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Abstract: Arc spraying is one of the most effective and cost-efficient thermal spraying technologies for
creating high-quality protective coatings. This paper examines the influence of arc spraying process
parameters on the properties of steel coatings. The parameters varied in this study included gas
pressure, wire feed rate, and the distance from the spray gun to the substrate (standoff distance).
Experimental evaluations focused on surface roughness, thickness, porosity, structure, and hardness
of the coatings. The techniques used for these evaluations included profilometry for roughness
measurement, scanning electron microscopy (SEM) for structural analysis, Vickers hardness testing,
and optical microscopy. The results demonstrate a significant influence of arc spraying parameters
on the characteristics of the resulting coatings. The analysis revealed that the coatings produced
under different modes exhibit a layered structure and vary in thickness. A detailed examination
of the coating structure identified defects such as unmelted particles, voids, and delamination in
the interface zone. The study of coating thickness and porosity showed that increasing the wire
feed rate and decreasing the standoff distance leads to the formation of thicker and denser coatings.
Specifically, increasing the wire feed rate from 2 to 12 cm/s resulted in a decrease in porosity from
12.59% to 4.33% and an increase in coating thickness to 699 µm. The surface analysis highlighted the
importance of a comprehensive approach to selecting the optimal roughness. While increasing the
wire feed rate up to 12 cm/s can increase the Ra roughness parameter, gas pressure also significantly
influences this parameter, reducing roughness from Ra = 18.63 µm at 6 MPa to Ra = 15.95 µm at
8 MPa. Additionally, it was found that varying the arc spraying parameters affects the hardness of
the coatings, with all modes resulting in hardness values higher than that of the substrate. Therefore,
optimizing these parameters enables the achievement of the best combination of mechanical and
structural properties in the coatings. These findings can be valuable for further improvement of arc
spraying technologies and the expansion of their application across various industries.

Keywords: arc spraying; steel coatings; microstructure; Vickers hardness; porosity; thickness

1. Introduction

In mechanical engineering, thermal spraying is one of the key methods for applying
protective coatings that are widely used across various industries [1]. This method offers the
ability to create coatings with specific characteristics tailored to the needs of particular ap-
plications. Various thermal spraying techniques exist, including detonation spraying [2–4],
arc spraying [5,6], plasma spraying [7,8], HVOF [9,10], and cold spraying [11,12]. Each
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of these processes has distinct characteristics and applications, but arc spraying remains
one of the earliest and most widely utilized technologies. It was invented by Max Ulrich
Schupp in 1918, gained commercial recognition in the 1960s, and continues to be used in
industry due to its high economic efficiency, low equipment and operating costs, and high
deposition rates and thermal efficiency [13,14].

Arc spraying, also known as twin-wire arc or electric arc spraying (EAS), is a process
in which two electrically conductive wires of opposite polarity are fed through guide rollers
to meet at a specific point [15]. At this point, an arc is formed, melting the wires. The
molten particles are then accelerated towards the substrate by compressed air or nitrogen,
where they solidify or sinter together to form a protective coating.

Arc spraying allows for the production of coatings with high physical and mechanical
properties. However, achieving optimal coating quality requires consideration of numerous
factors that influence its characteristics. Key parameters include microstructure, fatigue
strength, wear rate, corrosion resistance, coating porosity, hardness, strength, deposition
efficiency, adhesion strength, surface roughness, and oxide content [16,17]. The final
properties of the coating are significantly affected by various parameters of the thermal
arc spraying process. These parameters include voltage, current, wire feed rate, standoff
distance (SoD), nozzle geometry, coating environment (inert, ambient, or vacuum chamber),
spray gas pressure, initial material, gas type (air or nitrogen), substrate surface preheating,
and subsequent thermal treatment of the coating lamellae [6,18–23]. Surface preparation
methods, such as shot peening and sandblasting, also play a crucial role.

