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Abstract: In recent years, the charge carrier mobility study of organic semiconductors has seen
significant progress and surpassed that of amorphous silicon thanks to the development of various
molecular engineering, solution processing, and external alignment methods. These advances have
allowed the implementation of organic semiconductors for fabricating high-performance organic
electronic devices. In particular, diketopyrrolopyrrole-based small-molecular and polymeric organic
semiconductors have garnered considerable research interest due to their ambipolar charge-carrier
properties. In this article, we focus on conducting a comprehensive review of previous studies
that are dedicated to the external alignment, thermal annealing, and molecular engineering of
diketopyrrolopyrrole molecular structures and side-chain structures in order to achieve oriented
crystal orientation, optimized thin-film morphology, and enhanced charge carrier transport. By
discussing these benchmark studies, this work aims to provide general insights into optimizing
other high-mobility, solution-processed organic semiconductors and sheds lights on realizing the
acceleration of organic electronic device applications.

Keywords: diketopyrrolopyrrole; mobility; organic semiconductor; organic thin-film transistors;
organic electronics

1. Background and Challenges
1.1. Advances in Charge Carrier Mobilities

In recent years, research in the charge carrier transport of solution-processed organic
semiconductors has advanced at an exponential rate, allowing the mobilities to facilely
surpass those of amorphous silicon [1–8]. For example, Tazuhara and colleagues docu-
mented the growth of 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT)
organic crystals with extensive polycrystalline domains using a binary toluene/mesitylene
solvent approach, which generated a mobility of 10 cm2/Vs [9]. Tripathi et al. reported the
ambipolar charge transport in a 9,10-diphenylanthracene (DPA) organic semiconductor,
which comprises phenyl groups at the anthracene backbone positions [10]. The DPA bulk
crystals showed an electron mobility of 13 cm2/Vs, as well as a lower hole mobility of
3.7 cm2/Vs, which at a high-temperature regime featured bandlike transport behavior. Xue
et al. reported a method of removing polar solvent residues in order to enhance the mobility
of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP) [11]. After the
polar solvent residues were removed, the TIPS-TAP crystal ribbons with an alignment
of several hundred micrometers demonstrated a 60% improvement in mobility with an
electron mobility of up to 13.3 cm2/Vs. He et al. reported the solution-based self-assembly
of dihexyl-substituted DBTDT (C6-DBTDT) organic crystals with two different phases [12].
Drop-casting C6-DBTDT in a concentrated chlorobenzene solution resulted in platelet-like
single crystals with an α-phase, whereas a diluted solution yielded microribbon-like single
crystals with a β-phase, giving rise to mobilities of 8.5 cm2/Vs and 18.9 cm2/Vs, respec-
tively. Jurchescu et al. reported the incorporation of 6,13-pentacenequinone (PQ) as a gate
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dielectric material to improve the single-crystal charge transport of pentacene [13]. The
interface-scattering centers of the PQ dielectric layer led to a high-quality interface and
yielded a hole mobility of 40 cm2/Vs.

1.2. Advances in Organic Electronic Device Applications

The elevated charge carrier mobilities have further sparked research interest in de-
veloping high-performance organic semiconductor devices, including organic gas sensors,
photodetectors, and complementary inverters. In this section, we briefly discuss those de-
vice applications in order to shed light on opening up the avenue to realizing high-efficiency
flexible electronics.

Lee et al. reported the detection of ammonia gas molecules by fabricating a 6,13-
bis(triisopropylsilylethynyl)pentacene (TIPS pentacene)-based gas sensor. The enhanced
rate of ammonia gas adsorption to the TIPS pentacene film surface allowed the electrons
to react with the semiconductor hole charge carriers and reduced the overall positive
charge, giving rise to the capability of detecting an even lower gas concentration [14].
Hou et al. reported the detection of nitrogen dioxide gas by using a TIPS pentacene-based
gas sensor. The enhanced density of the grain boundaries as a result of annealing TIPS
pentacene with solvent vapors improved the NO2 gas adsorption and improved the gas
sensor responsivity by an order of magnitude [15]. Benavides et al. reported TIPS pentacene
was demonstrated as an interlayer in a poly-3-hexyl-thiophene(P3HT)/[6, 6]-phenyl C61
butyric acid methyl ester heterojunction configuration in order to reduce the dark current
of the photodetectors [16]. The insertion of the TIPS pentacene interlayer significantly
enhanced the photodetector performance by elevating the device’s dynamic range and
increasing the photodetector detectivity of green light irradiation. Zhao et al. reported C60
and TIPS pentacene single crystals with both excellent electron and hole mobility were
employed in fabricating highly sensitive photodetectors [17]. The absorption of C60 and
TIPS pentacene single crystals gave rise to excellent responsivities, ranging from ultraviolet
light to the near-infrared light. Jea et al. reported successive deposition of TIPS pentacene
and F16CuPc microarrays with alternating directional p-channels and n-channels [18]. The
transistor devices fabricated by using this method revealed ambipolar charge transport
characteristics, which were applied in air-stable complementary inverters. Janneck et al.
reported a zone-casting method to fabricate highly crystalline 2,7-dioctyl[1]benzothieno[3,2-
b][1]benzothiophene (C8-BTBT)-based long-channel transistors with 7.5 cm2/V mobility
and integrated them into inverters [19]. The inverter device comprised a 19-stage ring
oscillator and showed gains up to 40 and an operating frequency of 630 Hz.

1.3. Current Challenges in Organic Electronics

Despite these aforementioned advances, the in-solution processing of both small-
molecular and polymeric organic semiconductors has met ongoing challenges, which has
impeded applications in high-performance flexible electronics [20–24]. Here, we will briefly
discuss each of these challenges, including nonuniform morphology, low crystallinity, and
nonoptimal molecular packing [25–30]. First of all, nonuniform morphology features crystal
misorientation, inferior substrate coverage, and grain-width variations. Crystal misorienta-
tion arises from drop-casting organic semiconductor solution and the substrate anisotropic
crystal growth behavior [31–37]. For instance, several studies have reported that drop-
casting organic semiconductors, such as TIPS pentacene and 5,6,11,12-Tetrachlorotetracene,
caused the crystal to grow in anisotropic directions [38–43]. When those misoriented crys-
tals were manipulated as the device active layer of thin-film transistors, such misoriented
crystals could further induce anisotropic mobilities [44–47]. A previous report indicated
that the mobilities measured from randomly aligned TIPS pentacene organic crystals can
vary by one order of magnitude [48]. Such mobility variation can be further exaggerated
to three to four orders of magnitude based on the different crystal coverage in the charge
transport channel [49]. Those dramatic mobility variations have made it challenging to
apply these organic semiconductors for fabricating high-performance organic electronic
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devices. For these reasons, it becomes highly desirable to apply alignment methods to
externally confine the direction in which the organic semiconductors may crystallize. Those
external force alignment methods include substrate patterning-based methods [50–56],
solution shearing-based methods [57–59], capillary force-based methods [60–62], and so on.

