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Abstract: Cyclic impacts in corrosive environments significantly affect the service life of
ceramic coatings, greatly increasing their susceptibility to cracking and delamination. This
study investigated the damage evolution behavior of Cr2O3-TiO2 (CT) coatings under cyclic
stress in a corrosive medium, and analyzed the effects of the nickel layer on coating stress,
corrosion current, and crack propagation. The variations in corrosion potential and current
were analyzed, and the formation patterns of interfacial corrosion cracks were observed.
Pre-cracks were introduced on the ceramic coating surface using a Micro-Nano mechanical
testing system, and cyclic impacts were applied to the samples in 5% diluted hydrochloric
acid using SiC balls to induce damage evolution. The results indicate that the presence of
the nickel interlayer reduced the corrosion current density from 9.197 × 10−6 A/cm2 to
8.088 × 10−6 A/cm2 and significantly decreased the stress between the coating and the
substrate. The surface cracks gradually extended toward the interface under the coupling
effect of corrosion and SiC ball impact. When cracks reached the interface, they provided
channels for corrosive media, leading to stress corrosion cracking at the interface. The Ni
intermediate layer suppressed the formation of interface cracks and greatly enhanced the
impact damage resistance of the CT coating–substrate system in corrosive media.

Keywords: Cr2O3-TiO2; nickel layer; corrosion; cyclic impact; crack evolution

1. Introduction
Ceramic coatings are well known for their excellent high-temperature stability, thermal

shock resistance, wear resistance, and optoelectronic properties, particularly excelling in
enhancing the wear and corrosion resistance of components [1–4]. Ceramic coatings
have been applied to the surfaces of seawater pump blades and deep-sea combustible ice
extraction equipment to prevent erosion caused by seawater and sand particles, which are
also widely used on the surfaces of fuel pump rotors, mud pump piston rods, and sucker rod
couplings in the petroleum industry to enhance wear and corrosion resistance [5–7]. Cr2O3

exhibits exceptional hardness, wear resistance, and pressure tolerance. The incorporation
of TiO2 improves its ductility and toughness, resulting in CT coatings with excellent
mechanical properties, making them widely used in demanding service environments [8].
However, defects such as porosity and microcracks in the layers are difficult to avoid.
Extensive research has been conducted to investigate the microstructure of plasma-sprayed
CT ceramic coatings, with particular attention to crack evolution [9]. However, due to
the complexity of the internal structure and interface morphology of transition layers
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and ceramic coatings, studying micro dynamic fracture behavior and how to suppress
crack propagation has become a major challenge [10]. Consequently, the inclusion of TiO2

results in the enhanced toughness and corrosion resistance of the coatings, thus exhibiting
exceptional physicochemical characteristics [11].

Microcracks and pores are common issues in plasma-sprayed ceramic coatings [12,13],
particularly under cyclic stress conditions, where crack propagation occurs below the
fracture strength of the coating [14]. The typical mechanisms of crack propagation involve
intrasplat cracking, intersplat decohesion, the interlinking of pores and cracks, mutual
splat sliding, and pore compaction, leading to coating failure [15]. Plasma-sprayed coatings
are often applied in environments with corrosive media, where corrosion initially occurs
at the surfaces of partially unmelted particles, pores, and edges of microcracks [16]. The
corrosion mechanism of a ceramic coating–metal substrate system can be attributed to
three aspects: (i) penetration of electrolyte and corrosive species through interconnected
coating pores towards the substrate, (ii) corrosion of the active area along the coating-
substrate interface, and (iii) accumulation of corrosion products at the coating–substrate
interface, resulting in a reduction in adhesion strength [17]. In engineering applications,
stress corrosion cracking is the primary failure mode of thermal-sprayed ceramic coatings.
Coating interfacial stress corrosion cracking (ISCC) refers to the delamination, cracking,
and fracture of the coating and substrate at the interface due to stress concentration and the
combined effects of corrosion [18]. The mismatch in thermal expansion coefficients between
the ceramic coating and the substrate material, as well as the presence of micro-voids at
the interface, can trigger stress corrosion cracking, particularly when alternating stress and
corrosion act synergistically, promoting crack propagation [19–21].