Numerous studies have confirmed the importance of optimizing thermal spraying
parameters to achieve the desired characteristics of metallic coatings. For example, Arif
et al. [17] examined the influence of standoff distance (SoD) on the properties of brass
coatings applied to low-carbon steel, finding that increases in voltage and SoD result in
higher surface roughness and alterations in the coatings’ microstructure, while deposition
efficiency (DE) significantly decreased. Another study [24] explored the characteristics
of steel coatings under varying carrier gas pressure, standoff distance, and torch power,
revealing that coating density increases with higher carrier gas pressure and a reduced
SoD. Johnston et al. [23] demonstrated that spraying parameters impact the microstructure,
porosity, and hardness of zinc coatings. Kumar et al. [25] optimized the parameters for
twin-wire arc spraying of aluminum coatings, while Kumar and Pandey [26] showed how
plasma spraying parameters influence coating thickness and surface roughness. However,
improper selection of EAS parameters can lead to high porosity, increased oxide content,
low DE, and high surface roughness [27,28]. This underscores the necessity of optimizing
EAS parameters to produce effective coatings tailored for specific applications [29].

A considerable amount of literature addresses the EAS process. However, most studies
focus on materials such as zinc, chromium, aluminum, and brass, while steel coatings,
particularly those made from 30KhGSA steel, are less extensively studied. This type of steel
is frequently used in environments requiring protection from abrasive and erosive wear,
making it a promising candidate for various applications in mechanical engineering. There-
fore, the primary objective of this study was to investigate the characteristics of 30KhGSA
steel coatings produced by arc spraying. The study varied key process parameters, such
as gas pressure, wire feed rate, and the distance from the spray gun to the sample surface.
The coatings were evaluated based on surface roughness, thickness, porosity, microstruc-
ture, and hardness. The discussion focuses on determining optimal parameters to better
understand the arc spraying process of steel wires and their influence on coating properties.

2. Materials and Methods
2.1. Description of the Equipment Used

Arc spraying (AS) is a process in which a jet of molten metal droplets is formed by
the action of a fast-moving gas on the continuously melting tips of consumable wires.
These wires are fed into a direct current arc that is formed between the wires. This process
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provides effective spraying and deposition of molten particles on the substrate surface,
resulting in the formation of a protective coating with high performance characteristics.

The coatings were applied using the SX-600 supersonic electric arc metallizer, man-
ufactured by Guangzhou Sanxin Metal S&T Co., Ltd. (Guangzhou, China). The system
comprises a power supply, a supersonic sprayer, a control system, and a compressed air
system. The power supply ensures a stable voltage necessary for maintaining a consistent
spraying process. The control system allows for the regulation of the wire feed rate and
electrical parameters during spraying. The compressed air system controls the gas pressure,
which directly influences the quality and uniformity of the spray.

The wire spraying was conducted according to the settings outlined in Table 1. The
parameters in the specified modes were varied by adjusting factors such as gas pressure
(P), wire feed rate (V), and the distance from the spray gun to the sample surface (SoD).
The voltage during the spraying process was maintained at 42 ± 3 V. Air was used as the
spraying gas. Each sample was sprayed across the entire substrate surface to obtain an even
layer within 10 s. The ambient temperature was controlled within the range of 27–29 ◦C,
and the humidity was kept constant throughout the entire series of experiments.

Table 1. Spraying regimes.

Sample P, MPa V, cm/s D, mm

V1 9 2 200
V2 9 4 200
V3 9 8 200
V4 9 12 200
D1 9 12 100
D2 9 12 150
D3 9 12 200
D4 9 12 250
P1 6 12 200
P2 7 12 200
P3 8 12 200
P4 9 12 200

Each sample obtained is labeled according to the parameters to be changed. Samples
labeled V refer to a change in the wire feed rate parameter. Samples labeled D refer to a
change in the SoD. Samples labeled P refer to a change in the gas pressure parameter.

2.2. Characteristics of Materials Used and Sample Preparation

The coatings were sprayed on prepared substrates of 65G steel. This is a high-carbon
spring steel with high wear resistance and good mechanical properties, making it an
excellent choice for high-load and friction applications. The chemical composition of the
substrate is shown in Table 2.

Table 2. Chemical composition of 65G steel substrate.

