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Abstract: The study examined the corrosion and wear characteristics of hot-dip galvanized
steel in complex soil environments. The results showed that hot-dip galvanized steel
exhibited improved corrosion resistance characteristics. Additionally, the sliding speed was
observed to influence both the coefficient of friction (COF) and the state of the worn surface.
Moreover, the corrosion resistance of hot-dip galvanized steel declined as the immersion
period increased. Following the incorporation of friction behavior, the galvanized layer is
prone to accelerated degradation. The wear of the galvanized layer resulted in the failure
of its electrochemical protection, creating a pathway for corrosion to occur on the substrate
as a result of the coupling effect of corrosion and wear. The use of hot-dip galvanized steel
presents challenges when exposed to a tribocorrosion environment for a prolonged period.
This study lays the groundwork for future research on the maintenance cycle of industrial
structures constructed primarily with hot-dip galvanized steel.

Keywords: tribocorrosion; hot-dip galvanized; EIS; soil extract; transmission tower;
synergistic effect

1. Introduction
Hot-dip galvanized steels have found extensive applications in industrial applica-

tions, such as transmission towers, bottom plates of household appliances, and highway
guardrails. The service life is influenced by challenging and intricate environmental condi-
tions, such as wind and rain [1–3]. The hot-dip galvanized steel components experience
various adverse effects that are not effectively mitigated. For example, the power trans-
mission tower, when situated in an open field for an extended period, is susceptible to
environmental erosion and subsequent failure [4]. The collapse of transmission towers in
service around the world is largely due to corrosion and wear of the relevant hot-dip galva-
nized steel components [5]. The coupling effect of corrosion and wear is the key influencing
factor for the failure and deterioration of hot-dip galvanized steel in power transmission
towers [6–9]. To date, extensive research has been conducted on the coupling behavior of
corrosion and wear (tribocorrosion behavior) of hot-dip galvanized steel [2,10–13]. The
corrosion and wear characteristics of hot-dip galvanized steel in soil are notably concealed
and highly detrimental.

Recently, scholars have shown an increased interest in the basic corrosive character-
istics of hot-dip galvanized steel in soil. For instance, Claudia Soriano et al. [12] studied
the corrosion-promoting impact of soil organics on hot-dip galvanized steel, and pointed
out that soil organics, such as citric acid, could serve as corrosion promoters for hot-dip
galvanized steel. Meanwhile, Stefano Rossi et al. [14] also studied the corrosion of carbon
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steel in soil. They demonstrated that soil properties, especially chlorides, sulphates, and
water content, were closely related to the corrosion of metal components. In addition,
Ryo Hirata et al. [15] examined the corrosion characteristics of carbon steel, typically used
as the base material for galvanized steel, in artificial soils with varying levels of satura-
tion in a 3% NaCl solution. The researchers highlighted that the saturation level of the
NaCl solution significantly impacted the uniformity of corrosion on carbon steel in soil.
Samanbar et al. [16] investigated the corrosion characteristics of galvanized steel in an al-
kaline sulfate solution. Their findings indicated that sulfate ions have a detrimental impact
on the protective barrier properties of the surface layers and promote prolonged corrosion
activity. In the existing literature, researchers have predominantly concentrated on the
basic corrosive behaviors of hot-dip galvanized steel in soil. In fact, the deterioration of
galvanized steel components exposed to outdoor conditions is frequently influenced by
factors such as wear in addition to corrosion. For example, the grounding components of
the transmission tower are exposed to the coupling effect of corrosion and wear caused
by the vibrations and wind-induced oscillations in an outdoor setting [17–21]. Limited re-
search has been conducted on the coupling effect of corrosion and wear on galvanized steel
components, as evidenced by a scarcity of studies in the literature [22–25]. The significant
impact of the corrosion-wear coupling on metal components should not be overlooked.
Natsis et al. [26] studied the effect of soil conditions on the wear of tillage equipment. The
findings indicated that soil moisture significantly influenced equipment wear, with wear
levels escalating in correlation with the expansion of cultivated land area and duration of
tillage. Kostencki et al. [27] investigated the tribocorrosive characteristics of agricultural
tools in soil. The results indicate that the wear strength of the parts is directly determined
by the chemical elements present in the soil. Abdelrahman et al. [28] conducted a compre-
hensive analysis of the failure of M20 class 8.8 galvanized steel bolts (derrick bolt) in an
offshore drilling station after 5 years of use. Their findings indicated that the failure was
primarily attributed to fretting wear and seawater corrosion of the galvanized steel. The
corrosion and wear behavior of metal components are interrelated, mutually reinforcing
each other, and consequently hastening their deterioration. A. Chaouki et al. [29] have sum-
marized the current protective measures for hot-dip galvanized steel. The main protective
methods for hot-dip galvanized steel include passivation treatment, phosphating treatment,
alloying treatment, and surface modification of coatings. However, each method has its
drawbacks, including high costs, numerous influencing factors, and high requirements
for the process. Currently, there is a focus on the corrosion and wear characteristics of
metal material in the corrosive environments, such as soil. Researchers have not reached a
unified and systematic conclusion due to variations in purpose and methodology. Based
on these studies, it is very necessary to research the tribocorrosive behavior of metals in
soil. While hot-dip galvanized steels have been utilized in practical engineering applica-
tions [30], further research is required to investigate their corrosion wear characteristics in
complex environments.

