic Coatings
3.3. Tensile Test Results for Electrophoretic Coatings
3.4. EIS Results
3.5. SEM Micrographs and EDS Results of the Coatings after Immersion
4. Discussion
4.1. Water Transport Behavior
4.2. Coating Adhesion Modeling
4.3. Coating Strength Evolution
4.4. Coating Failure Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, S.V.S.; Prasad, S.B.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research-A review. J. Magnes. Alloys 2022, 10, 1–61. [Google Scholar] [CrossRef]
- Trang, T.T.T.; Zhang, J.H.; Kim, J.H.; Zargaran, A.; Hwang, J.H.; Suh, B.C.; Kim, N.J. Designing a magnesium alloy with high strength and high formability. Nat. Commun. 2018, 9, 2522. [Google Scholar] [CrossRef]
- Joost, W.J.; Krajewski, P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017, 128, 107–112. [Google Scholar] [CrossRef]
- Luo, A.A. Recent magnesium alloy development for automotive powertrain applications. In Magnesium Alloys 2003, Pts 1 and 2; Kojima, Y., Aizawa, T., Higashi, K., Kamado, S., Eds.; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2003; Volum 419–424, pp. 57–65. [Google Scholar]
- Kulekci, M.K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Wang, X.X.; Guo, J.J.; Zeng, Z.H.; Zhou, P.; Wang, R.Q.; Liu, X.C.; Gao, K.; Sun, J.L.; Yuan, Y.; Wang, F.H. A Semi-Mechanistic Model for Predicting the Service Life of Composite Coatings on VW63Z Magnesium Alloy. Acta Metall. Sin.-Engl. Lett. 2024, 37, 1161–1176. [Google Scholar] [CrossRef]
- Liu, W.C.; Wen, L.; Meng, D.H.; Pang, S.; Xiao, L.; Zhou, B.P.; Wu, G.H. High-Cycle Fatigue Behavior of Deep Cryogenic-Elevated Temperature Cycling Treated Sand-Cast Mg-6Gd-3Y-0.5Zr Alloy. Adv. Eng. Mater. 2021, 23, 2100234. [Google Scholar] [CrossRef]
- Xu, T.C.; Yang, Y.; Peng, X.D.; Song, J.F.; Pan, F.S. Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloys 2019, 7, 536–544. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 68, 948–963. [Google Scholar] [CrossRef]
- Li, H.T.; Si, S.H.; Yang, K.; Mao, Z.A.; Sun, Y.H.; Cao, X.R.; Yu, H.T.; Zhang, J.W.; Ding, C.; Liang, H.X.; et al. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility. Prog. Org. Coat. 2023, 184, 107881. [Google Scholar] [CrossRef]
- Singh, N.; Batra, U.; Kumar, K.; Ahuja, N.; Mahapatro, A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact. Mater. 2023, 19, 717–757. [Google Scholar] [CrossRef]
- Kaseem, M.; Fatimah, S.; Nashrah, N.; Ko, Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance. Prog. Mater. Sci. 2021, 117, 100735. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Telmenbayar, L.; Ramu, A.G.; Yang, D.; Choi, D. Development of mechanically robust and anticorrosion slippery PEO coating with metal-organic framework (MOF) of magnesium alloy. Chem. Eng. J. 2023, 458, 141397. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Ustinov, A.Y.; Sukhoverkhov, S.V.; Gnedenkov, S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys. Polymers 2022, 15, 202. [Google Scholar] [CrossRef]
- Bai, Y.; Yu, F.L.; Du, J.; Wang, W.X.; Cui, Z.Q.; Han, Z.H.; Yang, J.F. A Brief Review about Surface Treatment of Magnesium Alloys. In Proceedings of the 13th International Symposium on Eco-Materials Processing and Design (ISEPD 2012), Guilin, China, 7–10 January 2012; pp. 307–310. [Google Scholar]
- Chen, X.M.; Li, G.Y.; Lian, J.S.; Jiang, Q. An organic chromium-free conversion coating on AZ91D magnesium alloy. Appl. Surf. Sci. 2008, 255, 2322–2328. [Google Scholar] [CrossRef]
- Galio, A.F.; Lamaka, S.V.; Zheludkevich, M.L.; Dick, L.F.; Mueller, I.L.; Ferreira, M.G.S. Evaluation of Corrosion Protection of Sol-Gel Coatings on AZ31B Magnesium Alloy. In Proceedings of the 13th Conference of the Sociedade-Portuguesa-de-Materiais/4th International Materials Symposium, Oporto, Portugal, 1–4 April 2007; pp. 390–394. [Google Scholar]