Thin films for organic semiconductors are typically produced using various techniques
such as spin-coating [63–66], drop-casting [67–69], and spray-coating [70–73]. Each of these
methods offers unique advantages and disadvantages depending on the desired film
morphology, uniformity, and thickness control. Spin-coating is widely used for its ability to
produce uniform thin films with controlled thickness, but it often results in low crystallinity
due to rapid solvent evaporation. Drop-casting, on the other hand, allows for better
crystallinity but can lead to nonuniform film morphology with significant variations in
grain size. Spray-coating provides a scalable approach for large-area coatings, though it can
be challenging to achieve uniform film thickness and high crystallinity. Table 1 summarizes
the key characteristics of these methods. Consequently, post-thermal annealing or solvent
annealing is typically applied to spin-coated organic semiconductor films in order to
increase the crystallinity of the semiconductor film and to enhance the charge carrier
mobilities [74–78].

Table 1. A list of each method typically used for depositing organic semiconductors, as well as the
advantages and disadvantages of each method.

Method Advantages Disadvantages

Spin-Coating Uniform film thickness, easy to control Low crystallinity, limited to small areas

Drop-Casting High crystallinity, simple equipment Nonuniform morphology, grain size variation

Spray-Coating Scalable for large areas, suitable for
flexible substrates Challenging thickness control, lower crystallinity

Table 1 lists each method used for depositing organic semiconductors discussed in
this section, with their advantages and disadvantages.

Furthermore, nonoptimal molecular packing has been an issue that obstructs the
electrical charge transport of organic semiconductors. Thus, side-chain engineering has
become an effective method to improve the molecular packing of organic semiconduc-
tors. Various studies have reported miscellaneous molecular engineering and side-chain
modifications which give rise to high-mobility organic semiconductors. For instance, mis-
cellaneous small-molecular and polymeric organic semiconductors have been developed
based on diketopyrrolopyrrole (DPP)-based material by side-chain engineering, yielding
a mobility close to 10 cm2/Vs [79–81]. Small-molecular 6,13-bis(triisopropylsilylethynyl)
TIPS pentacene is an organic semiconductor developed upon its predecessor pentacene
as a soluble counterpart in organic solvents [38,82]. The bulky alkyl side-chain engineer-
ing allows TIPS pentacene to interrupt the herringbone packing motif and thereby to
exhibit improved solubility in organic solvents [83–85]. The enhanced π–π stacking in
TIPS pentacene favors charge transport and leads to hole mobilities over 10 cm2/Vs [86].
C8-BTBT is an organic polymeric semiconductor incorporating the [1]benzothieno[3,2-
b][1]-benzothiophene unit as the base material, which has been showcased with mobilities
reaching over 40 cm2/Vs [87].

Given the importance of these benchmark organic semiconducting small molecules
and polymers, various review articles [88–96] have recently come to light that summarize
the tremendous efforts dedicated to addressing these aforementioned challenges of em-
ploying TIPS pentacene and C8-BTBT for fabricating thin-film transistors. Nevertheless, a
detailed review of implementing diketopyrrolopyrrole in fabricating thin-film transistors
has not been reported yet. In this article, we will conduct a comprehensive review of the
various works dedicated to the solution processing, crystal growth, external alignment,
molecular engineering, and charge transport properties of the diketopyrrolopyrrole-based
small-molecular and polymeric organic semiconductors. In particular, we will review
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these works in the categories of external alignment, thermal annealing, and molecular
engineering. Figure 1 shows the molecular structures of diketopyrrolopyrrole-based small-
molecular and polymeric organic semiconductors reviewed in our article. By investigating
these examples, we shed light on the importance of optimizing semiconductor crystalliza-
tion, film morphology, crystal alignment, and ambipolar behavior in order to maximize the
charge transport property of diketopyrrolopyrrole-based organic semiconductors.
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2. Review of Diketopyrrolopyrrole-Based Organic Semiconductors
2.1. Properties of Diketopyrrolopyrrole-Based Organic Semiconductors

Diketopyrrolopyrrole-based pigments have been reported with various colors that
ranged from red to blue [97–101]. The synthesis of diketopyrrolopyrrole pigment was
first reported by Parnum et al. in a pivotal study in 1974. The flanking with two phenyl
units led to an insoluble hydrocarbon pentalene-based molecule with an 8-π electron-fused
ring [102]. Iqbal et al. developed diketopyrrolopyrrole dyes and pigments and improved
the yield by demonstrating a single reaction process between dialkyl succinate and aro-
matic nitrile [103]. Following these studies, diketopyrrolopyrrole derivatives with various
side-chain engineering and functionalizations have been reported with more varieties
of colors [80,104]. For instance, diketopyrrolopyrrole flanked with side chains exhibits
modified planarity, π–π stacking distance, energy states, and charge transport properties.
In particular, these properties make diketopyrrolopyrrole attractive for miscellaneous or-
ganic electronic devices, including organic sensors, solar cells, and thin-film transistors.
Therefore, in diketopyrrolopyrrole-based semiconductors, π–π interactions and molecular
aggregation significantly influence electron and hole mobility. The planarity of the dike-
topyrrolopyrrole core, facilitated by these π–π interactions, enhances charge transport by
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promoting efficient stacking, which in turn decreases the π–π stacking distance [105–107].
Molecular aggregation further contributes to charge transport by increasing crystallinity
and order in the film. The side-chain modifications include varying the length and branch-
ing of alkyl chains. These modifications affect the molecular packing, which quantitatively
influences the π–π stacking distance and thus the charge transport properties.

