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Abstract: Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability
in coastal areas has become a significant concern. Straw fibers have been evidenced to improve
the mechanical properties of concrete, while research on their influence on the chloride corrosion
resistance of RPC is deficient. Therefore, it is essential to establish the relationships between the
quantities and parameters of straw fibers and the properties of the resulting concrete. In this study, the
mass loss rates (MLRs), the relative dynamic modulus of elasticity (RDME), the electrical resistance
(R), the AC impedance spectrum (ACIS), and the corrosion rates of steel-bar-reinforced RPC mixed
with 0%–4% straw fibers by volume of RPC were investigated. A scanning electron microscope (SEM)
and X-ray diffraction (XRD) were used to analyze the corrosion of steel bars. The reinforced RPC
specimens were exposed to a 3% NaCl dry-wet alternations (D-As) and 3% NaCl freeze-thaw cycles
(F-Cs) environment. The results show that, after adding 1%–4% straw fibers, the setting time and
slump flow of fresh RPC were reduced by up to 16.92% and 12.89%. The MLRs were −0.44%–0.43%
and −0.38%–0.42%, respectively, during the D-As and F-Cs. The relationship between the RDME
and the fiber volume ratio was the quadratic function, and it was improved by 9.34%–13.94% and
3.01%–5.26% after 10 D-As and 100 F-Cs, respectively. Incorporating 4% straw fibers reduced the
R values of the reinforced RPC specimens by up to 22.90% and decreased the corrosion rates after
10 D-As and 100 F-Cs by 26.08% and 82.29%, respectively. The impedance value was also increased.
Moreover, a dense, ultra-fine iron layer and α-FeO(OH) were observed in the rust of rebars by
SEM and XRD, as the corrosion resistance of rebars was enhanced. The results indicate that straw
fibers improved the corrosion resistance of RPC, which can serve as a protective material to inhibit
concrete cracking and thereby prevent rebar oxidation. This study provides theoretical support for
the investigation of surface phenomena in reinforced RPC with straw fibers.

Keywords: reinforced reactive powder concrete; straw fibers; chloride environment; dry-wet
alternation; freeze-thaw cycle; electrochemical test; corrosion resistance

1. Introduction

Reactive powder concrete (RPC) is a material with excellent properties, including ultra-
high strength, high impact toughness, and good volume stability [1,2]. Its performance is
further enhanced by the configuration of steel bars [3–5]. The bond strength between RPC
and rebars is increased by 28% compared to ordinary concrete [6]. The flexural strength
of RPC increases with the number of steel bars, up to 30%, which makes it appropriate
for engineering structures [7]. The utilization of RPC in reinforced concrete enables the
reduction in sectional size and self-weight of the structures [8], which has great potential
for application in the field of bridge engineering [9]. However, the corrosion of steel
bars in coastal areas is a crucial factor affecting the service life of reinforced concrete
structures [10]. When chloride ions in seawater penetrate the cracks in concrete, they
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adhere to the surface of the rebar’s rod passivation film and destroy it [11]. This reduces
the resistivity between the negative and positive poles of the rebar and accelerates the
electrochemical corrosion [12]. The volumetric expansion of chloride corrosion products
gives rise to internal stresses, which result in further cracking of the concrete [13]. As
chloride corrosion weakens the bond strength between steel bars and concrete, the core
strength of structures is significantly degraded [14,15]. The high compactness of RPC can
provide some protection for rebars; however, when cracks occur on the concrete surface,
the steel bars are inevitably exposed to risk of deterioration [16]. It is an urgent problem to
find new materials to prevent reinforced concrete corrosion.

Fiber materials are widely employed to improve the properties of concrete [17].
A high number of short steel fibers can improve the stress redistribution of concrete, which
is advantageous for achieving excellent self-healing properties [18]. The permeability and
carbonization resistance of concrete are improved by 39.1% and 31.8% by incorporating
carbon nanofibers at a volume fraction of 0.3% [19]. The post-crack corrosion rate is reduced
by 25% by adding 1.5% by volume of polyethylene fibers to reinforced concrete [20]. The
combination of basalt fibers and polypropylene fibers produces a crack-bridging effect
that enhances the chloride resistance and, consequently, the durability of concrete [21].
However, the high price of these fibers makes them impractical for large-scale engineering
applications [22,23].