Fe,
wt%

C,
wt%

Si
wt%

Mn
wt%

Ni
wt%

S
wt%

P
wt%

Cr
wt%

Cu
wt%

base 0.62–0.7 0.17–0.37 0.9–1.2 up to 0.25 up to 0.035 up to 0.035 up to 0.25 up to 0.2

Before spraying, the surface of the substrates was thoroughly prepared by sandblasting.
Sandblasting was performed using electrocorundum, which was fed from a gun through a
nozzle with a diameter of 5 mm under air pressure of 7 MPa. Such treatment allows effective
removal of oxides, contaminants, and roughness from the substrate surface, providing
better adhesion of the sprayed coating to the substrate.
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As coating material, 30KhGSA steel-grade wire was used. This is an alloyed structural
steel characterized by high strength and wear resistance due to the presence of chromium,
silicon, and manganese in its composition. The chemical composition of the steel wire is
shown in Table 3. The diameter of the wire was 14 mm.

Table 3. Chemical composition of 30KhGSA steel.

Fe,
wt%

C,
wt%

Si
wt%

Mn
wt%

Ni
wt%

S
wt%

P
wt%

Cr
wt%

Cu
wt%

base 0.28–0.34 0.9–1.2 0.8–1.1 up to 0.3 up to 0.025 up to 0.025 0.8–1.1 up to 0.3

2.3. Methods for Evaluating the Characteristics of Coatings

To investigate the structure and porosity of the coatings, cross sections of the samples
were prepared. The samples were processed using standard sectioning methods, followed
by grinding and mechanical polishing. Grinding was performed using SiC abrasive papers
with grit sizes ranging from 120 to 3000, and polishing was carried out with velvet cloth
and diamond paste on an automatic polishing machine, model METAPOL 2200P (Laizhou
Lyric Testing Equipment Co., Shandong, China). Microstructure analysis was conducted
using a Tescan Vega 4 scanning electron microscope (Tescan, Brno, Czech Republic). Prior
to analysis, the samples were mounted on special conductive tape. The examination was
conducted at an accelerating voltage of 20 kV. To analyze coating porosity, images were cap-
tured at selected magnifications using an Olympus BX53M optical microscope (Olympus,
Tokyo, Japan). Porosity was calculated according to ASTM E2109 using metallographic
analysis software. Test method B, which involves automatic image analysis in the software,
was employed. To minimize errors, at least 10 separate areas were analyzed. The average
coating thickness was measured based on five measurements for each coating image. Sur-
face roughness was evaluated using the contact profilometry method with a Profilometer
130 (Proton, Zelenograd, Russia). Five measurements were taken at random locations
on each coated sample to ensure result reproducibility and minimize errors, followed by
recalculation of numerical values according to GOST 2789-73. Adhesion tests were carried
out on an Elcometer 510 T pull-off adhesion tester (Elcometer, Manchester, UK) with 20 mm
dollies. Microhardness was also analyzed. Vickers microhardness testing was performed
using a semiautomatic microhardness tester, Metolab 502 (Metolab, St. Petersburg, Russia),
in accordance with GOST-2999-75. A minimum of 10 measurements were taken at random
points to determine the microhardness.

3. Results
3.1. Microstructure

SEM images revealed that the coatings produced by arc spraying exhibited a similar
layered structure across all processing modes. Figure 1 presents the structure of the sample
produced under a working gas pressure of 9 MPa, a wire feed rate of 12 cm/s, and an
SoD of 200 mm (D3 sample), illustrating the characteristic layered morphology observed
in other conditions as well. During the spraying process, molten particles ejected from
the metallizer reach the substrate surface, where they rapidly cool and solidify, forming
thin layers or lamellae [30,31]. This rapid cooling facilitates the formation of the layered
structure. Each layer consists of a solidified particle or group of particles that accumulate
on top of one another.
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The investigation also revealed zones with defects such as pores, delaminations, and 
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ure 3, marked in red as 1) can form due to gas or air entrapment, inadequate fusion of 
molten particles, or improper regulation of spraying parameters (e.g., gas pressure or 

Figure 1. Typical layered microstructure of the cross section of the coatings (D3 sample).