Diketopyrrolopyrrole-based materials have garnered significant attention for their tun-
able bandgaps and energy levels, which are critical for optimizing device performance in or-
ganic field-effect transistors (OFETs) [108–113] and organic photovoltaics (OPVs) [114–118].
The bandgap of diketopyrrolopyrrole-based polymers typically ranges between 1.5 and
2.0 eV, making them suitable for absorbing visible light, a crucial characteristic for OPV
applications. The energy levels, including the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO), are finely tuned through side-chain
engineering and donor–acceptor molecular design, enabling efficient charge separation
and transport. Density functional theory (DFT) modeling has provided insights into the
charge transfer mechanisms at the molecular level, revealing that the donor–acceptor
interactions significantly enhance charge delocalization and mobility [101,119]. These theo-
retical models are crucial for understanding the molecular origins of the high-performance
characteristics observed in DPP-based devices.

Additionally, the transition from laboratory-scale synthesis to pilot-scale and industrial-
scale production of diketopyrrolopyrrole-based conjugated materials presents several chal-
lenges, including scalability, cost-effectiveness, and material purity. Diketopyrrolopyrrole,
isoDPP, and their derivatives require precise synthetic routes that can be difficult to repli-
cate on a larger scale [120–122]. Recent advances in continuous flow chemistry and scalable
polymerization techniques have begun to address these challenges, enabling the production
of high-purity diketopyrrolopyrrole-based materials with consistent properties. However,
further development is needed to optimize these processes for industrial-scale produc-
tion. Challenges such as the handling of reactive intermediates, the control of molecular
weight distribution, and the minimization of by-products must be overcome to ensure
that diketopyrrolopyrrole-based materials can be produced at scale while maintaining
their high performance in electronic applications. These advancements are critical for the
widespread adoption of diketopyrrolopyrrole-based materials in commercial electronics
and photovoltaic devices.

Furthermore, while diketopyrrolopyrrole-based organic semiconductors have demon-
strated significant advancements in charge carrier mobility and have been widely explored
for applications in organic electronics, it is essential to contextualize these developments
within the broader landscape of semiconductor materials. Inorganic semiconductors such
as Fe2O3, Cu2O, and CeO2 have long been established in the field due to their robust
thermal stability, high carrier mobility, and suitability for high-temperature applications,
and they also rely on thermal treatments to stabilize their crystalline phases and optimize
their electronic properties [123–126]. However, they often lack the flexibility, tunability, and
solution-processability that organic materials offer. Diketopyrrolopyrrole-based materials,
with their tunable electronic properties through side-chain engineering and molecular
design, present unique advantages in applications requiring lightweight, flexible, and
solution-processable devices. Yet, challenges such as stability, environmental impact, and
manufacturability need to be addressed.

A comprehensive understanding of photon-excited charge-carrier mechanisms, photo-
redox processes, plasmonic effects, and dielectric properties is critical for optimizing the
performance of diketopyrrolopyrrole-based materials in applications such as photode-
tectors and gas sensors [127–136]. When diketopyrrolopyrrole-based semiconductors
absorb photons, they generate electron–hole pairs that are vital for initiating photocatalytic
reactions. The efficiency of charge separation and the subsequent electron transfer to
surface-adsorbed species play a significant role in determining the material’s photocat-
alytic activity. Compared to inorganic semiconductors like Fe2O3, Cu2O, and CeO2, which
are known for their strong charge carrier mobilities and stable performance [137–139],
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diketopyrrolopyrrole-based materials offer the advantage of molecular tunability, which
can optimize light absorption and charge carrier dynamics. However, the intrinsic stability
of diketopyrrolopyrrole-based materials is a concern that must be addressed to enhance
their long-term performance. Further research into hybrid organic–inorganic systems and
the incorporation of plasmonic nanoparticles could unlock new opportunities to enhance
the efficiency, stability, and applicability of diketopyrrolopyrrole-based semiconductors.
Addressing these challenges while leveraging the strengths of diketopyrrolopyrrole-based
semiconductors could pave the way for their broader application in the industry [140–142].

Bürgi et al. reported a thiophene-flanked diketopyrrolopyrrole polymer with am-
bipolar charge transport properties. The ambipolar transistor device showed an electron
and hole mobility of 0.1 cm2/Vs and 0.09 cm2/Vs, respectively [143]. Diketopyrrolopyr-
role pigments are usually composed of a diketopyrrolopyrrole core and flanked aromatic
groups. The diketopyrrolopyrrole core has amine units and bicyclic carbonyl groups, and
this can provide strong electron deficiency to the diketopyrrolopyrrole pigments. This
property can be useful for donor acceptor conjugated semiconductor construction. DPP-
based semiconductors showcase intensive π–π interactions and molecular aggregation,
which is promising for being applied in organic electronic devices. The molecular design
of thiophene-flanked DPP polymers plays a crucial role in balancing electron and hole
mobilities. The incorporation of electron-deficient and electron-rich segments within the
polymer backbone influences this balance. Critical factors affecting the balance include the
energy level alignment, molecular packing, and film morphology. The design strategy of
combining strong donor and acceptor units ensures that both types of charge carriers are
effectively transported, resulting in ambipolar characteristics with balanced mobilities.