Straw fibers are non-corrosive plant materials, cheap and readily available [24–27].
Their good water absorption helps to reduce the initial setting time of fresh concrete,
making it possible to quickly repair damaged structures [28]. Straw fibers have tiny barbs
that can enhance the friction with concrete on the contact surface [29]. The compressive
strength of RPC is increased by 30.5% after mixing in 3% straw fibers [30]. The inhibition of
cracking by straw fibers improves the tensile and flexural properties of concrete by 17.1%
and 25.8%, respectively [31]. The tight clusters between straw fibers and concrete improve
the load transfer across cracks, which contributes to enhancing the compressive strength of
concrete [32,33]. However, little research has focused on the corrosion resistance of RPC
reinforced with straw fibers under chloride environments. In addition, excessive straw
fibers may have negative effects on the properties of concrete [34]. High numbers of straw
fibers will absorb water, causing the cement to dry out and shrink, which increases the risk
of breaking [35]. When the length is too long, they tend to clump together and weaken the
local performance of the concrete [36]. Therefore, it is vital to investigate the relationship
between the quantity of straw fibers and the durability of reinforced RPC.

In this study, the corrosion resistance of RPC reinforced with straw fibers in chloride
environments was investigated. The setting time and slump flow of fresh RPC were
measured to study its construction feasibility. The internal defective situation of RPC
was detected by ultrasonic and electrical techniques. The corrosion products of the steel
bars were analyzed by Apero-2 scanning electron microscope (Thermofisher Company,
Regensburg, Germany) and Ultima-IV X-ray diffractometer (Rigaku Corporation, Tokyo,
Japan). This study was to determine the optimal straw fiber content for RPC’s durability,
and it is anticipated that straw fibers can be used as a novel coating material to extend the
working life of marine concrete structures in the future.

2. Experimental Procedure
2.1. Materials and Specimen Preparations

The common silicate cement P.O42.5 (Hangzhou Shanxin cement component Co., Ltd.,
Hangzhou, China) was used to produce RPC specimens. The initial and final setting times
of the silicate cement were 120 min and 350 min, respectively, while the specific surface
area was 350 m2/kg. The straw fibers, with a density of 35 kg/m3 and an average length of
3 cm, were bought from Jiangsu Fangyuan Tong Biotechnology Co., Ltd., Xuzhou, China.
The aggregate consisted of silica sand with particle sizes of 1–0.71 mm, 0.59–0.35 mm, and
0.15–0.297 mm in a mass ratio of 1:1.5:0.8. The mixture included polycarboxylic acid-based
water reducer (capable of up to 40% reduction), silica fume, early-strength admixture,
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and defoamer (polyether surfactant DF-04). Table 1 shows the chemical composition of
raw materials.

Table 1. Chemical composition of raw materials (%).

Types Chemical Composition (%)

SiO2 Al2O3 Fe2O3 MgO CaO SO3 R2O P2O5 Loss

OPC 20.97 5.92 3.61 1.77 61.98 2.71 0.47 0 2.59

Silica Fume 90 0.8 0.6 0.8 0.4 0 7.4 0 -

Five groups of samples were prepared by adding straw fibers at 0%, 1%, 2%, 3%, and
4% by volume ratio of RPC, each comprising six specimens. A 3% NaCl solution was
employed to simulate the erosion of seawater in this study [37]. Three specimens from each
group were affected by dry-wet alternations (D-As), and the other three specimens were
affected by freeze-thaw cycles (F-Cs). Table 2 shows the mix ratios of RPC with straw fibers.
The specimens were prepared according to the GB/T 50081-2019 standard [38]. All raw ma-
terials were mixed for 480 s by the UJZ-15 mortar mixer before being poured into the mold
to manufacture RPC specimens measuring 50 mm × 50 mm × 50 mm. After compacting
the concrete by vibration, an 8 mm steel bar was inserted in the center of the mold shaft,
and a 304 stainless steel wire mesh was placed in each specimen with a distance of 20 mm
between the mesh and the position of the steel bar shaft. The molds were disassembled after
28 days of curing in a standard curing environment (with a temperature of 20 ◦C ± 2 ◦C
and humidity higher than 95%) according to the GB/T50204-2015 standard [39]. After the
maintenance was completed, all sets of specimens were subjected to 3% NaCl solutions
for 4 days before applying D-As and F-Cs. Figure 1 depicts the specimen preparation and
experimental process.
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Table 2. The mix ratios of straw-fiber-reinforced RPC (kg/m3).