The impeller blades of seawater pumps and valves of marine equipment are often
subjected to erosion from seawater and sand particles. The presence of a high concentration
of chloride ions, combined with the cyclic stress caused by sand particle impact, can easily
lead to the failure of ceramic coatings. There is a lack of research on the damage evolution
law of ceramic coatings under corrosive media and impact loads, and determining how to
suppress coating–substrate system failure is an important challenge in engineering. This
study conducted particle impact experiments in an environment with a large amount of
chloride ions present to analyze the damage evolution mechanism of ceramic coatings.
The method of using a nickel layer as a transition layer for the ceramic coating was
proposed to investigate the effects of the Ni layer on corrosion potential and current,
and to analyze its impact on interface crack propagation. This research holds significant
importance for enhancing the service life of ceramic coatings subjected to impact loads in
corrosive environments.

2. Experiments
2.1. The Preparation of CT Coatings

In this study, CT coatings with and without a Ni interlayer were prepared on
304 stainless steel using the XM-300SK (Shanghai Xiuma Spraying Machinery, Shanghai,
China) supersonic plasma spraying system. The substrate used for this plasma spray was
304 stainless steel with a size specification of 100 × 100 × 3 mm3. The primary gases
and powder carrier gases employed in the system were argon. The transition layer was
composed of Ni powders with a particle size of 30–100 µm. TiO2 accounts for 60% of the
total mass of the ceramic powder. The process parameters for CT and the transition layer
are shown in Table 1.
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Table 1. Plasma process parameters.

Process Parameters Ni Layer Ceramic Layer

Current/A 300 500
Voltage/V 62 80

Plasma gas flow (Ar)/L·min−1 60 60
Plasma gas flow (H2)/L·min−1 10 15

Spray distance (mm) 100 100
Powder feed rate (g/min) 30 30

2.2. Corrosion and Electrochemical Experiments

The CT coating samples after spraying were cut into small pieces of 10 × 10 × 3 mm3

using a wire cutting machine. After cutting the samples, the cut surfaces were polished and
immersed in 5% HCl at room temperature for 1 h to investigate the corrosion behavior of
the coating, Ni layer, substrate, and interface. The electrochemical corrosion behaviors were
studied by potentiodynamic polarization spectroscopy. Before the experiment, the samples
were polished first. The polishing liquid used was a suspension of alumina particles. All the
electrochemical experiments were conducted on an electrochemical station (Versa Studio:
PARSTAT 3000 A-DX, Berwyn, PA, USA), as shown in Figure 1II. The cell used was a
typical three-electrode one fitted with a platinum sheet measuring 1 × 1 × 0.05 cm3 as the
counter electrode (CE), working electrode (specimen) and saturated calomel electrode (SCE)
as the reference electrode (RE). The open circuit potential (Ecorr) and corrosion current
density (Icorr) of the samples, with and without the Ni layer, were analyzed through
electrochemical experiments.
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2.3. Crack Prefabrication

To further study the effect of the Ni layer on interface crack propagation, the Micro-
Nano mechanical testing system was used to pre-create indentations and cracks on the
ceramic coating surface (Figure 1III). The diamond indenter stayed in situ for 20 s after
applying a load of 20 N, forming a diamond indentation on the surface of the coating, and
forming cracks in the indentation and at sharp corners.
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2.4. Cyclic Impact Experiment in Corrosive Media

To explore the damage evolution of the ceramic coating, a cyclic impact test in a
corrosive environment was conducted. The sample was fixed at the bottom of the polyte-
trafluoroethylene test tube (Figure 1IV), 50 SiC balls with a diameter of 3 mm were added
into the test tube, and 5% hydrochloric acid was also added as the corrosion medium. The
test tube was installed on the shaking table, and a vibration with an amplitude of 0.5 mm
and a frequency of 20 Hz was applied for 2 h. The synergistic effect of cyclic impact stress
generated by SiC balls and corrosive media induces the propagation of pre-existing cracks
on ceramic coatings.