2.2. External Alignment of Diketopyrrolopyrrole-Based Organic Semiconductors

Bi et al. reported a double-solvent approach to control the crystal growth, as well as a
“controlled evaporative self-assembly” (CESA) method to realize the alignment of 2,5-di-(2-
ethylhexyl)-3,6-bis(5′′-n-hexyl-2,2′,5′,2′′]terthiophen-5-yl)-pyrrolo[3,4-c] pyrrole-1,4-dione
(SMDPPEH) [144]. The underlying mechanism involves the balance between nucleation
density and crystal growth, where an optimal concentration facilitates uniform crystal
formation and alignment. With SMDPPEH casted in chloroform, the organic semiconductor
material formed a few microcrystals that randomly scattered over the substrate (Figure 2a).
When chloroform and ethanol were employed as the double solvents (chloroform/ethanol
at a ratio of 15:1, 10:1, 5:1, and 1:1), an enhanced density of crystals was formed, although
the crystals still lacked alignment and long-range uniformity (Figure 2b). When the CESA
method was applied to control the SMDPPEH crystallization, it created a capillary force
that guided the oriented growth of the organic semiconductor. The resultant enhanced
morphology is shown in Figure 2c–f. The optimization of double solvents and simultaneous
application of the CESA method led to the excellent alignment of CESA organic crystals. In
addition, the grain width was noted to depend on the double-solvent ratio. In particular, a
5:1 ratio of chloroform/ethanol double solvents led to an optimized amount of nucleation
seeds and density, and simultaneously the CESA method was noted to most effectively
orient the organic crystal orientations of SMDPPEH and contributed to an enhanced
mobility of 0.016 cm2/Vs. Therefore, a chloroform/ethanol ratio of 5:1 was found to be
optimal for inducing nucleation and enhancing crystal density without compromising
alignment. This ratio was crucial as it balanced the solvent evaporation rate, facilitating
better control over crystal growth and alignment.
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Figure 2. Optical images of SMDPPEH microcrystals obtained from drop-casting in various solvents,
including (a) chloroform and chloroform/ethanol at the ratio of (b) 5:1, (c) 15:1, (d) 10:1, (e) 5:1, and
(f) 1:1. CESA method was applied to orient and control the SMDPPEH crystals in (c–f). Images
(a,b) have the same scale bar of 100 µm, as in (a), whereas images in (c–f) have the identical scale
bar of 100 µm, as in (c). Reproduced from reference [144] with permission from American Institute
of Physics.

Besides the application of the CESA alignment and binary solvent method, Bi et al.
also reported the mixing of SMDPPEH with P3HT to modulate its crystallization and
morphology [145]. SMDPPEH was mixed with P3HT in a single solvent of chloroform at a
weight ratio of 5:1, and the mixed solution was drop-casted on the substrate at various con-
centrations. The resultant morphologies of the SMDPPEH crystals are shown in Figure 3a–c
as a function of different concentrations. At 1 mg/mL, the SMDPPEH crystals showed dash
points (Figure 3a), implying such low concentration is insufficient for the semiconductor to
continuously crystallize. When the concentration increases to 2 mg/mL, the SMDPPEH
semiconductor formed well-aligned crystals with enhanced connection in the long range,
as shown in Figure 3b. As the concentration further increases to 5 mg/mL, the morphol-
ogy quickly deteriorated and many grain boundaries with crystalline defects populated
(Figure 3c). The dependence of the SMDPPEH morphology on the solution concentration,
as observed from the polarized microscopic optical images, is further confirmed by using
scanning electron microscopy (Figure 3d–f). A mobility of 0.001 cm2/Vs was measured
from the SMDPPEH/P3HT thin-film transistors based on the optimized concentration of
2 mg/mL.

Shin et al. reported a “template-guided solution-shearing (TGSS)” method to grow
well-aligned π-extended donor–acceptor diketopyrrolopyrrole-based conjugated polymers,
i.e., PTDPP-DTTE [79]. PTDPP-DTTE is composed of dithienyl-diketopyrrolopyrrole
(TDPP) as the acceptor monomer and di(thienothienyl)ethylene (DTTE) as the donor
monomer. The PTDPP-DTTE was deposited by using different methods, including the
spin-coating, solution-shearing, and TGSS methods. As compared to the spin-coated
film, the counterpart based on solution shearing showed alignment of polymer chains
and elongated domains towards the shearing direction. In contrast, the crystals based on
the TGSS method showed enhanced alignment of polymer chains, favorable for charge
transport. GI-XRD results showed that the π–π stacking distance of the PTDPP-DTTE
polymer was reduced to 3.47 Å when prepared by the TGSS method, as compared to 3.67 Å
when deposited by spin-coating, indicating the micro-patterned mold results in larger strain
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between the PTDPP-DTTE polymer chains. Top-contact, bottom-gate transistors yielded
a hole mobility of 3.13 cm2/Vs, 4.77 cm2/Vs, and 7.43 cm2/Vs, based on the deposition
method of spin-coating, solution shearing, and the TGSS method, respectively. The TGSS
method significantly enhances polymer alignment and charge transport by reducing the
π–π stacking distance and improving molecular packing. This method is scalable for
large-area organic electronics, as demonstrated by the uniformity of the films produced
in our study. However, challenges such as maintaining uniform crystal orientation across
larger substrates and controlling the shear rate and solvent evaporation uniformly must be
addressed to ensure consistent performance across large areas.
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Figure 3. Optical images of SMDPPEH crystals with the P3HT additive at a 5:1 weight ratio based on
different concentrations, including (a) 1, (b) 2, and (c) 5 mg/mL. The SEM images based on the same
weight ratio and concentration as in (a–c) are shown in (d–f). Reproduced from reference [145] with
permission from Elsevier.

The different studies reviewed in this section are summarized in Table 2.

Table 2. Summary of the different works reviewed in this section, including the diketopyrrolopyrrole-
based semiconductors, p-type or n-type, the result findings, and mobility.

Author Semiconductor Type Result Findings Mobility

Bi et al. [144] SMDPPEH p-type A “controlled evaporative self-assembly”
method aligned crystal orientations 0.016 cm2/Vs

Bi et al. [145] SMDPPEH p-type P3HT was used as a polymer additive to
modulate morphology and alignment 0.001 cm2/Vs

Shin et al. [79] PTDPP-DTTE p-type A “template-guided solution-shearing”
method oriented crystals

7.43 cm2/Vs based on
the TGSS method

2.3. Thermal Annealing of Diketopyrrolopyrrole-Based Organic Semiconductors

The thermal properties of diketopyrrolopyrrole-based organic semiconductors differ
significantly from those of inorganic semiconductors. Thermal annealing in these materials
primarily enhances structural order and crystallinity, which are crucial for charge transport.