Group Water Cement Silica Fume Sand Water Reducer Straw Fibers

0 339.6 1018.9 339.6 679.2 26.4 0
1 339.6 1018.9 339.6 679.2 26.4 0.35
2 339.6 1018.9 339.6 679.2 26.4 0.70
3 339.6 1018.9 339.6 679.2 26.4 1.05
4 339.6 1018.9 339.6 679.2 26.4 1.40

2.2. Experimental Environment

In D-As, the specimens were dried in an HZ-2014C electric blast drying oven (manu-
factured by Dongguan Lixian Instrument Technology Co., Ltd., Dongguan, China) at 80 ◦C
for 24 h. Then, they were cooled to 20 ◦C for 2 h and fully immersed in 3% NaCl solutions
for 12 h at an ambient temperature. This process was repeated 10 times to complete the
D-As. Furthermore, a TDR-16 rapid freeze-thaw chamber model (supplied by Hebei Da-
hong Experimental Instrument Co., Ltd., Cangzhou, China) was used to apply F-Cs. The
experimental temperature was set to a range of −18 to 8 ◦C. Each cycle consisted of 3 h of
freezing and thawing, which was repeated 100 times to complete the F-Cs. Figure 2 shows
the electric blast drying oven and rapid freeze-thaw chamber model.
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2.3. Test Methods

The slump flow of fresh RPC refers to the GB/T2419-2005 standard [40]. The setting
time was determined according to the standard JGJ 70-90 [41]. Each group of specimens
was tested according to the above methods.

The mass loss rates (MLRs) of RPC specimens were calculated using Equation (1). In
Equation (1), m1 is defined as the mass of the specimen after four days of immersion in 3%
NaCl solutions (when the water on its surface has been wiped off), while mt represents the
mass of the specimen after exposure to different numbers of D-As or F-Cs.

MLR =
mt − m1

m1
× 100% (1)

The relative dynamic modulus of elasticity (RDME) was measured to reflect the inter-
nal defects of specimens [42]. The ZBL-F800 ultrasonic detector (accuracy up to 0.001 km/s,
manufactured by Beijing Zhongbo Science and Technology Co., Ltd., Beijing, China) was
utilized to determine the RDME. The RDME was obtained by following Equation (2), and
the details are described in the GB/T 23900-2009 standard [43]. In Equation (2), v1 is the
initial ultrasonic velocity of the specimen before D-A and F-C actions, while vt represents
the ultrasonic velocity of the specimen after exposure to certain numbers of D-As or F-Cs.

RDME = (
vt

v1
)

2
× 100% (2)
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The electrical resistance (R) of RPC specimens was tested using a TH2810D LCR
digital bridge. Furthermore, a two-electrode system was applied for the AC impedance
spectrum (ACIS) testing. The working electrode was connected to the steel bar, while
the counter electrode was connected to the stainless steel wire mesh. After D-As and
F-Cs, the ACIS was measured using the CHI600E electrochemical workstation (Shanghai
Chenhua Instrument Co., Ltd., Shanghai, China), and the scanning frequency range was set
from 1 Hz to 100 kHz; the test voltage was set from −10 to 10 mV. The Tafel curves were
tested from −0.25 to 0.25 V, with a step height of 5 mV and a step time of 0.5 s. Specific
measurements can be found in Wang’s study [44]. Corrosion rate and depth can be obtained
using Equation (3), which refer to previous research [45]. In Equation (3), v and d are the
corrosion area rate (g/m2h) and the corrosion depth (mm/year), respectively. icorr is the
corrosion current density (A/cm2). M is the gram atomic weight (g) of the metal, taken as
MFe = 56 g. ρ is the density of the metal (g/cm3), taken as ρFe = 7.8 g/cm3. n represents the
ionic valence number, while F is the Faraday constant.

v =
M
nF

icorr = 3.73 × 10−4 M
n

icorr

d =
v
ρ
= 3.28 × 10−3 M

nρ
icorr (3)

Figure 3 shows the test process of R, ACIS, and Tafel.
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After 10 D-As and 100 F-Cs, the rebars of each group were removed from the RPC and
the rust on its surface was scraped by an angle grinder. The collected rust was covered
in plastic wrap and dried in the HZ-2014C electric blast drying oven for 2 h to conduct
an SEM test using the Apreo-2 scanning electron microscope. After the SEM test, the rust
was immediately tested by XRD. A total of 10 g of rust was ground into a fine powder to
increase diffraction intensity. The scanning speed was set to 1.2◦/min and the scanning
range was 20◦–80◦. The XRD data were analyzed using MDI JADE software (version 6.5).