It was observed that the structure comprises both light and dark regions. Figure 2
shows the structure of the sample produced under a wire feed rate of 8 cm/s, a working gas
pressure of 9 MPa, and an SoD of 200 mm (V3 sample). A mixture of light and dark regions
is evident, with alternating lamellae of both phases present in all samples. Additionally,
rounded light phases are visible within the dark regions. The dark regions exhibit cracks
within their structure, whereas the light regions do not. Furthermore, the light regions
appear to hinder the propagation of cracks originating from the dark regions (Figure 2).
Similar findings were reported in studies investigating the microstructural characteristics
of steel coatings produced by twin-wire arc spraying [24].
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Figure 2. Microstructure of V3 coating with alternating light and dark zones (red circles highlight
cracks in dark zones).

The investigation also revealed zones with defects such as pores, delaminations,
and unmelted particles within the coating structure at various depths. For instance,
Figure 3 presents the microstructure of sample D4, highlighting the identified defects.
Pores (Figure 3, marked in red as 1) can form due to gas or air entrapment, inadequate
fusion of molten particles, or improper regulation of spraying parameters (e.g., gas pres-
sure or temperature). The numerical data on porosity variation as a function of spraying
parameters are discussed in Section 3.2 of this article. Delaminations between the coating
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lamellae (Figure 3, marked in green as 2), as well as at the interface, are also evident. These
delaminations may result from insufficient bonding between layers or between the coating
and the substrate. Another observed defect is unmelted particles (Figure 3, marked in
blue as 3). These are material particles that did not fully melt during the spraying process
and remained on the substrate or between lamellae in a solid state. Unmelted particles
can compromise coating adhesion and may serve as initiation points for microcracks and
other defects.
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Figure 3. Microstructural analysis of the D4 coating with detection of defect zones (designations:
1—pores, 2—delaminations, 3—unmelted particles).

The influence of various process parameters on defect formation is clearly evident
in the SEM graphs. Figure 4 presents coatings obtained at different gas pressure levels,
emphasizing how changes in gas pressure affect the microstructure of the coatings, par-
ticularly in terms of defect formation. For instance, at a higher gas pressure of 9 MPa (P4
coating), the micrograph reveals a significant increase in defects, such as delaminations
and unmelted particles, compared to the coating applied at 7 MPa (P2 coating). In contrast,
the coating applied at 7 MPa exhibits fewer defects, resulting in a more uniform and robust
structure, which correlates with higher hardness values.
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3.2. Thickness and Porosity

Thickness and porosity of coatings are two of the main properties characterizing coat-
ings [32]. The thickness and porosity of coatings depending on the variation of parameters
were investigated.

The effect of wire feed rate on the thickness of the coatings demonstrates a direct
relationship: as the wire feed rate increases, the coating thickness also increases (Figure 5).
The porosity of the coatings decreases with increasing wire feed rate, reaching minimum
values of 8.38% and 4.33% at 8 and 12 cm/s, respectively. An increase in wire feed rate raises
the amount of sprayed material, contributing to greater coating thickness. Additionally,
the increased material deposition can result in denser coatings. This increased material
density enhances surface coverage, thereby reducing the number of pores and voids in the
coating. Moreover, as the wire feed rate increases, more particles impact the surface, which
can compact the layers already applied. This compaction further reduces the porosity of
the coating.
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The study of the influence of working gas pressure (Figure 6) shows that the maxi-
mum thickness values of 712 and 699 microns were achieved for samples produced at 7
and 9 MPa, respectively. The minimum porosity values were also observed in samples
processed at 7 and 9 MPa. These gas pressures are the most optimal for producing thick
and dense coatings.
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At shorter distances, the coating thickness was greater (Figure 7). The thickest coating
among all samples was obtained at an SoD of 150 mm. However, as the SoD increased,
the coating thickness decreased. Thus, it can be concluded that an SoD of 150 mm is
optimal for achieving thicker coatings, which could reduce operating costs by requiring
less metallization work while using the same amount of wire. However, the porosity study
revealed that coatings sprayed at lower SoD values (100 and 150 mm) exhibited relatively
high porosity. In contrast, increasing the SoD to 200 mm led to a reduction in porosity
and the formation of denser coatings. Further increasing the SoD from 200 to 250 mm
resulted in a twofold decrease in thickness, along with a sharp increase in porosity to the
highest values observed among all samples. Therefore, a further increase in SoD was not
deemed reasonable.
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3.3. Surface Roughness and Adhesion

The Ra parameter (arithmetic mean deviation of the profile) was chosen as the main
parameter to describe roughness. This parameter defines the arithmetic mean of absolute
values of profile deviations from the center line within the base length. Therefore, further
in the text, when we say “roughness”, we mean this parameter.