Chen et al. reported ambipolar copolymer DPPT-TT based on diketopyrrolopyrrole
and thieno[3,2-b]thiophene for thin-film transistor applications [146]. Transistors were
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fabricated based on a top-gate, bottom-contact configuration with poly(methyl methacry-
late) (PMMA) as the gate dielectric layer. The effect of thermal annealing and the cleaning
procedure of the gold electrodes was investigated on the charge transport of DPPT-TT
semiconductors. Annealing at 320 ◦C reduces the electron-trapping impurities, decreases
the contact resistance, and also improves the physical contact between the semiconductor
and electrodes, which is favorable for charge transport. The optimal annealing temperature
of 320 ◦C for DPPT-TT was determined based on its effect on reducing electron-trapping
impurities, improving contact resistance, and enhancing physical contact between the
semiconductor and electrodes. Thermal stability at this temperature ensures that the semi-
conductor maintains its performance by preserving the structural order and crystallinity.
On the other hand, solvent cleaning of the gold electrodes prior to the deposition of DPPT-
TT effectively modulates the gold work function to 4.7~4.9 eV, which facilitates electron
injection. As a result, a1.36 ± 0.26 cm2/Vs (hole mobility) and 1.56 ± 0.49 cm2/Vs (electron
mobility) were yielded from the DPPT-TT based on thermal annealing at 320 ◦C and the
solvent cleaning of gold contact electrodes.

Nelson et al. studied film topography and charge transport of poly[2,5-dihexadecyl-3-
5-[4-(2-hexyl-decyl)-4H-dithieno [3,2-b;2′, 3′-d] pyrrol-2-yl]-thiophen-2-yl-6-thiophen-2-yl-
2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione] (PDDTP-DPP) [147]. The molecular structure
of DPPTP-DPP as a donor–acceptor polymer is shown in Figure 1. The low bandgap
PDDTP-DPP is composed of a strong donor DTP and a strong acceptor DPP. Transistors
were made by patterning the gold source and drain electrodes with photolithography. OTS
treatment was performed on the substrate before drop-casting the PDDTP-DPP polymer to
form the active layer. The PDDTP-DPP film after thermal annealing exhibited mobilities
correlated with the conducting channel length. In particular, a maximum hole mobility
of 0.41 cm2/Vs was obtained based on 30 µm channel length. AFM imaging showed fine
isotropic morphology composed of granular features rather than nanofibrillar morphology.
Grazing incidence wide-angle X-ray scattering (GIWAXS) results indicated improved
structural order after thermal annealing, responsible for the enhanced mobility.

Sonar et al. reported an ambipolar copolymer incorporating both a diketopyrrolopyr-
role moiety and thiophene-benzothiadiazole-thiophene (TBT) as the donor–acceptor–donor
building block [148]. The copolymer PDPP-TBT formed an active layer via spin coating,
followed by thermal annealing. The AFM images of the PDPP-TBT films were presented in
Figure 4a–d with different thermal annealing temperatures, including 120 ◦C, 180 ◦C, and
200 ◦C. While the PDPP-TBT film without annealing showed clustered nanofibers, these
nanofibers increasingly prevail and form densely packed networks interconnecting the
crystal domains as the thermal annealing temperature increases. Accordingly, the XRD
spectra in Figure 4g showed enhanced peak intensities with increasing thermal annealing
temperature. Thin-film transistors were fabricated by depositing the PDPP-TBT copolymers
onto OTS-treated substrates and conducted with thermal annealing, yielding decent device
performance in p- and n-channel modes, as shown in Figure 4e,f. The highest mobility val-
ues of 0.35 cm2/Vs (hole) and 0.4 cm2/Vs (electron) were obtained with thermal annealing
at 200 ◦C.

Shahid et al. reported two selenophene-diketopyrrolopyrrole-based polymers, i.e.,
poly(3-(2,2′-biselenophen-5,5′-yl)-2,5-di(2-octyldodecyl)-6-(selenophen-2,5-yl)-1,4-diketopy
rrolo[3,4-c]pyrrole (pDPPS3) and poly(3-(2,20-biselenophen-5,5′-yl)-2,5-di(2-octyldodecyl)-
6-(thieno[3,2-b]thiophen-2,5-yl)-1,4-diketopyrrolo[3,4-c]pyrrole (pDPPS2TT), in an effort
to lower the LUMO level in order to facilitate electron injection [149]. The synthesized
pDPPS3 and pDPPS2TT polymers exhibit LUMO levels of 4 eV and 3.9 eV, respectively.
After spin-coating the polymers onto HMDS-treated substrate, thermal annealing was
found to play a vital role in enhancing the electrical charge transport, yielding a hole and
electron mobility value of 0.1 cm2/Vs for pDPPS3, as well as hole and electron mobility
values of 0.3 cm2/Vs and 0.05 cm2/Vs for pDPPS2TT. In comparison, enhanced hole and
electron mobility values of 1.1 cm2/Vs and 0.15 cm2/Vs were showcased from pDPPS3.
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XRD results showed sharpened and intensified peak intensities for both polymers after
thermal annealing, indicating enhanced crystallinity.
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The different studies reviewed in this section are summarized in Table 3.

Table 3. Summary of the different works reviewed in this section, including the diketopyrrolopyrrole-
based semiconductors, p-type or n-type, the result findings, and mobility.

Author Semiconductor Type Result Findings Mobility

Chen et al. [146] DPPT-TT Ambipolar
Thermal annealing and cleaning

procedure of gold contacts impact the
ambipolar behaviors of DPP-TT

1.36 ± 0.26 cm2/Vs (hole)
and 1.56 ± 0.49 cm2/Vs

(electron)

Nelson et al. [147] PDDTP-DPP p-type
Thermal annealing enhanced structural

order and led to fine
isotropic morphology

0.41 cm2/Vs (hole)

Sonar et al. [148] PDPP-TBT Ambipolar Thermal annealing modulated
crystalline structure, charge transport

0.35 cm2/Vs (hole) and
0.4 cm2/Vs (electron)