3. Results and Discussion
3.1. Slump Flow and Setting Time

Figure 4 shows the slump flow and setting time of fresh RPC with straw fibers.
The decreasing rate of slump flow was proportional to the fibers’ volume, which de-
creased by 12.89% at 4% fibers. Straw fibers have good water absorption, which lowers
the water–cement ratio and reduces the slurry’s flowability. Furthermore, more cement
paste surrounds the fibers due to their large surface area [46]. When the slurry is insuf-
ficient, it will lead to the deterioration of concrete workability and a decrease in fluidity.
The error bars’ values are lower than 5.9% of the slump flow’s real values, showing the
measuring accuracy.

The setting time of fresh RPC was reduced by 16.92% at 1% fiber volume and gradually
increased thereafter, probably because more straw fibers hindered the contact and hydration
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reaction between cement particles [47]. Longer straw fibers are more likely to be knotted
and entangled with cement paste, which may reduce the fluidity. In this study, the average
length of the straw fiber was treated at about 3 cm, which was conducive to its uniform
dispersion during the mixing process. The working feasibility of fresh RPC with straw
fibers was changed in a reasonable range.
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3.2. The Mass Loss Rate

The mass loss rates of specimens in D-A and F-C actions are shown in Figure 5.
During the D-As, the MLR of each group ranged from −0.2% to −0.43%. The surface of a
straw fiber is scattered with closely spaced, delicate barb structures that enable it to fully
connect with the cement slurry, forming a paste envelope, which prolongs the cement
hydration reaction process. As hydration continues, more trace hydration products are
generated [48]. Additionally, straw fibers possess good water absorption properties, which
allow water and chlorides to introduce cracks and be absorbed by the fibers, resulting in an
overall increase in the mass of the specimens [49]. The MLRs in F-Cs showed a positive
correlation with the straw fibers, and the lowest was 0.42% at 4% fiber volume. The cement
slurry and aggregate will shrink at low temperatures, while the water in the pores will
expand in volume. Repeated freezing and thawing causes NaCl to penetrate the concrete,
resulting in the precipitation and dissolution of the salt and the development of fine cracks,
ultimately leading to a reduction in mass [50]. Sufficient straw fibers formed a spatial
network structure and mechanical occlusion within the RPC, effectively reducing crack
propagation and protecting the steel bar from oxidization.
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3.3. Relative Dynamic Modulus of Elasticity

Figure 6 displays the RDMEs of specimens subjected to two actions. In D-As, the
decreasing rate of RDME showed a quadratic relationship with fiber volume, which may
have been caused by the fact that the straw fibers in some specimens were connected into
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clusters [51]. In addition, the RDMEs of the specimens mixed with straw fibers were higher
by 9.34%–13.94% and 3.01%–5.26% when subjected to 10 D-As and 100 F-Cs, respectively.
This suggests that the internal defects of the straw-fiber-reinforced RPC were modified,
leading to less ultrasonic velocity loss. RPC and straw fibers create a good chemical bond
and mechanical bite to form a cohesive assembly that inhibits cracking of the specimen [52].
The RDME of each group decreases with increasing cycles, and the reason for this is that
the stress caused by the expansion of corrosion products, such as ettringite and gypsum,
leads to the expansion of internal cracks and blocks the propagation of ultrasound [53].
The error bars associated with the RDME values are consistently below 7.5% of the total
RDME, affirming the accuracy of the measurements.
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3.4. Electrical Resistance

Figure 7 shows the R value and its decreasing rate in D-As and F-Cs. The R of each
group significantly declined after five D-As. It might have been reduced due to the high
ionic concentration of chloride salts that penetrated the interior of the specimens, which
enhanced the ionic mobile conductivity [54]. In addition, the low fiber volume (1%–2%) had
no apparent effect on the corrosion resistance of the specimens. The strong water absorption
of straw fibers causes them to repeatedly expand and shrink during the D-A period. This
phenomenon prevents some gaps from being filled, allowing chloride ions to penetrate
more easily. This, in turn, reduces the electrical resistivity between the negative and positive
poles of the steel bar, accelerating the electrochemical corrosion process [55]. In contrast,
the R values in F-Cs were much higher than those of D-As. The corrosion of RPC specimens
during D-As was more severe due to the longer test period. Furthermore, straw fibers
could capture harmful impurities and chloride ions from the cracks in the concrete during
F-Cs, minimizing their accumulation on the surface of the rebar’s passivation film [56].
This improved the protection of the steel bar.
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3.5. AC Impedance Spectrum