2.5. Characterization Techniques

After polishing the surface of the coatings, the samples’ microstructures were charac-
terized using a scanning electron microscope (SEM, Merlin Compact, Zeiss, Jena, Germany),
and the element distribution was examined using energy-dispersive spectroscopy (EDS).
The phase composition of the ceramic coatings and substrates was tested using an X-ray
diffractometer (XRD, Ultimate IV, RIGAKU, Tokyo, Japan), and the test results were an-
alyzed using MDI Jade 6 software (V.6, ICDD, Philadelphia, PA, USA). Additionally, a
simulation was performed to investigate the stress variation pattern in the coatings and
analyze the formation mechanism of residual stresses.

3. Results and Discussion
3.1. Microscopic Characteristics of CT Coating–Substrate System

In addition to the abundant presence of chromium (Cr) and nickel (Ni), there are
mineral phases of Taenite FeNi and FeNi3 compound phases in the matrix, which can
be confirmed by the X-ray diffraction patterns. The appearance of these two phases is
attributed to the mutual dissolution, diffusion and reaction between iron and nickel during
the heat treatment of the substrate. The internal structure of the coating shown in Figure 2b
reveals the presence of Cr2O3 and TiO2, indicating a typical plasma-sprayed ceramic
coating. The addition of titanium oxide provides a certain level of toughness to inhibit
crack propagation within the coating [22].
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Powder particles are exposed to high temperatures and kinetic energy through high-
pressure gases and heating. When colliding with the substrate surface, the powder particles
form a molten or semi-molten splash. These deformed particles intertwine and stack to-
gether in a wave-like pattern, forming a layered microstructure, as illustrated in Figure 3a.
During the stacking process, the changes in particle flight velocity and temperature trig-
gered the coating structure to show significant irregularities, resulting in gaps or voids
between the stacked particles. The elemental distribution map clearly reveals distinct
regions and boundaries for Cr and Ti, corresponding to the distribution regions of the par-
ticles. The elemental distribution maps clearly show the different regions and boundaries
of Cr and Ti, corresponding to the distribution areas of the particles, where the O intensity
is significantly higher in the Cr region, indicating higher oxygen content in this region
(Figure 2b). The presence of pores and microcracks is commonly observed in ceramic
coatings. During plasma spraying, pores and microcracks can be generated from different
sources, such as entrapped gases, the incomplete filling in of the rapidly solidifying splats,
the shrinking of the splats during rapid solidification, etc. Additionally, as the temperature
of deforming particles decreases, they undergo shrinkage. Failure to replenish the liquid
phase in a timely manner can also result in the formation of voids within the coating [23–25].
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As shown in Figure 4a, the coating–substrate system was observed to be clearly
divided into three parts: the substrate, the transition layer, and the coating. Interface 1 and
Interface 2 were formed between the nickel layer, ceramic coating, and substrate, achieving
a strong bond between the materials. The elemental distribution of the coating–substrate
system was investigated using energy-dispersive X-ray spectroscopy (EDS, Zeiss Merlin
Compact, Zeiss, Jena, Germany), revealing distinct separation into three different regions.
The transition layer served to bind the coating and the substrate, and was mainly composed
of nickel. However, the EDS spectrum reveals the presence of Al and O in the transition
layer, which is attributed to the retention of alumina particles during metallographic
polishing. The ceramic coating primarily contained elements such as Cr, Ti, and O. The
substrate was mainly composed of elements such as Fe and Ni. Figure 4b shows numerous
black particles embedded in the transition layer. EDS analysis identifies these black particles
as corresponding to aluminum elements, confirming that they are alumina abrasive particles
embedded in the nickel layer.
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3.2. Interfacial Crack Formation