This paper aims to investigate the tribocorrosive behavior of hot-dip galvanized steel
in a soil extract solution. It specifically examines the effect of sliding speed on the failure
process and explores the coupling mechanism between corrosion and wear. Electrochemical
impedance spectroscopy (EIS) was systematically conducted on hot-dip galvanized steel
and Q235 steel at various immersion durations. Additionally, the static and dynamic
potential polarization of both hot-dip galvanized steel and Q235 steel were analyzed.
The tribological characteristics of hot-dip galvanized steel and Q235 steel ball-disc self-
matching pairs were examined under various sliding speeds in a soil extract solution. The
morphology of wear and the chemical composition of the worn surface were comparatively
analyzed to further confirm the tribocorrosive mechanism for hot-dip galvanized steel and
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Q235 steel in soil. The study aimed to enhance the understanding of the failure mechanism
of industrial components made with hot-dip galvanized steel, thereby facilitating the
development of a sound maintenance plan.

2. Experimental
2.1. Materials

The hot-dip galvanized steel blocks with a size of 15 mm × 15 mm × 5 mm, exhibit a
galvanized layer thickness of 100 µm, as shown in Figure 1. The comparison samples were
prepared using a substrate of Q235 steel (Shanghai Xiao Huang Nano Technology Co., Ltd.,
Shanghai, China). The electrochemical tribocorrosive behavior of self-matching pairs of
hot-dip galvanized steel was evaluated using a ball-disc reciprocating wear tester, with a
6 mm diameter ball.
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Figure 1. The thickness of hot-dip galvanized steel.

The working electrodes were prepared by embedding the sample (hot-dip galvanized
steel or Q235 steel) in epoxy resin, as shown in Figure 2. Before conducting the measure-
ments, the electrode surface was polished to achieve a mirror finish (Ra < 0.8 µm), and was
subsequently cleaned using ethanol. The thin galvanized layer of hot-dip galvanized steel
poses difficulties in polishing. Therefore, hot-dip galvanized steel only requires cleaning,
drying, and sealing for storage.
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2.2. Preparation of Soil Extracts

The physical and chemical properties of various soils were investigated in our prior
research [31]. In this study, a typical corrosive soil was chosen as the experimental setting
(as shown in Table 1). A screen mesh with a mesh size of 2 mm was employed to screen
the soil. A water–soil mixture with a ratio of soil to deionized water of 1:2.5 was then
prepared and separated using a centrifuge at 4000 r/min for 1 h. Following this, the
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upper clarification solution was filtered, sealed, and stored as the medium solution for the
electrochemical corrosion test.

Table 1. Soil physical and chemical properties of typical soils.

