All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection
Abstract
:1. Introduction
2. Photodetector Architecture
3. Materials and Methods
3.1. CdS Electrodeposition
3.2. CdTe/HgCdTe/CdTe Electrodeposition
3.3. Ag Electrodeposition
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majid, A.; Bibi, M. Cadmium based II-VI Semiconducting Nanomaterials. Gewerbestrasse 2018, 11, 6330. [Google Scholar] [CrossRef]
- Saha, S.; Johnson, M.; Altayaran, F.; Wang, Y.; Wang, D.; Zhang, Q. Electrodeposition Fabrication of Chalcogenide Thin Films for Photovoltaic Applications. Electrochem 2020, 1, 286–321. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS NCs. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Zhu, L.; Li, C.; Li, Y.; Feng, C.; Li, F.; Zhang, D.; Chen, Z.; Wen, S.; Ruan, S. Visible-light photodetector with enhanced performance based on a ZnO@ CdS heterostructure. J. Mater. Chem. C 2015, 3, 2231–2236. [Google Scholar] [CrossRef]
- Reyes-Verdugo, L.A.; Villa-Angulo, C.; Solis-Pomar, F. Improvement of the optical absorption of a photovoltaic device by embedding an ultra-thin film of CdSexTe1–x in its absorber layer. MRS Commun. 2022, 12, 1250–1255. [Google Scholar] [CrossRef]
- Gnatyuk, V.A.; Vlasenko, A.I.; Mozol’, P.O.; Gorodnychenko, O.S. Role of laser-induced stress and shock waves in modification of the photoconductivity of CdxHg1-xTe films. Semicond. Sci. Technol. 1998, 13, 1298–1303. [Google Scholar] [CrossRef]
- Sun, X.; Abshire, J.B.; Krainak, M.A.; Lu, W.; Beck, J.D.; Sullivan, W.W.; Mitra, P.; Rawlings, D.M.; Fields, R.A.; Hinkley, D.A.; et al. HgCdTe avalanche photodiode array detectors with single photon sensitivity and integrated detector cooler assemblies for space lidar applications. Opt. Eng. 2019, 58, 067103. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; He, J.; Yang, L.; Wang, J.; Yu, F.; Zhao, Z.; Shen, C.; Guo, H.; Li, G.; et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. npj Quantum Mater. 2021, 6, 103. [Google Scholar] [CrossRef]
- Villa-Angulo, C. CdSe0.4Te0.6 Quantum Well-Based Photodetector Toward Imaging Vision Sensors. Sens. J. 2020, 20, 13357–13363. [Google Scholar] [CrossRef]
- Singh, A.; Srivastav, V.; Pal, R. HgCdTe avalanche photodiodes: A review. Opt. Laser Technol. 2011, 43, 1358–1370. [Google Scholar] [CrossRef]
- Singh, A.; Shukla, A.K.; Pal, R. HgCdTe e-avalanche photodiode detector arrays. AIP Adv. 2015, 5, 087172. [Google Scholar] [CrossRef]
- Kumar, V.; Pal, R.; Chaudhury, P.K.; Sharma, B.L.; Gopal, V. A CdTe passivation process for long wavelength infrared HgCdTe photo-detectors. J. Electron. Mater. 2005, 34, 1225–1229. [Google Scholar] [CrossRef]
- Dinand, S.; Gravrand, O.; Baier, N.; De Borniol, E.; Rochette, F.; Rizzolo, S.; Saint-Pe, O.; Goiffon, V. Dark Current Evolution in Irradiated MWIR HgCdTe Photodiodes. J. Electron. Mater. 2023, 52, 7103–7113. [Google Scholar] [CrossRef]