The results obtained by varying each parameter are shown in Figure 8. It can be
observed that changes in spraying parameters lead to different ranges of surface roughness
(Ra) values. Decreasing each parameter to its minimum value, such as 2 cm/s for wire feed
rate (V), 100 mm for SoD, and 6 MPa for gas pressure, results in an increase in roughness
within these ranges. When the wire feed rate is increased, Ra decreases to a minimum of
12.45 µm at 4 cm/s. However, further increases in the wire feed rate lead to an increase
in roughness, with values of 13.96 and 17.05 µm observed at 8 and 12 cm/s, respectively.
This increase in roughness can be attributed to the rise in arc current and the quantity of
sprayed material, which results in the deposition of larger particles [23].

Varying the gas pressure (P) produced the widest range of roughness values. The
lowest roughness values, 16.74 and 15.95 µm, were obtained at gas pressures of 7 and
8 MPa, respectively. However, increasing the gas pressure to a maximum of 9 MPa resulted
in an increase in roughness to 17.05 µm.
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Regarding SoD, high and similar roughness values were observed at distances of
100 and 200 mm. At SoD values of 150 and 250 mm, a decrease in roughness was noted.
Varying the SoD alters the velocity–temperature relationship of the particles. In thermal
spraying, an optimal SoD should allow the particles sufficient time to melt, ensuring a
dense coating; however, an excessively large SoD may cause the molten particles to solidify
before reaching the substrate [21]. Conversely, reducing the SoD may increase particle
velocity upon impact with the substrate, leading to coatings with uniformity, high density,
and low roughness [33]. Therefore, finding the optimal SoD values is crucial.

The adhesion strength of the coatings was evaluated using the pull-off method in
accordance with ASTM D4541. For this purpose, dollies were bonded to the coating surface
using a universal high-strength adhesive, ensuring optimal contact and reliable adhesion
to the surface. After the adhesive had fully cured, a perpendicular force was applied to the
dolly until the coating detached from the substrate. During the experiment, a maximum
force of 25 MPa was recorded, after which no further increase in force occurred and the
device reached its operational limit. This indicates that the adhesion strength of the coating
exceeded the capabilities of the equipment used. We are currently preparing to conduct
additional adhesion tests using alternative methods that will allow for a more precise
evaluation of the adhesion strength. The results of these tests are planned to be published
in a subsequent article.

3.4. Vickers Hardness

The microhardness of the coatings strongly depends on the coating spraying modes.
The results are summarized in Table 4.
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Table 4. Mechanical properties of the coatings.

P, MPa V, cm/s D, mm HV

9 2 200 316.2 ± 22
9 4 200 377 ± 21
9 8 200 404 ± 22
9 12 200 327.1 ± 19
9 12 100 280.8 ± 12
9 12 150 340.7 ± 15
9 12 250 334.5 ± 20
6 12 200 326.5 ± 16
7 12 200 392.6 ± 9
8 12 200 343.8 ± 22

initial 250.3 ± 6

The microhardness of the initial material is 250.3 HV, which is significantly lower
than the microhardness of the coatings produced under various spraying conditions. This
underscores the effectiveness of the arc spraying process in enhancing the mechanical
properties of surfaces. At a pressure of 9 MPa and a distance of 200 mm, increasing the
wire feed rate from 2 to 8 cm/s leads to an increase in coating microhardness from 316.2
to 404 HV. However, a further increase in the feed rate to 12 cm/s results in a decrease
in microhardness to 327.1 HV. At a feed rate of 12 cm/s and different pressures (6, 7, 8,
9 MPa), the maximum microhardness is achieved at 7 MPa, reaching 392.6 ± 9 HV. The
highest microhardness (404 HV) is obtained at a wire feed rate of 8 cm/s, a pressure of
9 MPa, and a distance of 200 mm. This suggests that there is an optimal combination
of spraying parameters that yields the highest mechanical properties. Conversely, the
lowest microhardness (280.8 HV) is observed when the pressure is varied and the distance
is reduced.