Fe2+/
mg/L

Mg2+/
mg/L

Ca2+/
mg/L

SO42−/
mg/L

Cl−/
mg/L

NO3−/
mg/L

Cu2+/
mg/L

EC/
µs/cm pH Water

Content/%

3.85 18.2 29.6 44.608 44.324 18.88 12 174.933 8.52 5.76

2.3. Experimental Methods

The electrochemical tribocorrosive characteristics of hot-dip galvanized steel were
investigated using an electrochemical workstation (CHI604e, Chenhua, Shanghai, China)
and an reciprocating friction tester (MSR-2T, Zhongkekaihua, Lanzhou, China) at room
temperature. The experiments were conducted with a scan rate of 0.5 mV/s and a scanning
range of −0.8 V~0.3 V for the open circuit. The polarization curve testing and electrochemi-
cal impedance spectroscopy (EIS) were conducted to monitor the corrosion over time at
the open circuit potential (OCP). The cell configuration consisted of a saturated calomel
electrode (SCE) and a platinum counter electrode immersed in the soil extract solution
within the solution tank. The digital processing software Zview 3.1 was utilized to analyze
the equivalent circuit structure and the parameters of each component.

According to the wind force scale provided by the China Meteorological Network, the
study utilized the 1st soft wind, the 2nd light wind, and the 5th strong wind as the testing
parameters. These were substituted with test speeds of 15 mm/s, 20 mm/s, and 25 mm/s,
respectively, while applying a load of 5 N.

The test flow diagram shows the experimental procedures, as presented in Figure 3.
As shown in the figure, the experiments were composed of two parts: in the first part,
the electrical impedance spectroscopy test was conducted with three different immersion
periods (0 days, 10 days, and 30 days). Dynamic (tribocorrosion) and static (corrosion) po-
tential polarization curves of the samples were generated to assess the corrosion resistance
of hot-dip galvanized steel. In the second part, tribocorrosion tests were performed on
self-mated hot-dip galvanized steel at three different sliding speeds (15 mm/s, 20 mm/s,
and 25 mm/s) at a load of 5 N to evaluate the tribocorrosive behavior of hot-dip galvanized
steel in soil.

Coatings 2025, 15, x FOR PEER REVIEW 4 of 15 
 

 

the soil. A water–soil mixture with a ratio of soil to deionized water of 1:2.5 was then 

prepared and separated using a centrifuge at 4000 r/min for 1 h. Following this, the upper 

clarification solution was filtered, sealed, and stored as the medium solution for the elec-

trochemical corrosion test. 

Table 1. Soil physical and chemical properties of typical soils. 

Fe2+/ 

mg/L 

Mg2+/ 

mg/L 

Ca2+/ 

mg/L 

SO42−/ 

mg/L 

Cl−/ 

mg/L 

NO3−/ 

mg/L 

Cu2+/ 

mg/L 

EC/ 

μs/cm 
pH 

Water 

Content/% 

3.85 18.2 29.6 44.608 44.324 18.88 12 174.933 8.52 5.76 

2.3. Experimental Methods 

The electrochemical tribocorrosive characteristics of hot-dip galvanized steel were 

investigated using an electrochemical workstation (CHI604e, Chenhua, Shanghai, China) 

and an reciprocating friction tester (MSR-2T, Zhongkekaihua, Lanzhou, China) at room 

temperature. The experiments were conducted with a scan rate of 0.5 mV/s and a scanning 

range of −0.8 V~0.3 V for the open circuit. The polarization curve testing and electrochem-

ical impedance spectroscopy (EIS) were conducted to monitor the corrosion over time at 

the open circuit potential (OCP). The cell configuration consisted of a saturated calomel 

electrode (SCE) and a platinum counter electrode immersed in the soil extract solution 

within the solution tank. The digital processing software Zview 3.1 was utilized to analyze 

the equivalent circuit structure and the parameters of each component. 

According to the wind force scale provided by the China Meteorological Network, 

the study utilized the 1st soft wind, the 2nd light wind, and the 5th strong wind as the 

testing parameters. These were substituted with test speeds of 15 mm/s, 20 mm/s, and 25 

mm/s, respectively, while applying a load of 5 N. 

The test flow diagram shows the experimental procedures, as presented in Figure 3. 

As shown in the figure, the experiments were composed of two parts: in the first part, the 

electrical impedance spectroscopy test was conducted with three different immersion pe-

riods (0 days, 10 days, and 30 days). Dynamic (tribocorrosion) and static (corrosion) po-

tential polarization curves of the samples were generated to assess the corrosion resistance 

of hot-dip galvanized steel. In the second part, tribocorrosion tests were performed on 

self-mated hot-dip galvanized steel at three different sliding speeds (15 mm/s, 20 mm/s, 

and 25 mm/s) at a load of 5 N to evaluate the tribocorrosive behavior of hot-dip galvanized 

steel in soil. 