To investigate the mechanism by which a nickel layer influences the interfacial crack-
ing of CT coatings, two types of coating–substrate systems were prepared using plasma
spraying technology. In the first type of sample, the CT coating was directly sprayed
onto the 304 stainless steel. In the second type, a nickel layer was deposited between the
substrate and the CT coating. The coating exhibited numerous pores, with a particularly
high density of pores and microcracks at the interface, as shown in Figure 5a. This phe-
nomenon occurred because, upon the impact of a droplet on a solid surface, a thin air
film forms between the center of the droplet and the substrate. This air film ultimately
evolves into a spherical bubble to minimize surface energy, resulting in the formation of
pores at the interface [25]. Additionally, during the cooling process, thermal stresses arise
at the interface due to the different thermal expansion coefficients. These stresses generate
interface cracks originating from defects such as pores [26]. The samples were placed in a
5% HCl solution for a corrosion period of 2 h at room temperature. As shown in Figure 5b,
corrosion occurred at the interface between the substrate and the coating. The corrosion
traces on the substrate exhibited a striped pattern, while pronounced continuous cracks
were observed at the interface. This confirms that the interface is the most vulnerable part
of the thermal-sprayed coating in a corrosive environment, and corrosion-induced crack-
ing at the interface is an important reason for the failure of the thermal-sprayed coating.
Elemental distribution analysis reveals the presence of elements such as O, Cr, and Ti in the
coating, while showing that the substrate predominantly contains Fe. A clear demarcation
is observed between the coating and the substrate.

Corrosion experiments on samples with a nickel layer revealed that the nickel layer
and ceramic coating were well bonded, with no cracks observed at Interface 1. However,
significant cracks were found at Interface 2, between the nickel layer and the substrate,
as shown in Figure 6a. Figure 6b,c show numerous pores in both the ceramic coating
and the nickel layer. Interface 1 is clearly identified and surrounded by many defects.
Obvious corrosion cracks were formed at Interface 2, and obvious β-phase corrosion
occurred on the substrate. However, there were fewer corrosion marks on the ceramic
coating and nickel layer, and slight intergranular corrosion was observed on the nickel layer
(Figure 6d–f). As shown in Figure 6j, elemental distribution indicates that the transition
layer is predominantly composed of nickel, while aluminum is introduced from alumina
abrasive particles in the polishing solution. The ceramic coating depicted in Figure 6i
contains elements such as Ti, Cr, and O, indicating that it is a corrosion-resistant ceramic.
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The intermediate layer is primarily composed of nickel, while the aluminum element is
introduced from the alumina abrasive particles in the polishing solution (Figure 6j). The
enhanced corrosion resistance at Interface 1 inhibits the growth of interfacial cracks, while
the cracks at Interface 2 are formed due to the corrosion of the substrate near the interface.
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3.3. Electrochemical Characteristics

To evaluate the corrosion resistance of CT/Ni/Substrate and CT/Substrate, Tafel
curves of the two samples were obtained using an electrochemical workstation. As de-
picted in Figure 7, the passivation region of the sample with the added nickel layer is
more pronounced compared to that of the CT/Substrate sample, indicating the easier
formation of a passive film and enhanced corrosion resistance. Furthermore, the corrosion
potential of the CT/Ni/Substrate sample increased from −0.657 V to −0.766 V, and the
corrosion current density decreased from 9.197 × 10−6 A/cm2 to 8.088 × 10−6 A/cm2. The
negative shift in potential is merely a thermodynamic tendency. The decrease in current
density demonstrates the enhanced corrosion resistance of the CT/Ni/Substrate sample.
Additionally, the passivation region of the CT/Ni/Substrate samples was significantly
enlarged, indicating that the incorporation of the Ni layer facilitates the formation of a
passivation film on the surface, thereby enhancing the passivation phenomenon.
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3.4. Damage Evolution of the Coating–Substrate System