- Chen, D.; March, S.D.; Jones, A.H.; Shen, Y.; Dadey, A.A.; Sun, K.; McArthur, J.A.; Skipper, A.M.; Xue, X.; Guo, B.; et al. Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications. Nat. Photonics 2023, 17, 594–600. [Google Scholar] [CrossRef]
- Anderson, P.D.; Beck, J.D.; Sullivan, W.; Schaake, C.; McCurdy, J.; Skokan, M.; Mitra, P.; Sun, X. Recent Advancements in HgCdTe APDs for Space Applications. J. Electron. Mater. 2022, 51, 6803–6814. [Google Scholar] [CrossRef]
- Hackiewicz, K.; Kopytko, M.; Gawron, W. MOCVD-grown HgCdTe photodiodes optimized for HOT conditions and a wide IR range. Sens. Actuators A Phys. 2020, 309, 112008. [Google Scholar] [CrossRef]
- Qin, G.; Kong, J.C.; Yang, J.; Ren, Y.; Li, Y.H.; Yang, C.Z.; Li, H.F.; Wang, J.Y.; Yu, J.Y.; Qin, Q.; et al. HgCdTe Films Grown by MBE on CZT(211)B Substrates. J. Electron. Mater. 2023, 52, 2441–2448. [Google Scholar] [CrossRef]
- Huang, L.; Lu, J.G. Synthesis, Characterizations and Applications of Cadmium Chalcogenide Nanowires: A Review. J. Mater. Sci. Technol. 2015, 31, 556–572. [Google Scholar] [CrossRef]
- Villa-Angulo, C. Self-powered cadmium chalcogenide photodetectors by pressurized air blast spraying. Opt. Mater. Express 2021, 11, 1104–1118. [Google Scholar] [CrossRef]
- Basol, B.M. Electrodeposited CdTe and HgCdTe solar cells. Sol. Cells 1988, 23, 69–88. [Google Scholar] [CrossRef]
- Nair, J.P.; Chaure, N.B.; Jayakrishnan, R.; Pandey, R.K. Non-aqueous electrodeposited CdHgTe films for solar cell application. J. Mater. Sci. Mater. Electron. 2001, 12, 377–385. [Google Scholar] [CrossRef]
- Nair, J.P.; Jayakrishnan, R.; Chaure, N.B.; Gohkale, S.; Lobo, A.; Kulkarni, S.K.; Pandey, R.K. Deposition and characterization of CdxHg1-xe films electroplated from a nonaqueous bath. J. Phys. Chem. Solids 1999, 60, 1693–1703. [Google Scholar] [CrossRef]
- Romeo, N.; Bosio, A.; Canevari, V.; Podestà, A. Recent progress on CdTe/CdS thin film solar cells. Sol. Energy 2004, 77, 795–801. [Google Scholar] [CrossRef]
- Mohamed, H.A. Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 2013, 113, 093105. [Google Scholar] [CrossRef]
- Jaber, A.; Alamri, S.; Aida, M. CdS thin films growth by ammonia free chemical bath deposition technique. Thin Solid Films 2012, 520, 3485–3489. [Google Scholar] [CrossRef]
- Wu, X. High-efficiency polycrystalline CdTe thin-film solar cells. Sol. Energy 2004, 77, 803–814. [Google Scholar] [CrossRef]
- Villa-Angulo, J.R.; Villa-Angulo, R.; Villa-Angulo, C. Photon absorption coefficient (α) for a low-dimensional CdS/CdTe absorber by a partial k-selection approach. J. Nanophotonics 2013, 7, 073099. [Google Scholar] [CrossRef]