Figure 8a,b show the ACIS in D-As. It was observed that the impedance values of
all groups were relatively high. This is because the free ions driven by the electric field
in the cement matrix tend to move towards the interface between the electrode and the
steel bar, forming an ionic double layer, while the reaction at the interface of the steel bar
was slow, and the charge could not migrate to the ionic conductor in time and accumulate
on the electrode surface, resulting in a huge polarization resistance on the impedance
spectrum [57,58]. After 10 D-As, the image was shifted towards the right. At 4% fiber
volume, it had a higher capacitive impedance than the others, which means that electrons
are harder to transfer, indicating better corrosion resistance. Figure 8c,d show the ACIS in
F-Cs. They show a smaller decrease in both the imaginary and real parts compared with
those of D-As. In addition, there is a random distribution of points in all groups, which
was caused by the polarization effect as well as the enhanced movement of ions in the
liquid phase. The movement speed of electrons was greater than the electrode reaction
speed, and the fast electron outflow caused the anode positive charge accumulation, and
its electrode potential was shifted in the positive direction [59]. Meanwhile, the electron
inflow on the cathode was fast, and the accumulation of negative charge resulted in a
shift of the electrode potential in the negative direction. The electrode potential deviated
from the equilibrium state, forming an inverse electric field that hindered the movement
of electrons and made the specimens less conductive. The straw fibers absorbed a large
amount of solution, as the specimens were in a water-saturated state, which strengthened
the liquid-phase ion movement, resulting in an increase in electrical conductivity and a
decrease in the R value [60]. Due to the coupling of these two factors, the electrochemical
stability was affected, causing many discrete points to appear. The ACIS at 4% fiber volume
is obviously located on the right side of other groups. It indicates that the resistance to
electrochemical corrosion of specimens is improved by straw fibers.
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The equivalent circuit diagram of the impedance curve above can be obtained by
using impedance spectrum fitting software, ZSimp-Win3.5. The fitting process can refer to
the previous study [61]. The result is shown in Figure 9, and the Chi values of equivalent
circuits were all lower than 0.01, indicating the fitting accuracy. It is comprised of four
interconnected components arranged in series. Rs represents the contact resistance between
electrodes and specimen, while Ri (i = 1, 2, 3) denotes the resistance of the pore solution,
the interface between the cement matrix and the cementitious phase, and the rust, which
are connected in parallel with the capacitive element Ci (i = 1, 2, 3), respectively [62,63].
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Figure 9. Equivalent circuit diagram of the RPC specimen.

3.6. Corrosion Rate and Corrosion Depth

Figure 10a,c show the Tafel curves under 10 D-As and 100 F-Cs, respectively. The
corrosion depth of steel bars that are fully immersed in seawater ranges from 0.09 to
0.201 mm/year [64]. However, the concrete at the interface between seawater and air
is usually subjected to D-As and F-Cs, which results in a more pronounced corrosion
phenomenon due to the repeated infiltration of chloride ions into the cracks and subsequent
damage to the steel bars [65]. This is consistent with the experimental results shown in
Figure 10b,d. The corrosion rates and depths in two cycles exhibited quadratic functions
with fiber content, with the lowest values observed at 4% fiber volume, which decreased
by 33.4% and 49.8% in D-As and F-Cs, respectively. When immersed in NaCl solutions,
the concrete will absorb water until it reaches a saturated state due to capillary adsorption.
After drying, water evaporates from the concrete, creating an ion concentration difference
between the inside and outside [66]. Chloride in the pores then diffuses inside along
the concentration gradient, causing damage to accumulate repeatedly [67]. Straw fibers
can serve as the filler to patch cracks and improve permeability resistance. Additionally,
straw fibers cannot react chemically with chloride ions, which is beneficial for reducing the
corrosion rate.
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Figure 10. Cont.
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3.7. Scanning Electron Microscopy and Energy Dispersive Spectrometer

Electrical test results show that 4% of straw fibers can provide the best corrosion
resistance. After 10 D-As and 100 F-Cs, the rebar rust of groups with 0% and 4% fibers were
scraped for SEM-EDS analysis to compare the oxidation corrosion. Figure 11 shows four
groups of SEM scanning images of the rebar rust. The main elements according to the EDS
test are also listed in Table 3.
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There are bigger and more numerous voids in the rust of the 0% fibers group, which
creates more possibilities for oxygen and chloride ions to aggravate the corrosion of the
steel bars. In Figure 11d, it can be observed that a dense and uniform Cr-containing
ultra-fine iron layer forms after 100 F-Cs, and the protective rust layer inhibits further
oxidation reaction, indicating that straw fibers effectively improve the corrosion resistance
of steel bars [68]. As shown in Figure 11b, D-A actions last longer than F-Cs and are more
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susceptible to chloride invasion; the corrosion of rebars is more serious, which is also
consistent with the resistance change trend in the previous results [69,70]. The main factors
affecting the density of the rust layer are the fiber volume and the cycle types.