- Zhang, D.X.; Xiang, Q.; Li, X.M. Electrophoretic fabrication of zeolitic imidazolate framework-67 (ZIF-67) and its derivative coating. Mater. Lett. 2019, 257, 126686. [Google Scholar] [CrossRef]
- Estupinan Lopez, F.H.; Gaona Tiburcio, C.; Baltazar-Zamora, M.A.; Sepulveda, S.; Zambrano Robledo, P.; Cabral Miramontes, J.A.; Almeraya Calderon, F. Effect of the Addition of Nanoparticles in the Mechanical and Electrochemical Behavior of Electrophoretic Coatings. In Proceedings of the 32nd National Congress of the Mexican-Electrochemical-Society (MES)/10th Meeting of the Mexican-Section of the Electrochemical-Society (ECS), Guanajuato, Mexico, 5–8 June 2017; pp. 279–290. [Google Scholar]
- Yao, W.M.; Wang, Z.P.; Wu, X.; Li, B.B.; Zhong, X.M.; Lin, J.; Chen, J.Y.; Lai, Y.H. Preparation of coatings from a series of silicone/fluorine-functionalized polyacrylates via electrophoretic deposition. Polym. Adv. Technol. 2015, 26, 1148–1154. [Google Scholar] [CrossRef]
- Stoch, A.; Brozek, A.; Kmita, G.; Stoch, J.; Jastrzebski, W.; Rakowska, A. Electrophoretic coating of hydroxyapatite on titanium implants. J. Mol. Struct. 2001, 596, 191–200. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.L.; Liu, M.; Shi, Z.M.; Cao, F.Y.; Dargusch, M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Van Phuong, N.; Moon, S. Deposition and characterization of E-paint on magnesium alloys. Prog. Org. Coat. 2015, 89, 91–99. [Google Scholar] [CrossRef]
- Li, X.J.; Shi, H.; Cui, Y.; Pan, K.; Wei, W.; Liu, X.Y. Dextran-caffeic acid/tetraaniline composite coatings for simultaneous improvement of cytocompatibility and corrosion resistance of magnesium alloy. Prog. Org. Coat. 2020, 149, 105928. [Google Scholar] [CrossRef]
- Lin, J.; Nguyen, N.T.; Zhang, C.; Ha, A.; Liu, H.H. Antimicrobial Properties of MgO Nanostructures on Magnesium Substrates. ACS Omega 2020, 5, 24613–24627. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, M.F.; Raza, M.A.; Ghauri, F.A.; Rehman, Z.U.; Ilyas, M.T. Corrosion study of graphene oxide coatings on AZ31B magnesium alloy. J. Coat. Technol. Res. 2020, 17, 1321–1329. [Google Scholar] [CrossRef]
- Wang, Z.X.; Xu, L.; Zhang, J.W.; Ye, F.; Lv, W.G.; Xu, C.; Lu, S.; Yang, J. Preparation and Degradation Behavior of Composite Bio-Coating on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation and Electrophoresis Deposition. Front. Mater. 2020, 7, 190. [Google Scholar] [CrossRef]
- Wu, M.; Guo, Y.H.; Xu, G.L.; Cui, Y.W. Effects of Deposition Thickness on Electrochemical Behaviors of AZ31B Magnesium Alloy with Composite Coatings Prepared by Micro-arc Oxidation and Electrophoretic Deposition. Int. J. Electrochem. Sci. 2020, 15, 1378–1390. [Google Scholar] [CrossRef]
- Liu, X.L.; Feng, T.; Meng, X.Y.; Wen, S.F.; Hou, W.B.; Ding, J.H.; Lin, H.J.; Yue, Z.F. Effect of SiC nanowires on adhesion and wear resistance of hydroxyapatite coating on AZ31 magnesium alloy. J. Alloys Compd. 2023, 960, 170934. [Google Scholar] [CrossRef]
- Jafari, Z.; Pishbin, F.; Ghambari, M.; Dehghanian, C. Surface modification of AZ31 Mg alloy by diopside/fluorohydroxyapatite/graphene oxide nanocomposite coating: Corrosion and bioactivity evaluations. J. Alloys Compd. 2024, 976, 172961. [Google Scholar] [CrossRef]
- Liu, X.; Ding, J.; Hou, W.; Shi, X.; Feng, T.; Meng, X.; Wen, S.; Tong, M.; Yue, Z. Microstructural, mechanical and corrosion characterization of (C-HA)SiCnws coating on AZ31 magnesium alloy surface. Surf. Coat. Technol. 2024, 476. [Google Scholar] [CrossRef]