Vibrations with a frequency of 20 Hz and an amplitude of 0.5 mm were generated using
a vibration table, causing SiC particles to repeatedly impact the ceramic coating surface in
a 5% hydrochloric acid solution. Figure 8a illustrates two types of failure modes occurring
on the coating surface. Cracking is a common and almost unavoidable failure mode for
ceramic coatings, especially under the combined effects of corrosive media and cyclic stress,
leading to crack propagation on the surface. As cracks propagate, corrosion continues
within the crack gaps, which is associated with stress corrosion cracking. The susceptibility
to stress corrosion cracking is significantly higher than it is under non-corrosive or non-
stress conditions [27–29]. Figure 8d shows corrosion and minor spalling on both sides of
the cracks. The other form of damage is the localized spalling of the coating, manifested as
the layer-by-layer delamination of the ceramic coating, initiated by defects such as pores,
eventually forming deep pits on the coating surface, as depicted in Figure 8b,c.

To further investigate the damage evolution patterns of the film–substrate system,
indents and pre-cracks were prepared on two samples: CT/Ni/Substrate and CT/Substrate.
The displacement–load curves of the two samples are similar. However, under the same
applied load of 20 N, the displacement of the CT/Ni/Substrate sample is generally larger
than that of the CT/Substrate sample (Figure 9). This is because when the indentation depth
exceeds 1/10 of the coating thickness, the resulting displacement–load curve represents
the film–substrate system rather than the ceramic coating alone. The nickel layer exhibits
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good plasticity, leading to more significant deformation under the same load conditions.
Consequently, the indentation depth is slightly deeper.
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The indenter of the Micro-Nano mechanical testing system induces two types of dam-
age: indentations and cracks. Figure 10aI shows the indentation of the CT/Ni/Substrate
sample, where cracks are generated at the sharp corners of the indentation, and there is
slight spalling of the coating at the edges. As the corrosion medium impact experiment
progresses, the spalled area of the coating increases, and the cracks within the indentation
interweave in a spiderweb-like pattern (Figure 10b2). After 2 h of the corrosion impact
experiment, localized delamination of the coating within the indentation occurs, as shown
in Figure 10aIII. Figure 10b1 displays the indentation of the CT/Substrate sample. Without
the nickel layer, the ceramic coating is more prone to cracking and large-scale delamination.
This phenomenon is likely related to the internal stress within the coating and the bonding
strength between the film and the substrate. As the impact experiment continues, delami-
nation begins within the coating, and extensive delamination occurs around the warped
coating (Figure 10b2). Without a nickel layer as a barrier, the interaction of the corrosion
medium and abrasive particles results in the almost complete peeling of the coating within
the indentation, deepening the corrosion and continuously increasing the peeling area.
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These observations indicate that the presence of the nickel layer effectively suppresses the
deterioration of the coating damage.
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The phenomenon of cracking induced by the combined effect of lower stress (below
the fatigue strength) and a mild corrosive environment is referred to as stress corrosion
cracking. If only one factor, either stress or the corrosive medium, is present, failure does
not occur. However, when both factors act together, cracking can occur rapidly [30]. Stress
corrosion leads to a reduction in fracture toughness, which is attributed to the presence
of corrosive media. These media attack interlayer bonding and weaken the bond energy
of closely connected chemical bonds, thereby causing damage to the crack tip model and
initiating rapid crack propagation. Stress plays a crucial role in crack propagation [31].
As shown in Figure 11a, the stress base along the X-axis and Y-axis exhibits tensile stress,
while compressive stress is generated within the coating. In the Z-axis direction, tensile
stress is present in the areas with the coating. After the introduction of the Ni layer, the
stress within both the substrate and the coating decreases; however, stress concentration is
observed in the X-axis direction of the Ni layer, and compressive stress is present in the
Z-axis direction. In Figure 11b, the CT/Ni/Substrate sample coating exhibits compressive
stress in the X-axis direction, which is lower than that of the CT/Substrate sample. The
maximum tensile stress occurs at Interface 2, and it is significantly lower than that of the
CT/Substrate sample. The presence of the Ni layer transforms the stress in the Z-axis
direction from tensile to compressive (Figure 11c). The formation of interfacial cracks aligns
with the stress concentration at Interface 2. The development of compressive stress within
the CT/Ni/Substrate sample coating and the overall reduction in stress contribute to fewer
cracks within the coating, as illustrated in Figure 11b.