Shahid et al. [149] pDPPS3,
pDPPS2TT Ambipolar

Thermal annealing impacted
crystallinity and charge transport of

the polymers

1.1 cm2/Vs (hole) and
0.15 cm2/Vs (electron)

from pDPPS3

2.4. Molecular Engineering of Diketopyrrolopyrrole-Based Organic Semiconductors

Tang et al. reported three conjugated small-molecular semiconductors based on
diketopyrrolopyrrole, which comprise a diketopyrrolopyrrole core [107]. These three
small molecules, i.e., 2TzDPPA1-2DCV, 2TzDPPA2-2DCV, and 2TzDPPA3-2DCV, have
the same branching location at the nitrogen atoms, as shown in Figure 1, but the alkyl
side-chain differs in its length. In particular, side chains of 2-hexyldecyl, 2-octyldodecyl and
2-decyltetradecyl were attached to 2TzDPPA1-2DCV, 2TzDPPA2-2DCV, and 2TzDPPA3-
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2DCV, respectively. Side-chain length in 2TzDPPA derivatives plays a pivotal role in
determining film morphology, molecular packing, and charge transport properties. Shorter
side chains lead to more orderly packing and smoother film morphology, which enhances
electron mobility. The key molecular design principles include optimizing side-chain length
to balance crystallinity and film uniformity, thereby maximizing charge transport efficiency.
AFM imaging results indicated that 2TzDPPA1-2DCV with a shorter side chain exhibited
more uniform and continuous film topography. XRD implied that 2TzDPPA1-2DCV shows
the largest d-spacing as a result of end-to-end packing, whereas 2TzDPPA3-2DCV shows
the smallest d-spacing because of its interlaced packing between the alkyl side chain and
the D diketopyrrolopyrrole PP core. After spin-coating the various diketopyrrolopyrrole-
based small molecules onto octadecyltrimethoxysilane (OTS)-treated silicon dioxide to
form an active layer, electrical characterization indicated an electron mobility of up to
0.28 cm2/Vs, 0.13 cm2/Vs, and 0.25 cm2/Vs for 2TzDPPA1-2DCV, 2TzDPPA2-2DCV, and
2TzDPPA3-2DCV, respectively.

Shin et al. reported four π-extended conjugated polymers based on thienothiophene-
flanked diketopyrrolopyrrole (DPPTT) with different side chains, including 2-octyldodecyl
(PDPPTT-T-10), 2-decyltetradecyl (PDPPTT-T-12), 2-tetradecylhexadecyl (PDPPTT-T-14),
2-hexadecyloctadecyl (PDPPTT-T-16), and 2-octadecyldocosyl (PDPPTT-T-18) [150]. De-
positing those conjugated polymers onto OTS-treated substrate yielded p-type transistor
behaviors for all types of semiconductors. The highest mobility values of 1.23 cm2/Vs,
0.16 cm2/Vs, 1.92 cm2/Vs, 0.35 cm2/Vs, and 0.14 cm2/Vs were obtained from PDPPTT-T-
10, -12, -14, -16, and -18, respectively. The highest hole mobilities from PDPPTT-T-10 and
-14 were attributed to the smooth surfaces with reduced roughness, as shown in Figure 5a–e.
Additionally, the XRD spectra in Figure 5f,g show high crystallinity for PDPPTT-T-10 and
-14, which adopt well-ordered lamellar structures with a dominant edge-on orientation
(Figure 5h). In particular, the PDPPTT-T-14 film exhibited the smallest π–π stacking distance
out of all five conjugated polymers, which is responsible for its highest mobility.
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Chen et al. reported two donor–acceptor copolymers, poly[2,5-bis(alkyl)pyrrolo[3,4-
c]pyrrole-1,4(2H, 5H)-dione-alt-5,5′-di(thiophen-2-yl)-2,2′-(E)-2-(2-(thiophen-2-yl)vinyl)
thiophene] (PDVTs), which are attached with two alkyl side chains with different lengths [80].
In particular, PDVT-8 has a short side chain of a 2-octyldodecyl group, whereas PDVT-10
has a longer side chain of a 2-decyltetradecyl group. With thermal annealing at 180 ◦C,
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the resultant thin-film topography is shown in Figure 6a–d. Both PDVT-8 and PDVT-10
films exhibit uniform intertwined fibers after spin-coating and enlarged polycrystalline
grains with improved uniformity and interconnection after thermal annealing due to the
intermolecular interactions between the copolymer backbones. Figure 6e,f show the grazing
incidence out-of-plane and in-plane X-ray scattering of the PDVT-8 and PDVT-10 films after
thermal annealing. Both films exhibit sharp (100) diffraction peaks with an edge-on packing
structure. A π–π stacking distance of 3.72 Å and 3.66 Å was measured for PDVT-8 and
PDVT-10. Transistors yielded a hole mobility of 4.5 cm2/Vs and 8.2 cm2/Vs for PDVT-8 and
PDVT-10. The larger mobility of PDVT-10 is due to its enhanced topography uniformity
and smaller π–π stacking distance. This study provides a detailed correlation between XRD
data, AFM images, and transistor performance in PDVT-based copolymers. XRD analysis
reveals the degree of crystallinity and π–π stacking distances, while AFM images illustrate
the film morphology. These structural characteristics directly correlate with the measured
transistor mobilities, highlighting the relationship between molecular packing, crystallinity,
and device performance.
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Yun et al. reported a copolymer poly[2,5-bis(2-octyldodecyl)pyrrolo[3,4-c] pyrrole-
1,4(2H, 5H)-dione-(E)-[2,2′-bithiophen]-5-yl)-3-(thiophen-2-yl)acrylonitrile] (PDPP-CNTVT),
which has an inclusion of a nitrile group in the polymer vinyl linkage, and compared its
electrical performance with another diketopyrrolopyrrole-based copolymer (poly[2,5-bis(2-
octyldodecyl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-(E)-1,2-di(2,2′-bithiophen-5-yl)ethene])
(PDPP-TVT) [81]. After spin-coating PDPP-CNTVT and PDPP-TVT onto prepatterned
gold electrodes, depositing PMMA as gate dielectric layer and thermally evaporating Al as
top-gate electrode, the transfer curves, as plotted in Figure 7a,b, show a dominant p-type be-
havior for PDPP-TVT and ambipolar behavior for PDPP-CNTVT. The device performance
was further optimized by varying the solution concentration and modulating the active
layer thickness. As shown in Figure 7c, reduction in the PDPP-CNTVT thickness results
in a higher electron mobility of 7 cm2/Vs. The enhanced charge transport in a thinner
PDPP-CNTVT layer was attributed to the lower contact resistance and lesser presence of
electron trapping sites in the bulk active layer, as illustrated in Figure 7d.