 

Figure 3. Flow graphs of (a) sample preparation, (b) electrochemical test and tribocorrosion test, (c) 

mechanism analysis. 

Figure 3. Flow graphs of (a) sample preparation, (b) electrochemical test and tribocorrosion test,
(c) mechanism analysis.



Coatings 2025, 15, 112 5 of 14

2.4. Characterization

The coefficient of friction was determined using the MSR-2T reciprocating friction
tester. The three-dimensional morphology and macroscopic morphology of the wear tracks
were examined using a digital light microscope (DSX510, Olympus, Japan). The wear rate
was calculated according to Formula (1).

W = V/(L × P) (1)

where W is the wear rate of the sample (mm3/m·N), V is the wear volume (mm3), L is the
grinding process (m), and P is the load (N).

The scanning electron microscope (VEGA II XMU, TESCAN, Brno, Czech Republic)
was employed to analyze the surface morphology and wear track. The samples were
observed with X-ray diffraction (XRD, Rigaku, Tokyo, Japan) and surface-enhanced Raman
spectroscopy (DXRxi, ThermFisher, Waltham, MA, USA) to examine compound composi-
tion present on the surface following the corrosion process.

3. Results
3.1. Electrochemical Corrosion Test

Figure 4 shows the electrical impedance spectra (EIS) of Q235 steel and hot-dip gal-
vanized steel in a soil extract solution, respectively. The corresponding equivalent circuit
and its related parameters are shown in Figure 5 and Table 2, respectively. The electrical
impedance spectra of specimens that are not immersed in the solution are also provided in
this test for comparative analysis. The results show a capacitive arc with a small radius
(less than Q235) in the high-frequency range of galvanized steel during the early stages of
corrosion. After immersion for 10 days, the radius of the capacitive arc expands, and the
EIS curve exhibits the characteristics of Warburg impedance, displaying a “diffusion tail”
in the low-frequency range. The test results suggest that immersing hot-dip galvanized
steel in a solution for 10 days increases the surface corrosion layer gap, thereby creating
a pathway for corrosion to occur. When the corrosion period extends to 30 days, the EIS
curves of Q235 steel and hot-dip galvanized steel tend to align. Meanwhile, as shown
in Table 2, the corrosion resistance of hot-dip galvanized steel exhibits a negative trend
over the 30-day immersion period. This observation strongly suggests that the protective
capacity of the galvanized layer on Q235 steel is inadequate within 30 days.
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Table 2. EIS data obtained by equivalent circuit simulation of Q235 steel and hot-dip galvanized steel
immersed in soil extract.

Materials Rs (a)/Ω·cm2 C1
(b) R1

(c)/Ω·cm2 R2
(d)/Ω·cm2 C2

(e) W1

Q235 34.18 2.978 × 10−9 395 481.8 1.047 × 10−8 0.306
Q235 (10 d) 11.25 6.292 × 10−9 333 320.1 5.96 × 10−8 0.105
Q235 (30 d) −419.2 1.387 × 10−11 −637.3 1160 1.119 × 10−5 0.205

Galvanized Steel 15.49 3.438 × 10−8 244.2 34.79 5.96 × 10−8 0.105
Galvanized Steel (10 d) −42.37 1.209 × 10−8 385.7 293.2 1.283 × 10−12 0.292
Galvanized Steel (30 d) −252.4 1.533 × 10−11 −373.4 4399 9.896 × 10−5 0.213

(a) Rs—Solution resistance. (b) C1—Capacitance of rust layer. (c) R1—Rust layer resistance. (d) R2—Charge transfer
resistance. (e) C2—Electric double layer capacitor.