The combined effects of corrosive media corrosion and the cyclic impact of SiC balls
induce the formation of cracks in ceramic coatings. The propagation of these cracks occurs
in two forms: one is parallel to the coating surface, leading to the layer-by-layer spalling
of the ceramic coating, and the another form is a through-thickness crack, characterized
by its extension towards the coating–substrate interface, as illustrated in Figure 12a. The
corrosive medium infiltrates the membrane–substrate interface through capillary action via
cracks generated during fatigue cycles or pores in the surface coating of the sample, leading
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to the formation of corrosion pits. Subsequently, these pits initiate and propagate cracks
within the substrate [32,33]. The micromechanical system generates surface cracks, which
progressively extend towards the interface under the repeated impacts of the corrosive
media and SiC balls. When the cracks reach the interface, they provide a pathway for the
corrosive media, resulting in stress corrosion cracking at the interface [34], as shown in
Figure 12b. Figure 12d reveals that the substrate is preferentially corroded by the media,
and the occurrence of interface cracks depends on the substrate’s corrosion resistance.
After the addition of a nickel layer (Figure 12c), when the cracks extend to the interface,
the corrosive media contact the nickel layer, inhibiting corrosion and making it difficult
for interface cracks to form (Figure 12c,e,f). Furthermore, the presence of the nickel layer
effectively reduces the stress at the interface, significantly enhancing the suppression
of stress corrosion cracking at the interface. Consequently, the constructed CT/Ni/304
stainless steel coating–substrate system exhibits excellent performance in suppressing
damage evolution under corrosive media and repeated impact conditions.
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4. Conclusions
To enhance the suitability of plasma-sprayed ceramic coatings under corrosive impact

conditions, this study deposited a nickel layer between the ceramic coating and 304 stainless
steel. The findings demonstrate that the nickel layer reduces interfacial and coating stresses,
suppresses the propagation of interfacial cracks, and effectively improves the damage
resistance of the ceramic coating.

(a) The formation of interfacial cracks primarily depends on the corrosion resistance of
the materials on either side of the interface. Therefore, the addition of a nickel layer
effectively inhibits the formation of cracks between the ceramic coating and the nickel
layer. However, it cannot prevent the formation of cracks between the nickel layer
and the substrate, which is due to the substrate’s poor corrosion resistance.

(b) The nickel layer reduces the stress on the coating and substrate, but stress concentra-
tion occurs near the interface between the nickel layer and substrate. The stress in the
Z-axis direction changes from tensile stress to compressive stress.

(c) The presence of the nickel layer enhances the corrosion resistance of the coating–substrate
system and strengthens the passicvation phenomenon. The corrosion potential of the
CT/Ni/Substrate sample increased from −0.657 V to −0.766 V, and the corrosion current
density decreased from 9.197 × 10−6 A/cm2 to 8.088 × 10−6 A/cm2.

(d) The combined effects of corrosion and impact result in two types of damage on the
surface of ceramic coatings: through-thickness cracks and corrosion pits. Through-
thickness cracks are the primary cause of interfacial cracks, while corrosion pits arise
from the progressive delamination of the ceramic coating layers.

Author Contributions: H.Y.: methodology, experiment, data curation, and writing—original draft.
Y.Z.: experiment, writing—review and editing. X.Q.: simulation. Y.J.: writing—review and editing.
X.Z.: experiment. K.T.: investigation and simulation. X.W.: methodology. Z.Z.: conceptualization
and supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by National Natural Science Foundation of China (Grant
No. 52305510), National Defense Science and Technology Key Laboratory (6142005KJW2022011) and
Natural Science Foundation of Shandong Province (ZR2023QE044).

Data Availability Statement: All data and material are presented in the main manuscript and
additional supporting files are available from corresponding author on reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest.