The selection of optimal process parameters is crucial for achieving high mechanical
properties. For instance, non-optimal spraying conditions, such as a wire feed rate of
2 cm/s, result in the formation of porous and thin coatings with low hardness. A thin
coating with a thickness of 87 µm and a porosity of 10.45% exhibits one of the lowest
hardness values (316.2 ± 22 HV). This confirms that high porosity and insufficient thick-
ness can significantly diminish the strength characteristics of the coating. However, as
demonstrated by the sample at an SoD of 100 mm, even a considerable coating thickness
(1111 µm) coupled with high porosity (13.92%) leads to a significant reduction in hardness
to 280.8 ± 12 HV. This indicates that coating hardness may depend not only on thickness
and porosity but also on other defects.

For a deeper understanding of the influence of various parameters on coating hardness,
consider the comparison of samples with varying gas pressures (7 and 9 MPa). Despite
similar porosity (4.33% and 4.02%) and coating thickness (699 and 712 µm), the hardness
of these coatings differs significantly. The coating applied at 7 MPa exhibits a hardness
of 392.6 ± 9 HV, which is notably higher than the 327.1 ± 19 HV observed at 9 MPa.
This finding confirms that even with similar porosity and thickness, hardness can vary
significantly depending on the presence of other defects. As discussed in Section 3.1
(Figure 4), the coating applied at 9 MPa, although denser, has a more defective structure,
including delaminations and unmelted particles. These defects reduce the overall strength
of the coating, which explains the observed differences in hardness.

Adjusting each of the arc spraying parameters, such as wire feed rate, distance,
and gas pressure, leads to significant changes in coating microhardness, highlighting
the importance of a comprehensive approach to optimizing these parameters for achieving
optimal properties.
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4. Conclusions

This study demonstrated that varying arc spraying parameters, such as gas pressure,
wire feed rate, and standoff distance (SoD), has a significant impact on the characteristics
of the resulting coatings. Experimental studies confirmed that adjusting these parameters
leads to changes in surface roughness, thickness, porosity, structure, and hardness of the
coatings. The key findings of the study are as follows.

1. Increasing the wire feed rate from 2 to 12 cm/s leads to an increase in coating thickness
to 699 µm and a significant reduction in porosity to 4.33%. However, further increasing
the speed to 12 cm/s can increase the surface roughness. The hardness of the coating
increases as the wire feed rate is raised from 2 to 8 cm/s, reaching 404 HV. However,
a further increase to 12 cm/s results in a decrease in hardness.

2. The optimal SoD for achieving a thicker coating is 150 mm, while a denser coating is
achieved at 200 mm. However, increasing the SoD to 250 mm results in a significant
decrease in coating thickness and an increase in porosity. The lowest hardness of the
coating, 280 HV, is observed at an SoD of 100 mm, highlighting the importance of
accurately selecting the SoD to achieve the best mechanical properties.

3. The maximum thickness and minimum porosity values of the coatings are achieved at
gas pressures of 7 and 9 MPa, indicating that these pressures are optimal for producing
dense coatings. Gas pressure has a significant effect on the surface roughness, reducing
it from Ra = 18.63 µm at 6 MPa to Ra = 15.95 µm at 8 MPa. The maximum hardness
of the coating is achieved at a pressure of 7 MPa, emphasizing the need for precise
pressure control to obtain the best mechanical properties.

Based on the experimental data, it was found that to obtain a coating of 30KhGSA steel
with high physical and mechanical characteristics, the following technological conditions
for arc spraying should be applied: a working gas pressure of 9 MPa, a wire feed rate
of 12 cm/s, and an SoD of 200 mm; alternatively, a pressure of 7 MPa, a wire feed rate
of 12 cm/s, and an SoD of 200 mm. These parameters yield optimal coating thickness,
minimal porosity, and high coating hardness. However, to further improve the technology
and validate the results, additional experiments are planned to test other combinations of
parameters, including a wire feed rate of 8 cm/s, an SoD of 150 mm, and a gas pressure of
8 MPa, to determine the most optimal parameters for different operating conditions.
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