Figure 6 shows the potential dynamic polarization behavior of galvanized steel and
Q235 steel in the soil extract under both dynamic and static conditions. Table 3 presents the
fitting parameters determined through Tafel extrapolation. The static corrosion potentials
(Ecorr) of both hot-dip galvanized steel and Q235 steel specimens (ranging from −0.123 to
−0.185 VSCE) exhibit lower values compared to the dynamic corrosion potentials (ranging
from −0.426 to −0.967 VSCE). Meanwhile, the static self-corrosion currents (−5.68 A/cm2

and −5.7 A/cm2) are also lower than the dynamic self-corrosion currents (−5.4 A/cm2

and −5.45 A/cm2) for both materials. The results indicate that the corrosion tendency
of galvanized steel is lower than that of Q235 steel in static corrosion conditions. On the
other hand, the corrosion potential and self-corrosion current of hot-dip galvanized steel
and Q235 steel exhibit higher values under dynamic corrosion conditions compared to
static corrosion conditions. Based on the aforementioned findings, it is evident that Q235
steel and hot-dip galvanized steel exhibit more severe damage under dynamic corrosion
conditions. This suggests that wear processes enhance the corrosion propensity of metallic
materials. The negative corrosion potential displacement of hot-dip galvanized steel is
significantly greater than that of Q235 steel among these materials. In comparison to Q235
steel, the corrosion properties of hot-dip galvanized steel are further compromised by
mechanical abrasion.

The results of the potential polarization curve and EIS show that the galvanized coating
initially provides protection to Q235 steel against electrostatic corrosion. Nevertheless,
as the corrosion process advances or the coupling effect of corrosion wear intensifies, the
protective capability of the galvanized layer will progressively diminish or potentially
cease to function.

Table 3. Potential dynamic polarization results of Q235 steel and hot-dip galvanized steel in
soil extract.

Ecorr log icorr βc βa

Static corrosion
Galvanized steel −0.123 V −5.68 A/cm−2 27.853 23.439

Q235 −0.185 V −5.70 A/cm−2 45.076 39.849

Dynamic wear Galvanized steel −0.967 V −5.40 A/cm−2 28.518 23.439
Q235 −0.426 V −5.45 A/cm−2 41.718 38.506
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Figure 6. Potential polarization curves of Q235 steel and hot-dip galvanized steel in soil extract.

3.2. Tribological Properties

Figure 7 shows the friction coefficient curves, average friction coefficients, and wear
rates of self-mated pairs consisting of hot-dipped galvanized steel and Q235 steel in the
soil extract at sliding speeds of 15 mm/s, 20 mm/s, and 25 mm/s. It can be observed
from Figure 7a that the friction coefficients of the hot-dip galvanized steel exceed those
of Q235 steel. It can be observed from Figure 7b that the friction coefficients of hot-dip
galvanized steel increase as the sliding speed increases. In contrast, the friction coefficients
of Q235 steel initially increase and then slightly decrease with the increase in sliding speed.
The wear rates of hot-dip galvanized steel decrease as the sliding speed increases. The
findings indicate that the tribological characteristics of hot-dip galvanized steel exhibit
inferior performance compared to Q235 steel in soil.
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Figure 7. Variation of friction coefficient (a) average friction coefficient, (b) wear rate, (c) of Q235 steel
and hot-dip galvanized steel at different speeds.

The morphologies of the worn surfaces resulting from the self-mated pairs of Q235
steel and hot-dip galvanized steel are illustrated in Figure 8. The figure illustrates that
an increase in sliding speed results in the formation of numerous furrows on the worn
surfaces of Q235 steel (Figure 8a–c), which progressively deepen. On the worn surface of
Q235 steel, there is also a phenomenon characterized by the gradual reduction in thickness
of wear particles. There are minimal indications of furrowing and adhesion present on the
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wear surfaces of hot-dip galvanized steel (Figure 8b–f). With the escalation of sliding speed,
the surface of the hot-dip galvanized steel sheet is experiencing complete spalling. The
relationship between sliding speed and the oxidation rate of hot-dip galvanized steel and
Q235 steel suggests a positive correlation, leading to varying degrees of surface damage [32].
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Figure 8. SEM images of wear surfaces of Q235 steel and hot-dip galvanized steel in soil extract.
(a) Q235 steel with a sliding speed of 15 mm/s, (b) Q235 steel with a sliding speed of 20 mm/s,
(c) Q235 steel with a sliding speed of 25 mm/s, (d) hot-dip galvanized steel with a sliding speed of
15 mm/s, (e) hot-dip galvanized steel with a sliding speed of 20 mm/s, (f) hot-dip galvanized steel
with a sliding speed of 25 mm/s.