Coatings 2025, 15, 98 13 of 14

References
1. Han, C.; Wang, Z.; Ma, L.; Huang, G.; Ma, Y. Cold spray for ceramic metallisation: A review. Adv. Appl. Ceram. 2021, 120, 358–380.

[CrossRef]
2. Missner, M.; Stryhalski, J.; Tomiyama, M.; Soares, P.; Recco, A.; Fontana, L. Rutile TiO2 thin films growth on glass substrates with

generation of high entropy interface. J. Mater. Res. Technol. 2023, 24, 963–970. [CrossRef]
3. Talavari, F.; Shakeri, A.; Mighani, H. Synthesis of Cr2O3/TiO2 nanocomposite and its application as the blocking layer in solar

cells. J. Environ. Anal. Chem. 2018, 5, 2380–2391. [CrossRef]
4. Dey, A.; Banerjee, K.; Mukhopadhyay, A.K. Microplasma sprayed hydroxyapatite coating: Emerging technology for biomedical

application. Mater. Technol. 2014, 29, 15–20. [CrossRef]
5. Zhang, H.; Wang, Y.; Chen, X.; Zhang, Z.; Zeng, X.; Cheng, X. Corrosion behaviors of Al2O3–20TiO2 and Cr2O3–3TiO2–5SiO2

coatings in both artificial seawater and high-pressure hydrogen sulfide seawater. Ceram. Int. 2024, 50, 34346–34356. [CrossRef]
6. Lakshmi, K.P.J.; Irappa, S.; Raghavendra, C.R.; Basavarajappa, S. High temperature erosive behaviour of plasma sprayed

NiCrAlY/B4C/Cenospherecoating on MDN 321 turbine steel. Int. J. Surf. Eng. Coat. 2023, 101, 49–56.
7. Zavareh, M.A.; Sarhan, A.A.D.M.; Karimzadeh, R.; Singh, R.S.A. Analysis of corrosion protection behavior of Al2O3-TiO2 oxide

ceramic coating on carbon steel pipes for petroleum industry. Ceram. Int. 2018, 44, 5967–5975. [CrossRef]
8. Vernhes, L.; Bekins, C.; Lourdel, N.; Poirier, D.; Lima, R.S.; Li, D.; Klemberg-Sapieha, J.E. Nanostructured and conventional Cr2O3,

TiO2, and TiO2-Cr2O3 thermal-sprayed coatings for metal-seated ball valve applications in hydrometallurgy. J. Therm. Spray
Technol. 2016, 25, 1068–1078. [CrossRef]

9. Rasooli, A.; Safavi, M.S.; Hokmabad, M.K. Cr2O3 nanoparticles: A promising candidate to improve the mechanical properties
and corrosion resistance of Ni-Co alloy coatings. Ceram. Int. 2018, 44, 6466–6473. [CrossRef]

10. He, X.; Song, P.; Huang, T.; Wan, F.; Kong, D.; Zhai, R.; Hua, C.; Dai, J. Fracture process simulation and crack resistance behavior
analysis of transition-layer ceramic coating based on real image reconstruction model. Surf. Interfaces 2024, 46, 104003. [CrossRef]

11. Babu, P.S.; Sen, D.; Jyothirmayi, A.; Krishna, L.R.; Rao, D.S. Influence of microstructure on the wear and corrosion behavior of
detonation sprayed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings. Ceram. Int. 2018, 44, 2351–2357. [CrossRef]

12. Wang, S.; Liu, X.; Zhang, J.; Xu, P.; Wei, M.; Liu, G.; Zhan, X.; Coyle, T.W.; Mostaghimi, J. Tailoring the wetting behaviors and
surface structures of yttrium oxide coatings deposited via different plasma spray processes. J. Mater. Res. Technol. 2024, 29,
1924–1936. [CrossRef]

13. Ahmadian, S.; Jordan, E.H. Explanation of the effect of rapid cycling on oxidation, rumpling, microcracking and lifetime of air
plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 2014, 244, 109–116. [CrossRef]
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