Table 3. The main elements in different parts (wt.%).

Part C O Na Cl Fe Ni Cr Ca K

A 1.33 45.60 2.08 1.85 44.05 0.29 0.48 2.31 -
B 1.63 26.17 2.69 1.35 62.98 1.55 2.32 1.31 -
C - 36.24 4.66 2.88 55.32 - 0.47 0.20 0.23
D - 23.79 3.04 2.46 66.42 0.44 3.49 0.37 -

The corrosion resistance of iron is related to the structure of the rust layer, which
depends on the types and content of elements in the rust layer [71,72]. It can be seen from
Table 3 that the Fe/O value of the 0% fiber RPC under D-As is the lowest, indicating that
the weight percentage of oxygen element in the rust is the highest. In the oxide, the higher
the proportion of oxygen element, that is, the higher the oxidation state, the higher the
degree of oxidation [73]. The Fe/O of 4% fiber RPC is above 2.4, which suggests that
the rust has experienced less oxidative corrosion than 0% fiber RPC, and its oxides may
contain Fe2O3 (Fe/O = 112/48), Fe3O4 (Fe/O = 168/64), other hydroxides, and amorphous
substances. The percentage of chlorine element indicates that the amount of chloride in the
4% fiber RPC is lower than at the 0% fiber volume, which proves that straw fibers enhance
the corrosion resistance.

3.8. X-ray Diffraction

After SEM-EDS, the rusts of four groups above were tested by X-ray diffraction.
Figure 12 displays the XRD pattern of the rusts. The peak of XRD is mainly the oxides of
Fe, including α-FeO(OH), β-FeO(OH), Fe3O4, and Fe2O3, and the mass fraction of each
phase changes little. The peaks of Fe3O4 and Fe2O3 almost overlap in the spectrum, which
may be due to the relatively slow oxidation corrosion rate of rust [74], so that oxygen
is fully involved in the corrosion reaction of the rebars. There was more β-FeO(OH) in
groups without straw fibers. The absence of straw fibers to fill the pores inside the RPC
resulted in enhanced oxygen diffusion in the electrolyte solution. Consequently, the Fe2+

in the β-FeO(OH) lattice would be oxidized to Fe3+, thereby accelerating corrosion [75].
However, α-FeO(OH) was observed after adding straw fibers, which have greater density
and protective properties, effectively preventing the corrosive medium from transferring to
the interior of the rebars [76]. The formation of α-FeO(OH) is similar to that of galvanized
coated steel bars, indicating better corrosion resistance [77]. The peak of XRD in groups
with straw fibers is more obvious, possibly because the rust in this case contains more
goethite [78].
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4. Conclusions

In this study, the effect of straw fibers on the working feasibility and corrosion resis-
tance of reinforced RPC was investigated. The optimum volume of straw fibers was 4%,
which was also verified by SEM-EDS and XRD tests. The conclusions are as follows:

(1) After adding straw fibers, the setting time and slump flow of fresh RPC were reduced
by up to 16.92% and 12.89%. In D-A and F-C actions, the MLRs in D-As and F-Cs were
−0.44%–0.43% and −0.38%–0.42%, respectively. The RDMEs of RPC specimens were
improved by 9.34%–13.94% and 3.01%–5.26%, while the R was improved by 3.73%
and 22.90%, respectively. The corrosion rates and depths of rebars were lowest at
4% fiber volume, which were 1.3356 g/m2h, 0.1745 mm/year in D-As, 2.6732 g/m2h,
0.3427 mm/year in F-Cs.

(2) The corrosion resistance of rebars inside RPC was strengthened by straw fibers,
as evidenced by fewer void pores and the uniform, ultra-fine iron surface layer.
Additionally, α-FeO(OH) was observed, and its dense oxidized layer prevented
further chemical reaction between the chloride ions and steel bars.

(3) The corrosion potential of RPC was enhanced by the addition of straw fibers, which
inhibited the polarization reaction in NaCl solutions. The degree of corrosion was
correlated with the types of cycle action and fiber volumes. The electrochemical
phenomena indicated that straw fibers could be used as a protective coating material
for concrete under chloride environments.
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