Figure 9 shows 3D topographies of worn surfaces of Q235 steel (Figure 9a–c) and
hot-dip galvanized steel (Figure 9d–f). With SEM images utilized in conjunction, it becomes
apparent that at a low sliding speed of 15 mm/s, the wear surface of hot-dip galvanized
steel exhibits distinct grooves, smear marks, and a reduced presence of abrasive particles.
As the sliding speed increases, the severity of smear marks on the wear surface of hot-dip
galvanized steel gradually intensifies.
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The Raman spectra of the wear surfaces of hot-dip galvanized steel and Q235 steel
at a sliding speed of 25 mm/s are shown in Figure 10. Since the substrate of the hot-dip
galvanized steel is steel, the Raman spectrum also contains characteristic information of
the substrate steel; however, due to the coverage of the zinc layer, the related peaks are
relatively weak. As shown in Figure 10, at a sliding speed of 25 mm/s, the wear surface of
the hot-dip galvanized steel contains FeCl3, Fe(OH)3, α-Fe2O3, and a small amount of ZnO.
Comparing with the Raman spectrum of Q235 steel, it is believed that at a sliding speed of
25 mm/s, the galvanized layer of the hot-dip galvanized steel is damaged, exposing the
substrate steel.
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Figure 10. Raman spectra of wear track of Q235 steel and hot-dip galvanized steel at a sliding speed
of 25 mm/s.

In addition, to assess the extent of damage to hot-dip galvanized steel plates at different
sliding speeds, XRD tests were conducted on the wear surfaces of the materials at various
sliding speeds, as shown in Figure 11. At all three speeds, the surface of the hot-dip
galvanized steel exhibited Zn, ZnO, and FeCl2. However, the diffraction peaks of ZnO
and FeCl2 at a sliding speed of 20 mm/s were the most prominent. At a sliding speed of
15 mm/s, the diffraction peak of FeCl2 was almost invisible. Further evidence shows that
at sliding speeds of 20 mm/s and 25 mm/s, the galvanized layer had been damaged or
even removed, exposing the substrate.
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4. Discussion
The corrosion mechanism of hot-dip galvanized steel in soil was previously proposed

in our prior study [31]. The primary role in coating protection is attributed to Zn(OH)2.
However, the substrate becomes gradually exposed due to reactions like the hydrolysis of
Zn(OH)2. Nevertheless, hot-dip galvanized steel exhibits an increased tendency towards
corrosion in soil extract over time, as suggested by electrochemical analysis results. In
particular, a comparison of the EIS curves of unimmersed hot-dip galvanized steel and
hot-dip galvanized steel immersed for 30 days reveals a significant presence of Warburg
impedance characteristics. The findings indicate that the porosity of the galvanized layer
surface and the stripping area of the coating-substrate cross-section were significantly
higher after 30 days of corrosion. Consequently, the coating’s ability to protect against
corrosion was compromised [33]. Consequently, the Q235 steel substrate becomes exposed
following a 30-day immersion in soil.

The potential polarization curves suggest that the dynamic corrosion tendency of
hot-dip galvanized steel is more severe compared to that of pure corrosion. The wear
surface of hot-dip galvanized steel at a sliding speed of 20 mm/s has been found to contain
FeCl2, FeCl3, Fe(OH)3, and α-Fe2O3. The low hardness of the zinc coating leads to the
transfer and removal of the galvanized layer and loose abrasive particles upon repeated
sliding contact. The loose abrasive particles exhibit a weak bonding force, making them
prone to detachment from the surface. Higher sliding speed is associated with heightened
levels of damage to the zinc layer, leading to significant zinc spalling [34]. As shown in
Figure 12, loose abrasive particles and an abrasive passivation layer were observed on
the wear surface. Additionally, some abrasive particles were entrained by the solution,
resulting in a reduction in the wear rate.
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Figure 12. Schematic diagram of furrow formation and abrasive grains generated by surface crack
propagation of hot-dip galvanized steel.