- Yang, J.; Dong, K.; Song, Y.; Cheng, X.; Dong, Q.; Han, E.-H. Deposition mechanism of cathodic electrophoresis coating on Mg alloys: Effects of Mg substrates on deposition process. Prog. Org. Coat. 2024, 187, 130207. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, J.; Wang, Q. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy. Appl. Surf. Sci. 2012, 258, 4360–4364. [Google Scholar] [CrossRef]
- Wu, L.; Ding, X.; Zheng, Z.; Ma, Y.; Atrens, A.; Chen, X.; Xie, Z.; Sun, D.; Pan, F. Fabrication and characterization of an actively protective Mg-Al LDHs/Al2O3 composite coating on magnesium alloy AZ31. Appl. Surf. Sci. 2019, 487, 558–568. [Google Scholar] [CrossRef]
- Singh, S.; Singh, G.; Bala, N. Synthesis and characterization of iron oxide-hydroxyapatite-chitosan composite coating and its biological assessment for biomedical applications. Prog. Org. Coat. 2021, 150, 106011. [Google Scholar] [CrossRef]
- Rojaee, R.; Fathi, M.; Raeissi, K.; Sharifnabi, A. Biodegradation assessment of nanostructured fluoridated hydroxyapatite coatings on biomedical grade magnesium alloy. Ceram. Int. 2014, 40 Pt B, 15149–15158. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, Y.; Meng, L.; Chen, P.; Shi, T.; Liu, X.; Zheng, Y. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. Acta Biomater. 2016, 45, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Askarnia, R.; Ghasemi, B.; Fardi, S.R.; Adabifiroozjaei, E. Improvement of tribological, mechanical and chemical properties of Mg alloy (AZ91D) by electrophoretic deposition of alumina/GO coating. Surf. Coat. Technol. 2020, 403, 126410. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M. Composite fluoropolymer coatings on Mg alloys formed by plasma electrolytic oxidation in combination with electrophoretic deposition. Surf. Coat. Technol. 2015, 283, 347–352. [Google Scholar] [CrossRef]
- Lee, W.S.; Park, M.; Kim, M.H.; Park, C.G.; Huh, B.K.; Seok, H.K.; Choy, Y.B. Nanoparticle coating on the silane-modified surface of magnesium for local drug delivery and controlled corrosion. J. Biomater. Appl. 2016, 30, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peng, F.; Zhang, D.; Li, M.; Huang, J.; Liu, X. A tightly bonded reduced graphene oxide coating on magnesium alloy with photothermal effect for tumor therapy. J. Magnes. Alloys 2022, 10, 3031–3040. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Lamaka, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Imshinetskiy, I.M.; Zheludkevich, M.L.; Gnedenkov, S.V. Control of the Mg alloy biodegradation via PEO and polymer-containing coatings. Corros. Sci. 2021, 182, 109254. [Google Scholar] [CrossRef]
- Saji, V.S. Electrophoretic (EPD) coatings for magnesium alloys. J. Ind. Eng. Chem. 2021, 103, 358–372. [Google Scholar] [CrossRef]
- Tayyaba, Q.; Shahzad, M.; Butt, A.Q.; Rafi-ud-din; Khan, M.; Qureshi, A.H. The influence of electrophoretic deposition of HA on Mg-Zn-Zr alloy on its in-vitro degradation behaviour in the Ringer’s solution. Surf. Coat. Technol. 2019, 375, 197–204. [Google Scholar] [CrossRef]
- Hu, D.; Lv, Z.; Liu, H.; Jing, F.; Zhao, Y.; Zhang, S.; Du, H.; Wang, R. Characterization and mechanical modeling of interfacial damage in EB-PVD thermal barrier coatings considering multiple failure factors. J. Mater. Sci. Technol. 2024, 190, 42–55. [Google Scholar] [CrossRef]
- da Silva Lopes, T.; Lopes, T.; Martins, D.; Carneiro, C.; Machado, J.; Mendes, A. Accelerated aging of anticorrosive coatings: Two-stage approach to the AC/DC/AC electrochemical method. Prog. Org. Coat. 2020, 138, 105365. [Google Scholar] [CrossRef]