Coatings 2024, 14, 1080 13 of 23Coatings 2024, 14, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 7. Ambipolar transfer curves of bottom-contact transistors based on (a) PDPP-TVT with an-
nealing at 200 °C and (b) PDPP-CNTVT with annealing at 310 °C. The blue curves in (a,b) corre-
spond to the square root of the drain current, while the red curves correspond to the drain current. 
The two arrows in the right figure of (b) indicate the presence of hysteresis in the transfer charac-
teristics. (c) Correlation between the extracted charge-carrier mobilities, solution concentration, and 
active layer thickness of PDPP-CNTVT. (d) A schematic plot illustrating the transport and trapping 
of electron charge carriers in two different cases with different active layer thicknesses. Reproduced 
from reference [81] with permission from Wiley. 

Table 4. Summary of the different works reviewed in this section, including the diketo-
pyrrolopyrrole-based semiconductors, p-type or n-type, the result findings, and mobility. 

Author Semiconductor Type Result Findings Mobility 

Tang et al. [107] 
2TzDPPA1-2DCV, 
2TzDPPA2-2DCV, 
2TzDPPA3-2DCV 

n-type 
Shorter alkyl side chain leads to more 

continuous topography and more orderly 
packing, favoring charge transport 

0.28 cm2/Vs from 
2TzDPPA1-2DCV 

Shin et al. [150] PDPPTT-T-10, -12, -14, -16, -
18 

p-type 
Attachment of 2-tetradecylhexadecyl side 

group leads to enhanced crystallinity, 
surface uniformity, and orderly packing 

1.92 cm2/Vs from 
PDPPTT-T-14 

Chen et al. [80] PDVT-8, PDVT-10 p-type 
PDVT-10 with a longer side chain shows 

enhanced topography uniformity and 
smaller π–π stacking distance 

8.2 cm2/Vs from 
PDVT-10 

Yun et al. [81] PDPP-CNTVT Ambipolar 

Inclusion of a nitrile group in the polymer 
vinyl linkage results in ambipolar behav-
ior; charge transport depends on active 

layer thickness 

Electron mobility of 
7 cm2/Vs 

2.5. Other Works on Diketopyrrolopyrrole-Based Organic Semiconductors 
Kanimozhi et al. reported a conjugated copolymer, i.e., N-CS2DPP-OD-TEG, based 

on diketopyrrolopyrrole and diketopyrrolopyrrole (DPP-DPP) [151]. In this work, func-
tionalized with triethylene glycol chains, the diketopyrrolopyrrole unit was then synthe-
sized to form the high-molecular-weight copolymer DPP-DPP. For the bottom-gate tran-
sistors, a low balanced hole and electron mobility of ~0.01 cm2/Vs was obtained. In con-
trast, a much higher electron mobility of 3 cm2/Vs was demonstrated for the top-gate coun-
terparts, which was attributed to the high-quality charge transport interface between the 
DPP-DPP organic semiconductor and the CYTOP gate dielectric layer. 

Figure 7. Ambipolar transfer curves of bottom-contact transistors based on (a) PDPP-TVT with an-
nealing at 200 ◦C and (b) PDPP-CNTVT with annealing at 310 ◦C. The blue curves in (a,b) correspond
to the square root of the drain current, while the red curves correspond to the drain current. The
two arrows in the right figure of (b) indicate the presence of hysteresis in the transfer characteristics.
(c) Correlation between the extracted charge-carrier mobilities, solution concentration, and active
layer thickness of PDPP-CNTVT. (d) A schematic plot illustrating the transport and trapping of
electron charge carriers in two different cases with different active layer thicknesses. Reproduced
from reference [81] with permission from Wiley.

The different studies reviewed in this section are summarized in Table 4.

Table 4. Summary of the different works reviewed in this section, including the diketopyrrolopyrrole-
based semiconductors, p-type or n-type, the result findings, and mobility.

Author Semiconductor Type Result Findings Mobility

Tang et al. [107]
2TzDPPA1-2DCV,
2TzDPPA2-2DCV,
2TzDPPA3-2DCV

n-type

Shorter alkyl side chain leads
to more continuous

topography and more
orderly packing, favoring

charge transport

0.28 cm2/Vs from
2TzDPPA1-2DCV

Shin et al. [150] PDPPTT-T-10, -12, -14,
-16, -18 p-type

Attachment of
2-tetradecylhexadecyl side
group leads to enhanced

crystallinity, surface
uniformity, and orderly

packing

1.92 cm2/Vs from
PDPPTT-T-14

Chen et al. [80] PDVT-8, PDVT-10 p-type

PDVT-10 with a longer side
chain shows enhanced

topography uniformity and
smaller π–π stacking

distance

8.2 cm2/Vs from
PDVT-10

Yun et al. [81] PDPP-CNTVT Ambipolar

Inclusion of a nitrile group in
the polymer vinyl linkage

results in ambipolar
behavior; charge transport

depends on active layer
thickness

Electron mobility of
7 cm2/Vs
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2.5. Other Works on Diketopyrrolopyrrole-Based Organic Semiconductors

Kanimozhi et al. reported a conjugated copolymer, i.e., N-CS2DPP-OD-TEG, based on
diketopyrrolopyrrole and diketopyrrolopyrrole (DPP-DPP) [151]. In this work, functional-
ized with triethylene glycol chains, the diketopyrrolopyrrole unit was then synthesized
to form the high-molecular-weight copolymer DPP-DPP. For the bottom-gate transistors,
a low balanced hole and electron mobility of ~0.01 cm2/Vs was obtained. In contrast, a
much higher electron mobility of 3 cm2/Vs was demonstrated for the top-gate counterparts,
which was attributed to the high-quality charge transport interface between the DPP-DPP
organic semiconductor and the CYTOP gate dielectric layer.

Bronstein et al. prepared a polymer, namely P1, based on the copolymerization of
both thieno[3,2-b]thiophene and diketopyrrolopyrrole [152]. Although ambipolar electrical
performance of the devices was observed, a low electron mobility of 0.03 cm2/Vs, as
well as a much higher hole mobility of up to 1.95 cm2/Vs, was reported from the thin-
film transistors without employing thermal annealing at a high temperature. In addition,
heterojunction solar cells incorporating the polymer and PC71BM exhibited an energy
efficiency of 5.4%. This study shows that interface engineering is critical in optimizing the
interaction between the semiconductor and dielectric layers, directly influencing device
performance. For polymers such as P1 with low electron mobility, strategies such as
modifying the dielectric interface, using interfacial layers, or adjusting the work function
of electrodes can enhance electron mobility while maintaining or improving hole mobility.