The increase in Cl− concentration in the pores can be attributed to the high chlorine
content in the soil and the easy adsorption of Cl− on surface defects of the materials [35].
The adsorption capacity of chlorides on metal surfaces shows instability [36]. In particular,
ZnCl2 and FeCl3 exhibit high solubility in water, leading to the destruction of the surface
oxide film. The occurrence of stress corrosion due to the accumulation of chlorides on the
surface of hot-dip galvanized steel can be attributed to working stress and thermal stress.
As chloride corrosion progresses, stress concentration will form corrosion pits on the surface
of the galvanized layer. The edges of these corrosion pits will generate stress concentration
phenomena [37]. When external tensile stress is applied (such as stress generated during
actual use due to deformation of components), the stress in the concentrated area will
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be much higher than the average stress. According to fracture mechanics theory, cracks
are more likely to initiate and propagate in stress concentration areas. In this case, stress
corrosion cracking is more likely to occur, and cracks will continuously extend along the
direction of stress concentration (such as perpendicular to the direction of tensile stress).
During the wear process, the surface of hot-dip galvanized steel is subjected to repeated
compression, leading to the destruction (hydrolysis) of its surface oxide film [38–42]. This
breakdown exposes the substrate, creating a pathway for subsequent corrosion. Further
evidence shows that at sliding speeds of 20 mm/s and 25 mm/s, the galvanized layer is
damaged or even removed, exposing the substrate. Figure 13 shows the failure model
of corrosion and tribocorrosion of hot-dip galvanized steel in soil. During the corrosion
process, the galvanized layer initially loses electrons due to the buildup of a significant
quantity of chloride ions and sulfate ions in the pores. This results in the formation of oxide
layers like ZnO, which serve as a protective barrier against corrosion for the substrate.
Following the introduction of friction behavior, the galvanized layer exhibits significant
plastic deformation, characterized by numerous grooves, abrasive particles, and extensive
spalling on the worn surface. As the sliding speed increased, the abrasive particles became
progressively embedded into the surface of the hot-dip galvanized steel, leading to the
squeezed and compaction of the wear debris. Moreover, the galvanized layer, serving as
the anode, progressively captures electrons and generates associated compounds like ZnO
and ZnCl2.
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Figure 13. Corrosion and tribocorrosion of hot-dip galvanized steel in soil extract.

Throughout the friction process, the medium solution consistently removed abrasive
particles and exfoliations from the surface. The exposure of the substrate to tribocorrosion
led to the accumulation of a significant quantity of Cl− and metal cations, facilitating
the formation of additional chloride. This process can potentially induce stress corrosion
cracking and expedite the deterioration of the galvanized layer.

The acceleration of galvanized layer failure resulting from the introduction of friction
and wear behavior can be attributed primarily to the following reasons. (1) The corrosion
process results in the accumulation of more chlorides, leading to an increase in the brittle-
ness of the galvanized layer. This increased brittleness makes the galvanized layer more
prone to spalling during the friction process. (2) Wear resulted in plastic deformations or dis-
locations on the surface, rendering the surface more reactive. (3) Prolonged tribocorrosion
results in the exposure of the substrate, leading to the galvanized layer’s electrochemical
protection being compromised and the subsequent corrosion of the substrate.



Coatings 2025, 15, 112 12 of 14

5. Conclusions
The present study examines the tribocorrosion behavior of hot-dip galvanized steel

when exposed to soil conditions. This holds significant guiding implications for further
research on the maintenance cycle of outdoor equipment, such as transmission towers. The
primary findings can be summarized as follows:

(1) Under identical conditions, the sliding friction and wear exacerbate the corrosion
tendency of hot-dip galvanized steel more significantly than that of Q235 steel. The
tribocorrosion mechanism of hot-dip galvanized steel is significantly influenced by
the sliding speed. The wear performance of hot-dip galvanized steel decreases with
increasing sliding speed. The primary wear mechanisms include adhesive wear,
abrasive wear, and tribocorrosion;

(2) Hot-dip galvanized steel provides enhanced corrosion protection compared to Q235
steel. The addition of wear behavior results in the accelerated degradation of the
galvanized layer, consequently causing the failure of cathodic protection provided by
the galvanized layer;

(3) The interaction between corrosion and wear of hot-dip galvanized steel in soil accel-
erated the failure process. The soil contains more corrosive anions, especially Cl−,
which generates more abundant chloride causing stress corrosion, further accelerating
the failure behavior. Consequently, it is essential to conduct regular maintenance on
hot-dip galvanized steel when exposed to a tribocorrosive environment.
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