- Kamisho, T.; Takeshita, Y.; Sakata, S.; Sawada, T. Water absorption of water-based anticorrosive coatings and its effect on mechanical property and adhesive performance. J. Coat. Technol. Res. 2014, 11, 199–205. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, X.; Li, W.; Chen, L.; Du, M. Effect of temperature on Brillouin gain spectrum and aging behavior in carbon/polyimide coated fiber. In Proceedings of the 19th International Conference on Optical Fibre Sensors, Perth, Australia, 15–18 April 2008. [Google Scholar]
- Fang, B.Y.; Han, E.H.; Wang, J.Q.; Zhu, Z.Y.; Ke, W.; Hu, J.P.; Xu, Z.A. Effect of aging temperature and time on the performance of epoxy coating. Acta Metall. Sin. 2003, 39, 533–540. [Google Scholar]
- Guermazi, N.; Elleuch, K.; Ayedi, H.F. The effect of time and aging temperature on structural and mechanical properties of pipeline coating. Mater. Des. 2009, 30, 2006–2010. [Google Scholar] [CrossRef]
- Lopez-Ortega, A.; Bayon, R.; Arana, J.L. Evaluation of Protective Coatings for High-Corrosivity Category Atmospheres in Offshore Applications. Materials 2019, 12, 1325. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, O.; Tran, M.T.T.; Tribollet, B.; Turmine, M.; Vivier, V. Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta 2020, 343, 136109. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Filonina, V.S.; Sinebryukhov, S.L.; Gnedenkov, S.V. A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor-Containing Coatings. Molecules 2023, 28, 2538. [Google Scholar] [CrossRef]
- Yang, C.; Cui, S.; Fu, R.K.Y.; Sheng, L.; Wen, M.; Xu, D.; Zhao, Y.; Zheng, Y.; Chu, P.K.; Wu, Z. Optimization of the in vitro biodegradability, cytocompatibility, and wear resistance of the AZ31B alloy by micro-arc oxidation coatings doped with zinc phosphate. J. Mater. Sci. Technol. 2024, 179, 224–239. [Google Scholar] [CrossRef]
- Meng, F.D.; Liu, L.; Tian, W.L.; Wu, H.; Li, Y.; Zhang, T.; Wang, F.H. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure. Corros. Sci. 2015, 101, 139–154. [Google Scholar] [CrossRef]
- Meng, F.D.; Liu, L.; Liu, E.H.; Zheng, H.P.; Liu, R.; Cui, Y.; Wang, F.H. Synergistic effects of fluid flow and hydrostatic pressure on the degradation of epoxy coating in the simulated deep-sea environment. Prog. Org. Coat. 2021, 159, 106449. [Google Scholar] [CrossRef]
- Meng, F.D.; Liu, Y.; Liu, L.; Li, Y.; Wang, F.H. Studies on Mathematical Models of Wet Adhesion and Lifetime Prediction of Organic Coating/Steel by Grey System Theory. Materials 2017, 10, 715. [Google Scholar] [CrossRef]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
Conditions | d/mm | t/h | Q∞/g | D/m2 s−1 |
---|---|---|---|---|
20 °C | 0.03 | 1080 | 0.05816 | 1.817 × 10−16 |
40 °C | 0.03 | 228 | 0.06853 | 8.610 × 10−16 |
Temp. | ∂ | u |
---|---|---|
20 °C | 0.1142 | 16.8425 |
40 °C | 0.1916 | 19.6115 |
Conditions | S | b |
---|---|---|
20 °C | 55.147 | 1.02 × 10−4 |
40 °C | 54.598 | 8.77 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, G.; Jing, Y.; Zheng, K.; Wang, R.; Liu, X.; Gao, K.; Sun, J.; Yuan, Y.; Meng, F. Aging Behaviors of Organic Electrophoretic Coating on Magnesium Alloy. Coatings 2024, 14, 952. https://doi.org/10.3390/coatings14080952
Wang X, Wang G, Jing Y, Zheng K, Wang R, Liu X, Gao K, Sun J, Yuan Y, Meng F. Aging Behaviors of Organic Electrophoretic Coating on Magnesium Alloy. Coatings. 2024; 14(8):952. https://doi.org/10.3390/coatings14080952
Chicago/Turabian StyleWang, Xiaoxue, Guohui Wang, Yuan Jing, Kai Zheng, Rongqiao Wang, Xiuchun Liu, Kai Gao, Jingli Sun, Yong Yuan, and Fandi Meng. 2024. "Aging Behaviors of Organic Electrophoretic Coating on Magnesium Alloy" Coatings 14, no. 8: 952. https://doi.org/10.3390/coatings14080952
APA StyleWang, X., Wang, G., Jing, Y., Zheng, K., Wang, R., Liu, X., Gao, K., Sun, J., Yuan, Y., & Meng, F. (2024). Aging Behaviors of Organic Electrophoretic Coating on Magnesium Alloy. Coatings, 14(8), 952. https://doi.org/10.3390/coatings14080952