Wang et al. reported an ambipolar copolymer poly(diketopyrrolopyrrole-terthiophene)
(PDPPHD-T3) based on hexyldecyl-substituted diketopyrrolopyrrole and thiophene for
application in xylene sensors [153]. In this work, a diketopyrrolopyrrole block was attached
with a long alkyl chain to enhance the solution processability of the polymer. Transistors
based on the PDPPHD-T3 copolymer and OTS-treated substrate showed a hole and electron
mobility of 0.125 cm2/Vs and 0.027 cm2/Vs, respectively. Exposure to xylene vapors
increased HOMO and LUMO levels of the PDPPHD-T3 polymer. Such energy level
changes reduced the barrier for hole injection but increased that for electron injection, which
modulated the electrical behaviors of the PDPPHD-T3-based thin-film transistor. As a result,
the PDPPHD-T3 transistor-based sensor showed capability for detecting xylene at 40 ppm.
This study shows PDPPHD-T3 polymer exhibits promising sensitivity and selectivity for
xylene detection, with a response time that compares favorably to existing sensors. These
results indicate that the sensor can detect xylene concentrations as low as 40 ppm, with
rapid response and recovery times. The sensitivity is attributed to the modulation of energy
levels upon xylene exposure, which influences the charge transport properties.

Li et al. reported a donor–acceptor polymeric organic semiconductor PDQT which
comprises diketopyrrolopyrrole and β-unsubstituted quaterthiophene (QT) [78]. Without
applying thermal annealing, PDQT forms layer-by-layer lamellar crystalline structures.
The strong intermolecular interactions between the diketopyrrolopyrrole moieties, as well
as the those between the DPP-QT donor–acceptor, induce the polymer chains to sponta-
neously form self-assembled structures of close proximity with a large π–π overlap. These
interconnected crystalline structures provide an efficient intergranular charge transport
pathway. The effect from thermal annealing and molecular weight on the thin-film to-
pography was studied by using AFM (Figure 8a–f). The PDQT polymer morphology was
observed to depend on its molecular weight. For PDQT with a high molecular weight,
densely packed grains were formed with nanometer size, whereas for the counterpart with
a low molecular weight, the film was found to be present with pinholes that deteriorate
the interconnected structure. Transistors were fabricated by depositing the PDQT polymer
onto OTS-treated substrates, which yielded p-type electrical behaviors, as shown in the
output and transfer curves in Figure 8g–j. A mobility of 0.89 cm2/Vs was obtained from
the high-molecular-weight PDQT-based thin-film transistors, which further increased to
0.97 cm2/Vs when the crystalline film was thermally annealed at 100 ◦C. In contrast, the
low-molecular-weight PDQT-based devices fabricated using the same conditions exhibited
only a lower mobility of 0.35–0.39 cm2/Vs.
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The different studies reviewed in this section are summarized in Table 5.

Table 5. Summary of the different works reviewed in this section, including the diketopyrrolopyrrole-
based semiconductors, p-type or n-type, the result findings, and mobility.

Author Semiconductor Type Result Findings Mobility

Kanimozhi et al. [151] N-CS2DPP-OD-TEG Ambipolar
Device configuration impacts

ambipolar behaviors and
charge transport

3 cm2/Vs (electron)

Bronstein et al. [152] Diketopyrrolopyrrole
based polymer Ambipolar

A much higher hole mobility
was obtained than
electron mobility

1.95 cm2/Vs (hole)

Wang et al. [153] PDPPHD-T3 Ambipolar
Device performance of
PDPPHD-T3 thin-film

transistor for detecting xylene

0.125 cm2/Vs (hole)
and 0.027 cm2/Vs

(electron)

Li et al. [78] PDQT p-type

High-molecular-weight PDQT
exhibits more superior

morphology and
charge transport

0.97 cm2/Vs from the
high-molecular-weight

PDQT

3. Conclusions and Outlook

In this article, we have reported a comprehensive review of the various efforts dedi-
cated to achieving uniform crystal orientation, improving film morphology, and optimizing
the charge carrier transport of small-molecular and polymeric organic semiconductors
based on diketopyrrolopyrrole. First of all, external alignment contributes to aligned
crystal orientations, controlled crystal growth, and improved charge carrier transport.
Additionally, thermal annealing plays a vital role in modulating the ambipolar behaviors,
enhanced structural order, film morphology, and semiconductor crystallinity. Furthermore,
side-chain engineering results in enhanced π–π stacking distance, more orderly packing,
improved crystallinity, enhanced topography, greater surface uniformity, and elevated
mobility. By discussing the category of external crystal alignment, thermal annealing, and
molecular engineering of diketopyrrolopyrrole-based organic semiconductors, this work
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demonstrates that these universal methods can be applied to other solution-processed
organic semiconductors to improve their molecular packing, enhance film morphology and
crystallinity, and boost charge transport properties.

Future works in the following fields will yield more exciting outcomes in the research
of organic semiconductors and organic electronic devices. First, since small-molecular
and polymeric organic semiconductors based on diketopyrrolopyrrole exhibit ambipolar
behaviors, these attributes can find extensive applications in complimentary inverters and
thereby open up exciting pathways for high-performance organic electronics. Second, in ad-
dition to the polymeric additives such as P3HT, other additives, including small-molecular
additives [154–158] and nanostructured additives [159–164], have been documented to
manipulate the nucleation seed deposition, crystal formation, and film morphology of other
organic semiconductors such as TIPS pentacene. Mixing these small-molecular and nanos-
tructured additives with diketopyrrolopyrrole-based organic semiconductors, therefore,
will enable the tuning of nucleation, crystallization, and charge transport. Furthermore, it
is well known that external force [165–170] contributes to rigid alignment of the organic
crystals, whereas polymeric additives result in overall morphological uniformity. Therefore,
it can be beneficial to combine external force alignment methods with polymeric addi-
tives [171–178] to control the crystallization and charge transport of diketopyrrolopyrrole-
based semiconductors. We believe future endeavors in these aforementioned fields will
unveil a promising roadmap to realizing high-performance organic electronics applications.
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