- Villa-Angulo, J.R.; Villa-Angulo, R.; Solorio-Ferrales, K.; Ahumada-Valdez, S.E.; Villa-Angulo, C. Effect of effective mass mismatch in CdS/CdTe heterojunctions on the fundamental design parameters of nanophotonic devices. J. Nanophotonics 2014, 8, 83096. [Google Scholar] [CrossRef]
- Gates, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Ullah, S.; Mollar, M.; Marí, B. Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications. J. Solid State Electrochem. 2016, 20, 2251–2257. [Google Scholar] [CrossRef]
- Bouich, A.; Hartiti, B.; Ullah, S.; Ullah, H.; Touhami, M.E.; Santos, D.M.F.; Mari, B. Optoelectronic characterization of CuInGa(S)2 thin films grown by spray pyrolysis for photovoltaic application. Appl. Phys. A 2019, 125, 579. [Google Scholar] [CrossRef]
- Rasool, S.; Saritha, K.; Reddy, K.R.; Tivanov, M.S.; Gremenok, V.F.; Zimin, S.P.; Pipkova, A.S.; Mazaletskiy, L.A.; Amirov, I.I. Annealing and plasma treatment effect on structural, morphological and topographical properties of evaporated β-In2S3 films. Mater. Res. Express 2020, 7, 016431. [Google Scholar] [CrossRef]
- Bouich, A.; Ullah, S.; Ullah, H.; Mari, B.; Hartiti, B.; Touhami, M.E.; Santos, D.M.F. Deposit on different back contacts: To high-quality CuInGaS2 thin films for photovoltaic application. J. Mater. Sci. Mater. Electron. 2019, 30, 20832–20839. [Google Scholar] [CrossRef]
- Purohit, A.; Chander, S.; Nehra, S.; Dhaka, M. Effect of air annealing on structural, optical, morphological and electrical properties of thermally evaporated CdSe thin films. Phys. E Low-Dimens. Syst. Nanostructures 2015, 69, 342–348. [Google Scholar] [CrossRef]
- Thiwawong, T.; Onlaor, K.; Tunhoo, B. A humidity sensor based on silver nanoparticles thin film prepared by electrostatic spray deposition process. Adv. Mater. Sci. Eng. 2013, 2013, 640428. [Google Scholar] [CrossRef]
- Jijun, Q.; Zhengguo, J.; Weibing, W.; Xiaoxin, L.; Zhijie, C. Effect of annealing on structural, optical and electrical properties of CdS thin films grown by ILGAR. J. Wuhan Univ. Technol. Sci. Ed. 2006, 21, 88–91. [Google Scholar] [CrossRef]
- Sekhar, H.; Rao, D.N. Stokes and Anti-Stokes Luminescence in Heat-Treated CdS Nanopowders. J. Phys. Chem. 2013, 117, 2300–2307. [Google Scholar] [CrossRef]
- de Moure-Flores, F.; Quiñones-Galván, J.G.; Guillén-Cervantes, A.; Santoyo-Salazar, J.; Hernández-Hernández, A.; Contreras-Puente, G.; Olvera, M.D.L.L.; Meléndez-Lira, M. Hexagonal CdTe films with Te excess grown at room temperature by laser ablation. Mater. Lett. 2013, 92, 94–95. [Google Scholar] [CrossRef]
- Arizpe-Chavez, H.; Espinoza-Beltrán, F.J.; Ramirez-Bon, R.; Zelaya-Angel, O.; González-Hernández, J. Cubic to hexagonal phase transition in CdTe polycrystalline films by oxygen incorporation. Solid State Commun. 1997, 101, 39–43. [Google Scholar] [CrossRef]
- JCPDS 1989 Powder Diffraction File Inorganic Phase; International Center for Diffraction Data: Swarthmore, PA, USA, 1989.
- Gao, X.; Hu, M.; Fu, Y.; Weng, L.; Liu, W.; Sun, J. Low temperature deposited Ag films exhibiting highly preferred orientations. Mater. Lett. 2018, 213, 178–180. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, R.; Zhao, T.; Sun, T.; Chu, X.; Liu, S.; Tang, E.; Xu, X. Efficient reduction of 4-nitrophenol catalyzer by 4-carbo-methoxypyrrolide modified PAMAM dendrimer-silver nanocomposites. Cat. Sci. Technol. 2019, 9, 6145. [Google Scholar] [CrossRef]
- Alber, A.S.; Mutlak, F.A.-H. A novel laser-assisted approach for synthesis of AuNPs/PS nanostructures as photodetector. J. Opt. 2023, 52, 1477–1487. [Google Scholar] [CrossRef]
- Harb, N.H.; Mutlak, F.A.-H. Effect of etching current density on spectroscopic, structural and electrical properties of porous silicon photodetector. Optik 2022, 249, 168298. [Google Scholar] [CrossRef]
- Jwar, A.J.; Nayef, U.M.; Mutla, F.A.H. Study Effect of Magnetic Field on Au TiO2 Core–Shell Nanoparticles via Laser Ablation Deposited on Porous Silicon for Photodetector. Plasmonics 2023, 18, 592–605. [Google Scholar] [CrossRef]
- Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J.P.; Boulade, O.; Moreau, V.; Fieque, B. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements. J. Electron. Mater. 2016, 45, 4532–4541. [Google Scholar] [CrossRef]
Material | 2θ (Degree) | (hkl) | FWHM (°) | D (Å) | δ (nm−2) | ε (nm−2) |
---|---|---|---|---|---|---|
CdS | 26.53 | 002 | 1.03 | 82.60 | 14.65 × 10−3 | 19.24 × 10−3 |
CdTe | 22.30 | 100 | 0.96 | 88.00 | 12.91 × 10−3 | 21.20 × 10−3 |
Hg0.1Cd0.9Te | 30.00 | 111 | 1.60 | 53.60 | 34.80 × 10−3 | 26.00 × 10−3 |
Ag | 38.00 | 111 | 0.197 | 445.2 | 5.04 × 10−4 | 2.50 × 10−3 |
Heterojunction | Fabrication Technique | Detection Range (μm) | Reported Performance | Ref. |
---|---|---|---|---|
Hg1−xCdxTe | MBE | 0.9–4.3 | Photon detection efficiency > 70% Dark count rate of <250 Hz at 110 K | [7] |
HgCdTe/CdZnTe | LPE | 0.8–5.0 | g factor 5.7018 Dmax = 2 × 1014 cm Hz1/2 W−1 at the bias voltage −7.1 V | [8] |
HgCdTe/CdZnTe | LPE | 0.9–4.3 | High dynamic resistance times Active area (R0A) product, 2 × 106 Ω-cm2, Jdark = 4 nA/cm2 Gain > 5500 at −8 V and 80 K. | [11] |
HgCdTe/CdTe | LPE | 0.4–4.5 | Gain of ~6100 (reverse bias of 14.9 V at 1.55 µm illumination) Reduction factor of 4 in ROIC glow-induced dark counts Photoelectron jitter > 1.5 ns | [15] |
HgCdTe/CdTe | MOCVD | 0.9–8.0 | Jdark = 1.06 × 10−3 A/cm3 Dmax = 9.83 × 1011 cm Hz1/2 W−1 | [16] |
HgCdTe | LPE/MBE | 0.9–6.0 | Jdark = 1 × 10−4 A/cm3, EQE = 74% | [43] |
CdHgTe/CdTe | Electrodeposition | 0.9–5.0 | Jdark = 1.1 × 10−6 A/cm3 Dmax = 2.86 × 1012 cm Hz1/2 W−1 Voc = 0.91 V Jsc = 27.3 mA/cm2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candelas-Urrea, V.A.; Villa-Angulo, C.; Hernández-Fuentes, I.O.; Morales-Carbajal, R.; Villa-Angulo, R. All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection. Coatings 2024, 14, 1133. https://doi.org/10.3390/coatings14091133
Candelas-Urrea VA, Villa-Angulo C, Hernández-Fuentes IO, Morales-Carbajal R, Villa-Angulo R. All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection. Coatings. 2024; 14(9):1133. https://doi.org/10.3390/coatings14091133
Chicago/Turabian StyleCandelas-Urrea, Vianey A., Carlos Villa-Angulo, Iván O. Hernández-Fuentes, Ricardo Morales-Carbajal, and Rafael Villa-Angulo. 2024. "All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection" Coatings 14, no. 9: 1133. https://doi.org/10.3390/coatings14091133
APA StyleCandelas-Urrea, V. A., Villa-Angulo, C., Hernández-Fuentes, I. O., Morales-Carbajal, R., & Villa-Angulo, R. (2024). All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection. Coatings, 14(9), 1133. https://doi.org/10.3390/coatings14091133